The present disclosure relates to improvements in the control of a fuel system in an engine such as a combustion engine and in particular to a method of controlling the fuel system by determining the opening of a pressure relief valve and initiating a reseat strategy for the valve.
Many different fuel systems are utilized to introduce fuel into the combustion chambers of an engine. One type of fuel system is known as the common rail system. A typical common rail fuel system utilizes one or more pumping mechanisms to pressurize fuel and direct the pressurized fuel to a common manifold, also known as a common rail, which provides a source of pressurised fuel. A plurality of fuel injectors draw pressurized fuel from the common rail and inject one or more shots of fuel per cycle into the combustion chambers. In order to optimize engine operation, fuel within the rail is maintained within a desired pressure range through the precise control of the pumping mechanisms.
Situations may arise in which this precise control is interrupted, pressure fluctuations or spikes occur, or various portions of the fuel system fail. In these situations, there is a possibility that fuel pressures within the common rail could reach levels that have the potential to damage the components of the fuel system. One way to protect the common rail from such excessive pressures is to selectively drain fuel from the common rail as the pressure of the fuel within it exceeds a predetermined maximum threshold value. However, if too much fuel is drained, the pressure of the fuel within the common rail may drop below a certain minimum pressure (at which the fuel injectors and engine will be able to continue operating in at least a limited operational mode, or “limp home” mode) and the engine may shut off. If the engine shuts off suddenly the machine, truck, or other piece of equipment powered by the engine may be left in an undesirable state, position, or location. Moreover, depending on the problem or problems that lead to the excessive pressure within the fuel system, the rate at which the fuel will need to be drained from the common rail to maintain a required minimum pressure may vary.
The incorporation of a pressure relief (or limiter) valve into such a fuel system helps to mitigate, reduce, or even eliminate the adverse effects of excessive fluid pressure on the common rail. When the pressure of the fluid within the system exceeds a maximum threshold value, the pressure relief valve opens and allows fluid to drain from the common rail, thereby lowering the pressure of the fluid within the common rail. The pressure of the fluid may be lowered just enough to protect the common rail without creating instability or completely disabling the system. This means that the engine can still operate.
US-A-2011/0094476 describes a fuel supply system incorporating a pressure relief valve. The pressure relief valve comprises a movable valve member and a resilient member housed in a body which has a fluid inlet and two fluid outlets. The resilient member biases the valve member into a first (closed) position in which the fluid inlet is fluidly blocked from the first outlet and the second outlet. The valve also has a second (open) position in which the inlet is fluidly coupled to the first outlet, but not to the second outlet and a third (open) position in which the inlet is fluidly coupled to both the first and the second outlets, which allows a greater flow of fluid out of the common rail than the second position.
It has been determined that the detection of the opening of the pressure relief valve is useful to aid troubleshooting of low fuel rail pressure problems. It may also be used to trigger a process to attempt to close the pressure relief valve to enable continued use of the machine driven by the engine. It is also recognised that there are some transient conditions which cause the pressure relief valve to open, such as air ingress during a filter change, which cause a rail pressure overshoot which can be remedied quickly, in which case it is desirable to shorten the time taken to reseat the valve and thereby reduce the impact on the machine operator as a result of the engine suddenly losing power.
According to the disclosure there is provided a method of controlling a fuel system of an engine, said fuel system comprising:
The disclosure further provides a fuel system for an engine comprising:
The tank 12 is typically a storage container that stores the fuel that the fuel system 10 will deliver to the engine 11. The transfer pump 13 pumps fuel from the tank 12 and delivers it at a generally low pressure to the high-pressure pump 14. The high-pressure pump 14 pressurizes the fuel to a high pressure and delivers the fuel to the common rail 15. The common rail 15, which is intended to be maintained at the high pressure generated by high-pressure pump 14, serves as the source of high-pressure fuel for each of the fuel injectors 16. The fuel injectors 16 are located within the engine 11 in a position that enables the fuel injectors 16 to inject high-pressure fuel into the combustion chambers of the engine 11 (or into pre-chambers or ports upstream of the combustion chamber in some cases). The fuel injectors 16 generally serve as metering devices that control when fuel is injected into the combustion chamber, how much fuel is injected, and the manner in which the fuel is injected (e.g. the angle of the injected fuel, the spray pattern, etc.). Each fuel injector 16 is continuously fed fuel from the common rail 15 such that any fuel injected by a fuel injector 16 is quickly replaced by additional fuel supplied by common rail 15. The ECM 17 is a control module that receives multiple input signals from sensors associated with various systems of engine 11 (including the fuel system 10) indicative of the operating conditions of those various systems (e.g. common rail fuel pressure, fuel temperature, throttle position, engine speed, etc.). The ECM 17 uses the input signals to control the fuel system 10 which includes, inter alia, the operation of the high-pressure pump 14 and each of the fuel injectors 16. The general purpose of the fuel system 10 is to ensure that the fuel is constantly fed to the engine 11 in the appropriate amounts, at the right times, and in the right manner to support the operation of the engine 11.
The pressure relief valve (PRV) 18 is a component or assembly that selectively directs fuel from the common rail 15 to the tank 12 via a drain line 19 when the pressure of the fuel within common rail 15 exceeds a certain threshold magnitude, which will depend on the characteristics of each particular fuel system.
The construction of the pressure relief valve may be of any suitable construction. One suitable (but not limiting) construction, as described in detail in US-A-2011/0094476, is illustrated in
The body 20 is a generally rigid member or assembly that houses the valve member 21 and the resilient member 22 and defines flow passages that allow fuel to flow from a high pressure region (e.g. the common rail 15) to a low pressure region (e.g. the tank 12). The body 20 may include a bore 23, at least one inlet 24, at least one outlet including a first outlet 25 and may be also a second outlet 26, and a spring chamber 27.
The bore 23 may be configured to receive at least a portion of the valve member 21. The bore 23 may include a proximal end 28 that is located near the spring chamber 27 and a distal end 29. At the distal end 29, bore 23 may include a seat surface 30 that is configured to be engaged by an end portion of valve member 21 to create a sealed interface that prevents (or substantially prevents) any flow of fluid from the inlet around valve member 21 into first outlet 25.
The inlet 24 may be a passageway, duct, or other opening within the body 20 that opens into the bore 23 and that serves to fluidly couple the common rail 15 to the bore 23. The inlet 24 may enter the bore 23 in a radial direction.
The first outlet 25 may be a passageway, duct, or other opening within the body 20 that serves to fluidly couple the bore 23 to the tank 12 via the drain line 19. The first outlet 25 may be located near the distal end 29 of the bore 23 and may by positioned on the opposite side of the seat surface 30 to the inlet 24. Thus the engagement of the valve member 21 with the seat surface 30 fluidly blocks the inlet 24 from the first outlet 25.
The second outlet 26 may be a passageway, duct, or opening within the body 20 that serves to fluidly couple the bore 23 to the tank 12 via the drain line 19. The second outlet 26 may be located generally near the proximal end 28 of the bore 23 such that along the length of the bore 23, the inlet 24 is located between the first outlet 25 and the second outlet 26. To facilitate the flow of fuel into the second outlet 26 from different positions around the circumference of bore 23, an annulus or circumferential groove 31 may be provided within the bore 23.
The spring chamber 27 is an opening or cavity within the body 20 that is configured to receive a portion of the valve member 21 and the resilient member 22.
The pressure relief valve 18 may be coupled within the fuel system 10 such that the inlet 24 is in fluid communication with the common rail 15 to receive fuel there from, and the first and second outlets 25, 26 are both ultimately coupled to the tank 12 via drain line 19.
During operation of the fuel system 10, the transfer pump 13 draws fuel from the tank 12 and provides the fuel to the high pressure pump 14. The high pressure pump 14 pressurizes the fuel to a high pressure and directs the high pressure fuel to the common rail 15. The fuel is then directed from the common rail 15 to each of the fuel injectors 16.
Fuel from the common rail 15 will enter the bore 23 of the pressure relief valve 18 via the inlet 24. When the valve member 21 is in a first (closed) position (illustrated in
Depending on the characteristics of resilient member 22 (e.g. the spring constant k in the case of a compression spring), the flow of fuel trying to pass through the pressure relief valve 18, and the size of the first outlet 25, the pressure under the valve member 21 may rise to a level that causes the valve member 21 to move farther away from the seat surface 30 to a third (open) position. When the valve member 30 travels to this third position it has lifted enough to allow the inlet 24 to fluidly communicate with second outlet 26. Thus, when the valve member 21 reaches the third position, a second outlet for fuel is created that makes it possible for a greater flow of fuel to pass through the pressure relief valve 18 to the tank 12.
Once the valve member 21 is moved out of the first (closed) position, it will not close again until the force generated by the fuel pressure acting under the valve member 21 is less than the biasing force provided by the resilient member 22. The magnitude of the pressure that will allow the valve member 21 to close (referred to as “the valve closing pressure”) will depend on the biasing force provided by the resilient member 22 and the size of the bore area.
According to the present disclosure the electronic control module (ECM) 17 provides a method of controlling the fuel system which includes the step of determining whether the pressure relief valve 18 has opened which, as described above, occurs when the fuel rail pressure exceeds the valve opening pressure. When it has been determined that the pressure relief valve 18 has opened, the ECM 17 regulates the pressure in the common rail 15, by controlling the operation of the high pressure pump 14, to a low rail pressure (i.e. referred to as the “regulated opening pressure”) that is still sufficient to allow the engine to continue running at a minimum level, for example in a “limp home” mode.
Through analysis of the rail pressure signal fed to the ECM 17, if the ECM 17 determines the presence of a number of particular characteristics, this will be considered to indicate that the pressure relief valve 18 has opened. These characteristics are:
If these characteristics are all present, it is determined that the pressure relief valve 18 has opened and a valve closing procedure can be initiated.
This is illustrated in the graph of
In the illustrated (non-limiting) example the high pressure threshold is set in the order of 220 MPa, which may be below the valve opening pressure, in this example at approximately 30 MPa below a valve opening pressure of 250 MPa. The high pressure threshold is set below the valve opening pressure because if the pressure relief valve 18 keeps opening multiple times, the valve opening pressure decreases due to mechanical wear of the valve seating surfaces 30. Another reason for the high pressure threshold to be set lower than the valve opening pressure is due to the discrete sampling of the measured pressure the peak pressure point can become aliased. In the illustrated example the maximum time limit is set at 80 msec, the minimum time limit is set at 20 msec and the low threshold debounce period is set at 200 msec.
The following control logic is used by the ECM 17 to determine whether the characteristics are present and whether the pressure relief valve 18 has opened.
Checks are made for the following sequence of conditions:
If the three conditions above are all met, as illustrated in
Continuous checks are made to reset the above sequence of conditions when the following characteristics prevail which lead to a determination that the pressure relief valve 18 has not opened:
The pressure relief valve 18 closes when, as a result of the fuel flow through the pressure relief valve 18, the measured pressure has dropped low enough. When the ECM 17 has detected that the pressure relief valve 18 has opened, and the valve open signal has generated, a strategy to close the pressure relief valve 18 can be initiated by the ECM 17:
Although the control of the pressure relief valve 18 has been described above in connection with a common rail fuel system, this may also be used in any one of a variety of different fluid systems and with any one of a variety of different fluids. For example, the pressure relief valve may be used with other types of fuel systems, lubrication systems, work implement actuation systems, transmission systems, cooling systems, and other hydraulic systems where protection from excessive pressures may be desired.
The control system of the present disclosure provides a more robust determination of the pressure relief valve opening and a quicker reseat strategy. The strategy avoids raising an event to the machine operator if the problem giving rise to the opening of pressure relief valve can be automatically resolved or used to raise an event with a warning lamp or derate (i.e. a reduction in the maximum engine fuel limit, which is implemented to protect the engine 10 and to also provide an incentive for the operator to get the fault fixed).
Number | Date | Country | Kind |
---|---|---|---|
1116903.4 | Sep 2011 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB2012/052250 | 9/12/2012 | WO | 00 | 3/27/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/045890 | 4/4/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
6250285 | Takase | Jun 2001 | B1 |
6474294 | Yamazaki | Nov 2002 | B2 |
6715468 | Uchiyama | Apr 2004 | B2 |
6871633 | Date | Mar 2005 | B1 |
6966300 | Fukuda | Nov 2005 | B2 |
7412968 | Takayanagi | Aug 2008 | B2 |
7451038 | Kosiedowski | Nov 2008 | B2 |
7469683 | Mason | Dec 2008 | B2 |
7523743 | Geveci | Apr 2009 | B1 |
7610901 | Bucher | Nov 2009 | B2 |
7690361 | Vogt et al. | Apr 2010 | B2 |
7848868 | Nakagawa | Dec 2010 | B2 |
7854160 | Elkolaly | Dec 2010 | B2 |
7950371 | Cinpinski | May 2011 | B2 |
20060196476 | Stockner | Sep 2006 | A1 |
20070079808 | Takahashi | Apr 2007 | A1 |
20080103674 | Kosiedowski et al. | May 2008 | A1 |
20100122690 | Miyake et al. | May 2010 | A1 |
20110094476 | Ibrahim | Apr 2011 | A1 |
20110139126 | Inoue | Jun 2011 | A1 |
Number | Date | Country |
---|---|---|
101498264 | Aug 2009 | CN |
19626689 | Jul 1996 | DE |
19800760 | Jan 1998 | DE |
19937962 | Aug 1999 | DE |
102006040441 | Aug 2006 | DE |
102009001760 | Oct 2009 | DE |
0780559 | Jul 1996 | EP |
2085596 | Aug 2009 | EP |
2750735 | Jan 1998 | FR |
1998227268 | Aug 1998 | JP |
2010136302 | Dec 2010 | WO |
2013045890 | Apr 2013 | WO |
Number | Date | Country | |
---|---|---|---|
20140216407 A1 | Aug 2014 | US |