The present invention relates to a fuel supply system of an internal combustion engine that includes a delivery pipe provided with a relief valve, which discharges fuel when being opened, and to the internal combustion engine.
Japanese Laid-Open Patent Publication No. 7-103048 discloses an internal combustion engine that distributes fuel accumulated in a delivery pipe to injectors of cylinders. In an internal combustion engine in which the fuel pressure in a delivery pipe is high, for example, in an in-cylinder injection gasoline engine or a common rail diesel engine, a relief valve, which discharges accumulated fuel on an as needed basis, is located in the delivery pipe to prevent excessive increase of the fuel pressure in the delivery pipe.
According to the delivery pipe in which the relief valve is provided, air easily enters the delivery pipe when the engine is not operating. That is, if flow of fuel in and out of the delivery pipe is stopped when the engine is not operating, the fuel temperature in the delivery pipe temporarily increases due to the residual heat of the internal combustion engine. At this time, in the delivery pipe in which the relief valve is provided, increase of the internal pressure of the delivery pipe due to the thermal expansion of fuel causes the relief valve to be opened and part of fuel in the delivery pipe to be discharged. If the temperature of the residual fuel is decreased in accordance with decrease of the temperature of the internal combustion engine in a state where the amount of the residual fuel in the delivery pipe has been decreased, the internal pressure of the delivery pipe is significantly decreased causing air to enter the delivery pipe from a gap in the relief valve. If an operation for restarting the internal combustion engine is started in this state, that is, when the restarting operation is started with air in the delivery pipe, a time required for increasing the fuel pressure in the delivery pipe for preparation of starting the engine is increased as compared to a case where air is not in the delivery pipe.
In an in-cylinder injection internal combustion engine, since the fuel pressure required for fuel injection is high, the delivery pipe is located in the vicinity of a cylinder block. Therefore, in the in-cylinder injection internal combustion engine, the temperature of residual fuel is easily increased after the internal combustion engine is stopped. Thus, the problem is more serious.
Accordingly, it is an objective of the present invention to provide a fuel supply system of an internal combustion engine and an internal combustion engine that suppress air from entering a delivery pipe when the engine is not operating.
To achieve the foregoing and other objectives and in accordance with the purpose of the present invention, a fuel supply system of an internal combustion engine including a delivery pipe with a relief valve is provided. The fuel supply system includes a maintaining device, which maintains a fuel discharge section of the relief valve filled with fuel when the engine is not operating.
The present invention provides also an internal combustion engine having a plurality of cylinders and intake passages each of which connected to one of the cylinders. The internal combustion engine includes first injectors, second injectors, a first delivery pipe, a second delivery pipe, a relief valve, a relief passage, and a maintaining device. Each first injector injects fuel in one of the intake passages. Each second injector injects fuel in one of the cylinders. The first and second injectors are used independently or in combination. The first delivery pipe distributes fuel to the first injectors. The second delivery pipe distributes fuel to the second injectors. The relief valve is provided on the second delivery pipe. The relief passage connects the relief valve to the first delivery pipe. The maintaining device maintains a fuel discharge section of the relief valve filled with fuel when the engine is not operating.
The present invention provides another internal combustion engine having a plurality of cylinders and intake passages each of which connected to one of the cylinders. The internal combustion engine includes first injectors, second injectors, a first delivery pipe, a second delivery pipe, a relief valve, a fuel tank, a relief passage, and a maintaining device. Each first injector injects fuel in one of the intake passages. Each second injector injects fuel in one of the cylinders. The first and second injectors are used independently or in combination. The first delivery pipe distributes fuel to the first injectors. The second delivery pipe distributes fuel to the second injectors. The relief valve is provided on the second delivery pipe. The relief passage connects the relief valve to the fuel tank. The maintaining device maintains a fuel discharge section of the relief valve filled with fuel when the engine is not operating. At least part of the relief passage is located higher than the relief valve, and the maintaining device is configured of the at least part of the relief passage.
The present invention provides yet another internal combustion engine having a plurality of cylinders and intake passages each of which connected to one of the cylinders. The internal combustion engine includes first injectors, second injectors, a firs delivery pipe, a second delivery pipe, a relief valve, a fuel tank, a relief passage, and a maintaining device. Each first injector injects fuel in one of the intake passages. Each second injector injects fuel in one of the cylinders. The first and second injectors are used independently or in combination. The first delivery pipe distributes fuel to the first injectors. The second delivery pipe distributes fuel to the second injectors. The relief valve is provided on the second delivery pipe. The relief passage connects the relief valve to the fuel tank. The maintaining device maintains a fuel discharge section of the relief valve filled with fuel when the engine is not operating. The relief passage is provided with a check valve, and the maintaining device is configured of the check valve.
Other aspects and advantages of the invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings.
a) is a timing chart showing changes of the temperature of fuel in an in-cylinder injection delivery pipe;
b) is a timing chart showing changes of the fuel pressure in the in-cylinder injection delivery pipe;
A fuel supply system of an internal combustion engine according to one embodiment of the present invention will be described with reference to the drawings.
As shown in
The internal combustion engine according to the preferred embodiment includes a high pressure fuel pump 16. An inlet of the high pressure fuel pump 16 is connected to the low pressure fuel passage 14, and an outlet of the high pressure fuel pump 16 is connected to a high pressure fuel passage 18 via a check valve 20. The high pressure fuel pump 16 forces fuel in the low pressure fuel passage 14 to the high pressure fuel passage 18. When fuel pressure in the high pressure fuel pump 16 becomes higher than the fuel pressure in the high pressure fuel passage 18 by a degree greater than or equal to a predetermined pressure, the check valve 20 opens to connect the high pressure fuel pump 16 to the high pressure fuel passage 18. In addition, the check valve 20 functions to prevent fuel from flowing backward from the high pressure fuel passage 18 to the high pressure fuel pump 16.
The internal combustion engine is provided with several (four in this embodiment) first injectors 22 for intake passage injection. Each first injector 22 corresponds to one of cylinders 26 and injects fuel in one of intake passages 24 of the internal combustion engine. Each first injector 22 is connected to a common first delivery pipe 28 for intake passage injection, and the first delivery pipe 28 is connected to the low pressure fuel passage 14. Relatively low pressure fuel in the low pressure fuel passage 14 is distributed to each first injector 22 via the first delivery pipe 28. A pressure regulator 30 is provided at the middle of the low pressure fuel passage 14. The pressure regulator 30 makes the pressure in the low pressure fuel passage 14 to be less than or equal to a predetermined pressure.
The internal combustion engine is provided with several (four in this embodiment) second injectors 32 for in-cylinder injection. Each second injector 32 corresponds to one of the cylinders 26 and injects fuel directly into the cylinder 26. Each second injector 32 is connected to a common second delivery pipe 34 for in-cylinder injection, and the second delivery pipe 34 is connected to the high pressure fuel passage 18. High pressure fuel in the high pressure fuel passage 18 is distributed to each second injector 32 via the second delivery pipe 34.
The second delivery pipe 34 is provided with a relief valve 36 for relieving fuel in the second delivery pipe 34. The relief valve 36 is an electromagnetic valve, and opening and closing of the relief valve 36 is switched by electric supply to an electromagnetic solenoid. High pressure fuel in the second delivery pipe 34 is relieved by opening the relief valve 36. The relief valve 36 is basically opened to reduce the fuel pressure in the second delivery pipe 34 when the fuel pressure in the second delivery pipe 34 becomes excessively high.
As described above, the fuel supply system of the preferred embodiment includes two types of injectors, which are the first injectors 22 for intake passage injection, and the second injectors 32 for in-cylinder injection. The fuel supply system supplies fuel to the internal combustion engine by switching between or by the combination of fuel injection from the first injectors 22 and fuel injection from the second injectors 32. The relief valve 36 of the preferred embodiment is connected to the first delivery pipe 28 via a relief passage 38.
When the engine is not operating, the low pressure fuel passage 14 and the first delivery pipe 28, which is connected to the low pressure fuel passage 14, are closed by the feed pump 12, the pressure regulator 30, the high pressure fuel pump 16, and the check valve 20. Therefore, residual fuel in the low pressure fuel passage 14 and the first delivery pipe 28 hardly leaks outside the low pressure fuel passage 14 and the first delivery pipe 28, and is maintained in the accumulated state. That is, when the engine is not operating, the low pressure fuel passage 14 and the first delivery pipe 28 function as a fuel accumulator.
As shown in
A fuel discharge section of the relief valve 36 is connected to the first delivery pipe 28 via the relief passage 38. Therefore, the fuel discharge section of the relief valve 36 is kept filled with fuel due to the residual fuel in the first delivery pipe 28. Accordingly, if the internal pressure of the second delivery pipe 34 is decreased after the engine is stopped, the second delivery pipe 34 draws in fuel in the fuel discharge section of the relief valve 36. Therefore, air is prevented from entering the second delivery pipe 34 when the engine is not operating without adding a special structure to the fuel supply system.
The first delivery pipe 28 is located higher than the relief valve 36. Therefore, even if air enters the relief passage 38, the entered air moves upward, and fuel in the relief passage 38 easily remains in the vicinity of the relief valve 36 since the specific gravity of air is lighter than fuel. Also, when drawing fuel from the first delivery pipe 28 to the second delivery pipe 34, fuel is smoothly drawn into the second delivery pipe 34 since gravity acts on fuel. Furthermore, in the preferred embodiment, the relief valve 36 is employed that is maintained opened when electric supply is stopped as the engine is stopped. Therefore, when the engine is not operating, the second delivery pipe 34 is connected to the first delivery pipe 28, which is filled with fuel of a relatively low pressure.
As shown in
In addition , since the fuel discharge section of the relief valve 36 is kept filled with fuel, even if the relief valve 36 is opened when the engine is not operating, air is prevented from entering the second delivery pipe 34 in a suitable manner. The fuel discharge section of the relief valve 36 is reliably kept filled with fuel by fuel accumulated in the first delivery pipe 28, which serves as the fuel accumulator.
A dashed line in
The preferred embodiment as described above has the following advantages.
(1) In the preferred embodiment, the fuel discharge section of the relief valve 36 provided on the second delivery pipe 34 is connected to the first delivery pipe 28. Therefore, air is prevented from entering the second delivery pipe 34 without adding a special structure to the fuel supply system.
(2) Since the first delivery pipe 28 is located higher than the relief valve 36, fuel easily remains in the vicinity of the relief valve 36. Therefore, air is more reliably prevented from entering the second delivery pipe 34.
(3) Since the relief valve 36 is maintained opened when the engine is not operating, in addition to preventing air from entering the second delivery pipe 34 when the engine is not operating, the temperature increase and the pressure increase in the second delivery pipe 34 are suppressed.
The preferred embodiment may be modified as follows.
The first delivery pipe 28 may be located lower than the second delivery pipe 34, and the relief passage 38 may be connected to the first delivery pipe 28. With this structure also, advantages are provided that are the same as the advantages (1) and (3).
Instead of the relief valve 36, a valve that operates in accordance with the pressure difference between the internal pressure of the second delivery pipe 34 and the atmospheric pressure, or the pressure difference between the internal pressure of the second delivery pipe 34 and the pressure in the relief passage 38.
As shown in
A fuel supply system that uses a camshaft pump is known as the high pressure fuel pump. In such a fuel supply system, the high pressure fuel pump is often attached to the upper portion of the cylinder head. When applying the above structure to such a fuel supply system, a relief passage 40 should be connected to an intake section of the high pressure fuel pump 16 as shown in
As shown in
As shown in
The temperature of the residual fuel at the fuel discharge section of the relief valve 36 increases by the residual heat of the internal combustion engine in the same manner as fuel in the second delivery pipe 34. Thus, in a case where the temperature increase of the residual fuel is excessive, the residual fuel might evaporate. In this regard, for example, as shown by a dashed line in
The present invention is applicable to a fuel supply system of an intake passage injection gasoline engine as long as the fuel supply system has a delivery pipe provided with a relief valve.
Number | Date | Country | Kind |
---|---|---|---|
2004-193319 | Jun 2004 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4096995 | Klomp | Jun 1978 | A |
5924405 | Hashimoto | Jul 1999 | A |
6823846 | Mattes | Nov 2004 | B2 |
20020092504 | Kohketsu et al. | Jul 2002 | A1 |
20040003796 | Nomura | Jan 2004 | A1 |
20040118116 | Beck et al. | Jun 2004 | A1 |
20050098155 | Yamazaki et al. | May 2005 | A1 |
20050115545 | Kawasaki et al. | Jun 2005 | A1 |
20050193981 | Sakai et al. | Sep 2005 | A1 |
20050193982 | Sakai et al. | Sep 2005 | A1 |
20050235958 | Matsumura | Oct 2005 | A1 |
20050241617 | Kojima | Nov 2005 | A1 |
20050274353 | Okubo et al. | Dec 2005 | A1 |
Number | Date | Country |
---|---|---|
295 18 733 U 1 | Apr 1997 | DE |
19941770 | Mar 2001 | DE |
10 2004 027 507 | Dec 2005 | DE |
1 180 595 | Feb 2002 | EP |
53-147125 | Dec 1978 | JP |
A 07-004330 | Jan 1995 | JP |
A 07-103048 | Apr 1995 | JP |
A 07-109962 | Apr 1995 | JP |
A 2001-214828 | Aug 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060000455 A1 | Jan 2006 | US |