The present disclosure relates generally to a system for supplying fuel to an engine to improve operation of an engine after initial starting of the engine.
Cold-starting and warm-up of internal combustion engines, particularly small engines in chainsaws, snowblowers, outboard marine engines, ATV's, two-wheel vehicles and the like, have been and remain a problem in the art. Engine stability can be problematic when a cold engine is initially started. Some systems provide supplemental fuel to the engine upon starting and without regard to operating conditions like engine speed and temperature. Such supplemental fuel can be problematic in at least certain engine operating conditions. For example, providing additional fuel to an engine that is already being supplied with a rich fuel and air mixture and is struggling to stably operate after starting, and which may be close to stalling, can negatively impact engine operation and/or cause the engine to stall. Thus, there is a need for, among other things, an automatic engine enrichment system for use with internal combustion engines of the described character that is automatically responsive to engine operation and operating conditions to selectively enrich the fuel and air mixture delivered to the engine.
In at least one implementation, a method of operating a combustion engine, includes determining a temperature equal or related to a temperature of an engine at an engine start and comparing the determined temperature to a temperature threshold, determining if an engine operating condition exceeds an engine threshold within a threshold time after the engine was started, and if the determined temperature is below the threshold temperature and the engine operating condition remains above the engine threshold and the threshold time has not passed, providing an enriched fuel and air mixture to the engine. In at least some implementations, the engine threshold includes an engine speed that is at least 1,000 rpm greater than the nominal idle speed of the engine. In at least some implementations, the engine threshold includes an engine speed that is between 3,500 rpm and wide open throttle engine operation. In at least some implementations, the engine threshold includes an engine speed that is at least 25% greater than the nominal idle speed of the engine.
In at least some implementations, the threshold time is between 10 and 200 seconds, and/or the threshold temperature is between −5° C. and 15° C.
In at least some implementations, the step of providing an enriched fuel and air mixture to the engine may be accomplished as a function of at least one of the time since the engine was started and the difference between the determined temperature and the threshold temperature. In at least some implementations, the closer in time to engine starting and the larger the difference between the determined temperature and the threshold temperature, the longer the enriched fuel and air mixture may be supplied to the engine.
In at least some implementations, the step of providing an enriched fuel and air mixture may include opening a valve associated with a charge forming device to provide additional fuel into a fuel and air mixture provided from the charge forming device than is provided when the valve is closed. The valve may be selectively opened and closed during the threshold time when the engine speed is greater than a speed threshold. The valve may be repeatedly opened for a first period of time and closed the remainder of the time within the threshold time. The valve may be open for at least 10 percent of the engine revolutions within the threshold time. And the first period of time may include one or more engine revolutions and the second period of time may include a greater number of engine revolutions than the first period of time. In at least some implementations, the valve is open for at least 1 revolution out of every 10 to 100 revolutions. Instead of controlling fuel flow, the step of providing an enriched fuel and air mixture may include closing a valve associated with an air passage to reduce air within a fuel and air mixture delivered to the engine.
In at least some implementations, an enriched fuel and air mixture may be provided to the engine when the engine speed is below a speed threshold and the time since the engine started is less than a warm-up time threshold.
In at least some implementations, the fuel and air mixture is provided to the engine by a charge forming device having a throttle valve and the engine threshold relates to the position of the throttle valve relative to a position of the throttle valve when the engine is operating at a nominal engine idle speed. The engine operating condition may relate to engine stability which may be determined by checking cycle-to-cycle engine speed deviation and the engine threshold relates to a maximum cycle-to-cycle engine speed deviation.
In at least some implementations, a method of operating a combustion engine includes:
In at least some implementations, the engine speed threshold is at least 25% greater than a nominal idle speed of the engine. In at least some implementations, the threshold time is between 10 and 200 seconds and the threshold temperature is between −5° C. and 15° C.
The following detailed description of preferred implementations and best mode will be set forth with regard to the accompanying drawings, in which:
Referring in more detail to the drawings,
The engine speed may be determined in a number of ways, one of which uses signals within an ignition system 10 such as may be generated by one or more magnets on a rotating flywheel 12.
The flywheel 12 rotates about an axis 20 under the power of the engine 2 and includes magnetic elements 22. As the flywheel 12 rotates, the magnets 22 spin past and electromagnetically interact with components of the control system 14 for sensing engine speed among other things.
The control system 14 includes a ferromagnetic stator core or lamstack 30 having wound thereabout a charge winding 32, a primary ignition winding 34, and a secondary ignition winding 36. The primary and secondary windings 34, 36 basically define a step-up transformer or ignition coil used to fire a spark plug. The control system also includes a circuit 38 (shown in
In normal engine operation, downward movement of an engine piston 49 during a power stroke drives a connecting rod 51 that, in turn, rotates the crankshaft 19, which rotates the flywheel 12. As the magnets 22 rotate past the lamstack 30, a magnetic field is created which induces a voltage in the nearby charge winding 32 which is used for several purposes. First, the voltage may be used to provide power to the control system 14, including components of the circuit 38. Second, the induced voltage is used to charge the main discharge capacitor 62 that stores the energy until it is instructed to discharge, at which time the capacitor 62 discharges its stored energy across primary ignition winding 34. Lastly, the voltage induced in the charge winding 32 is used to produce an engine speed input signal, which is supplied to a microcontroller 60 of the circuit 38. This engine speed input signal can play a role in the operation of the ignition timing, as well as controlling an air/fuel ratio of a fuel mixture delivered to the engine, as set forth below.
Referring now primarily to
The microcontroller 60 as shown in
To summarize the operation of the circuit, the charge winding 32 experiences an induced voltage that charges ignition discharge capacitor 62, and provides the microcontroller 60 with power and an engine speed signal. The microcontroller 60 outputs an ignition signal on pin 7, according to the calculated ignition timing, which turns on the thyristor 64. Once the thyristor 64 is conductive, a current path through the thyristor 64 and the primary winding 34 is formed for the charge stored in the capacitor 62. The current discharged through the primary winding 34 induces a high voltage ignition pulse in the secondary winding 36. This high voltage pulse is then delivered to the spark plug 47 where it arcs across the spark gap thereof, thus igniting an air/fuel charge in the combustion chamber to initiate the combustion process.
As noted above, the microcontroller 60, or another controller, may play a role in altering an air/fuel ratio of a fuel mixture delivered by the carburetor 4 (for example) to the engine 2. In the embodiment of
In one form, and as noted above, the mixture control device that is used to change the air/fuel ratio as noted above includes a valve 8 that interrupts or inhibits and selectively permits a fluid flow within the carburetor 4. In at least one implementation, the valve 8 may be moved to an open position to permit to increase the fuel flow rate from the carburetor 4 and thereby enrich the fuel and air mixture delivered from the carburetor to the engine. The valve may be electrically controlled and actuated. An example of such a valve is a solenoid valve. The valve 8 may be reciprocated between open and closed positions when the solenoid is actuated. In one form, the valve prevents or at least inhibits fuel flow through a passage 120 (
In some engine systems, an ignition circuit 38 may provide the power necessary to actuate the solenoid valve 8. A controller 60 associated with or part of the ignition circuit 38 may also be used to actuate the solenoid valve 8, although a separate controller may be used. As shown in
At step 152, the method begins in any suitable manner, such as but not limited to, upon starting of the engine or when power sufficient to operate the controller 60 is provided in the circuit 38. During cranking to start the engine and when the engine has been started, the flywheel 12 rotates and electrical power is generated via the magnets 22 and lamstack 30, and the circuit 38 and controller 60 are powered.
At step 154, a temperature associated with the engine is determined. The temperature may be determined in any suitable manner, such as but not limited to, by a temperature sensor that may be part of the circuit 38, carried by the engine, or carried by a part of the tool or device with which the engine is used. The temperature sensed may be the ambient temperature or the temperature of a portion of the engine, carburetor, ignition module or some other part or portion of the tool or device with which the engine is used. The determination may include sensing engine temperature, for instance, using thermal switches, temperature sensors, thermocouples, or any other suitable devices and associated equipment like processors, memory, and the like. When the actual engine temperature, or the temperature of a region suitably close to the engine, is not used, the temperature of the engine may be inferred from the temperature sensed by itself or in combination with other factors, such as time since the engine was last started. Time from the last engine running event may be determined by electrical signal decay in circuit 38 (e.g. by providing controlled drain of charge from charge capacitor 62, and setting threshold as a function of charge level on the charge capacitor 62). In any event, the temperature is sensed and if the temperature is at or below a threshold temperature, the method continues to step 156. If the temperature is above the threshold temperature the method ends at 158.
When the temperature criteria has been satisfied, the method continues at 156 to determine if a time criteria is satisfied. In the example shown, at step 156 it is determined if the time from starting of the engine (which may be determined by when sufficient power is provided to circuit 38 or controller 60) is less than a threshold time. In other words, to satisfy the time criteria of step 156, the engine must not have been started longer ago than a threshold duration of time. The time may be tracked by a counter or clock of the microcontroller 60, or in any other way desired. The time threshold may be a fixed value (e.g. some value between 30 and 200 seconds), or it may correspond to the temperature sensed or determined in step 154. For example, a lower temperature from step 154 may result in a longer time threshold than would a higher temperature. This may permit the warm-up sequence to continue longer when the engine is colder. If the time criteria of step 156 is satisfied, the process continues to step 160.
In step 160, an engine condition, such as engine speed, is checked against a threshold (in this example it is called a speed threshold). Engine speed may be determined in any suitable manner, for example, an engine speed sensor (not shown) may be operatively coupled to the crankshaft, the flywheel, or the like in any suitable manner, or one or more of the lamstack coils may be used to track engine revolutions in any suitable manner, such as by sensing rotation of the magnet past the coil(s). In at least some implementations, the method provides an enriched fuel mixture to the engine only when the engine speed is above a threshold speed (other processes or controls may alter fuel mixture at lower speeds, if and as desired). In at least some implementations, the threshold speed is above idle engine speed, which may include a range of speeds (e.g. 3,200 rpm to 3,600 rpm) or a nominal speed (e.g. 3,400 rpm). The threshold speed may also simply be a lower limit such that any speed above the threshold, up to and including wide open throttle engine operation, may satisfy the speed criteria of step 160. If the engine speed is not greater than the threshold speed, the method starts over, either immediately or after some delay (which may, for example, be based on passage of time, or a number of engine cycles). If the engine speed is greater than the threshold, then the method continues to step 162.
At step 162, the valve 8 is actuated, as desired, to provide supplementary fuel to the engine (via an enriched fuel and air mixture). For example, electrical power is communicated to the electromechanical valve 8 to open the valve 8 and allow fuel to flow from the fuel passage 120 to the air-and-fuel mixing passage 80. Thus, when the engine 2 is relatively cold, has not been operating for longer than a time threshold, and is above a threshold speed, supplementary fuel is provided through the valve 8 and to the engine to facilitate warming up and initial operation of the engine at speeds above the threshold speed.
In step 162, the valve 8 may be opened and closed according to a desired timing or control signal. The control signal may be time based, or related to the engine cycle and engine speed. For example, the valve 8 may be actuated (opened) for a given number of cycles within a larger number of cycles (e.g. X out of every Y cycles, where X is less than Y. For example, 1 out of every 10 engine cycles or revolutions; or one out of every 100 engine cycles or revolutions). This is generally shown in
After a desired operation of the valve 8, which may include one or more than one open/close cycle (e.g. range Z may include one or more valve actuations and may extend for a longer period of time or greater number of engine cycles), the method 150 may return to the start 152 so that the engine temperature, time and engine speed criteria are again checked in steps 154, 156 and 160 before further valve actuation is undertaken. Alternatively, the method 150 may return to step 156 so that current conditions are checked against the time and speed thresholds, but the temperature is not checked again. In some implementations, the temperature is determined only once and need not be determined again. In the implementation shown, if either the temperature in step 154 is higher than the temperature threshold or the elapsed time in step 156 since the method was initiated is greater than the time threshold, the method 150 ends and the valve 8 is not actuated. If the speed is below the speed threshold at step 160, however, the method 150 may start over to again check the criteria for valve actuation and fuel mixture enrichment. In this way, the engine speed may exceed the threshold and drop below the threshold more than once within the time threshold and the valve actuation may occur each time the engine speed exceeds the speed threshold within the time threshold, if desired.
In this example, the time threshold was set to 80 seconds, the speed threshold was set at 7,500 rpm and an engine starting temperature below the temperature threshold is assumed. Hence, a time of about 23 seconds, when the engine reached 7,500 rpm (point A in
In at least some implementations, the speed threshold is at least 25% greater than the engine idle speed (which may be a nominal speed, or an average speed taken over a given duration, e.g. 30 seconds, of idle engine operation) For example, if the engine idle speed is 3,000 rpm, the threshold would be at least 3,750 rpm. And the speed threshold may be at least 100% greater than the idle speed in at least some implementations—for example, with an idle speed of 3,000 rpm, the speed threshold would be 6,000 rpm or higher, as in the example of
Further, instead of engine speed, another engine operating condition, such as throttle position, may be determined and checked against a corresponding engine threshold. In such an example, if the throttle valve is open beyond a threshold extent (where the throttle is considered to be increasingly opened between idle and wide open positions), the criteria is considered to be satisfied. The threshold throttle position may be set anywhere between the positions associated with idle and wide open throttle. The throttle position may be checked in combination with engine speed and a combined criteria established for implementation of the method 150, if desired. Still further, an engine stability criteria may also be used either separately or in combination with engine speed and/or throttle position to provide an engine operating criteria within the method 150. Engine stability may be determined by checking cycle-to-cycle speed variations and providing a threshold speed deviation among two or more engine cycles, where a deviation greater than the threshold may be counted and one or more such counts needed to establish an engine instability for which supplementary fuel supply to the engine may be desirable to improve engine stability.
Also, the threshold temperature may be set to any desired value to assist operation of a given engine or engine type. In one implementation, the threshold temperature is 10° C., although other threshold temperatures may be used, for example, between −5° C. and 15° C.
Next, while a time threshold of 80 seconds was used in the
In at least some implementations, the method 150 may be used in combination with an idle or lower speed fuel adjustment method that may facilitate warming up an engine operated at speeds lower than the speed threshold of method 150. For example, a lower speed engine warm-up assist method may provide a fuel mixture adjustment (such as but not limited to providing additional or supplementary fuel) at speeds below 6,000 rpm. The low speed method may utilize the same valve 8 and fuel passage 120 arrangement, if desired. And the low speed method may also be temperature and time dependent similarly to the higher speed method 150, with the same or different time and temperature criteria. Accordingly, below a threshold speed, below a threshold temperature and within a time threshold, the low speed method may actuate the valve 8 as desired. In one implementation, the valve is actuated less for a warmer engine (e.g. during one engine cycle for every 150 engine cycles when the engine is at 5° C.) and more for a colder engine (e.g. during one engine cycle for every 40 engine cycles when the engine is at −15° C.).
While the forms of the invention herein disclosed constitute presently preferred embodiments, many others are possible. For example, while supplementary fuel is provided through the valve 8 as noted above, the fuel mixture could be enriched by reducing air flow in addition to or instead of increasing fuel flow. One way to do this is to close off an air passage when the valve is actuated resulting in less air flow to the engine and a higher ratio of fuel to air when the valve is actuated than when the valve is not actuated. Of course, it is not intended herein to mention all the possible equivalent forms or ramifications of the invention. It is understood that the terms used herein are merely descriptive, rather than limiting, and that various changes may be made without departing from the spirit or scope of the invention.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/314,045 filed on Mar. 28, 2016, the entire contents of which are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/024420 | 3/28/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/172682 | 10/5/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1828800 | Federle | Oct 1931 | A |
4246639 | Carp | Jan 1981 | A |
4393012 | Kato | Jul 1983 | A |
4498434 | Baltz | Feb 1985 | A |
5560345 | Geyer et al. | Oct 1996 | A |
5605138 | Deichsel et al. | Feb 1997 | A |
5817923 | Ohsaki et al. | Oct 1998 | A |
6079396 | Ament | Jun 2000 | A |
6415766 | Kanno | Jul 2002 | B1 |
7000595 | Andersson et al. | Feb 2006 | B2 |
7028993 | Burns | Apr 2006 | B2 |
7246591 | Shinogi et al. | Jul 2007 | B2 |
7509941 | Ottosson et al. | Mar 2009 | B2 |
8622031 | Watanabe | Jan 2014 | B2 |
20040173195 | Ament | Sep 2004 | A1 |
20040182366 | Andersson et al. | Sep 2004 | A1 |
20050098907 | Richard et al. | May 2005 | A1 |
20050279326 | Andersson | Dec 2005 | A1 |
20060102126 | Nakata et al. | May 2006 | A1 |
20070028881 | Nakata et al. | Feb 2007 | A1 |
20090013951 | Nakata et al. | Jan 2009 | A1 |
20090044777 | Clouse et al. | Feb 2009 | A1 |
20090107441 | Husak et al. | Apr 2009 | A1 |
20100011597 | Bo et al. | Jan 2010 | A1 |
20110253102 | Watanabe et al. | Oct 2011 | A1 |
20130255629 | Yamashita et al. | Oct 2013 | A1 |
20150020772 | Eberle et al. | Jan 2015 | A1 |
20150198129 | Dangelmaier et al. | Jul 2015 | A1 |
20150252772 | Nishio et al. | Sep 2015 | A1 |
20150308331 | Song et al. | Oct 2015 | A1 |
20180128196 | Gottlieb | May 2018 | A1 |
Number | Date | Country |
---|---|---|
1869422 | Nov 2006 | CN |
1896483 | Jan 2007 | CN |
203769965 | Aug 2014 | CN |
1744038 | Jan 2007 | EP |
WO03071120 | Aug 2003 | WO |
WO2012002859 | Jan 2012 | WO |
Entry |
---|
Written Opinion & International Search Report for PCT/US2017/024420 dated Jun. 27, 2017, 16 pages. |
Swedish Search Report in Swedish Patent App. No. 1851197-2 dated May 17, 2019 (4 pages). |
CN Office Action for CN Application No. 201780021416.3 dated May 13, 2020 (12 pages). |
CN Office Action for CN Application No. 201780021416.3 dated May 7, 2021 (13 pages). |
Number | Date | Country | |
---|---|---|---|
20190113004 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
62314045 | Mar 2016 | US |