In known fuel rails for injector-based fuel injection systems, a pressure pulsation damper is believed to be used in fuel rail assemblies. Insertion of the pressure pulsation damper into the fuel rail assembly is typically accomplished by placing the pressure pulsation damper through an open end of the fuel rail. The open end of the fuel rail is believed to be sealed in order to prevent fuel leakage from the fuel rail i.e., a hermetic seal. The open end of the fuel rail is believed to be sealed by conventional soldering, induction welding, resistance welding, or the more well-established use of crimping an assembly that utilizes an O-ring joint. The O-ring joint use is believed to be prone to excessive evaporative emissions. The other techniques are believed to require excessive heat or electricity in order to seal the fuel rail. The excessive heat generated by some of these techniques may damage the pressure pulsation damper thereby rendering the internal damper unsuitable in damping pressure pulsations.
A known pressure plug assembly uses a cup-shaped sealing cap with a bellow damper attached to reduce pressure fluctuations in the fuel rail. The sealing cap compresses an O-ring joint against a connecting sleeve and is crimped to the connecting sleeve at its radial flange. As previously mentioned, this configuration is prone to excessive evaporative emissions that reduce its effectiveness.
Another known pressure plug assembly uses a deformable cylindrical sleeve member which is placed into a tube end. The sleeve's peripheral shoulder abuts against the tube end to position an interior tapered portion of the sleeve. Adjacent the open-end, at the desired location of the seal to be formed within the tube, a hard plug member having a tapered portion, is pressed into the tapered portion of the sleeve to deform the sleeve and form the tube seal in the zone of the tapered surfaces. Neither the deformable cylindrical sleeve nor the hard plug member shows any outward or inward projections that are pressed against each other to seal the tube
Still another known plug assembly for pressurized piping utilizes a bore plug that fits into an enlarged end of a heat exchanger tube. The bore plug is believed to have a sealing member that fits into the heat exchanger tube and a holding member that interlocks with the sealing member. The sealing member is tapered and includes three circumferential indentations along its longitudinal axis that interlock with the circumferential projection of the holding member. The holding member is manually pressed into the sealing member and locks into place at one of the three indentation positions.
Briefly, the present invention provides a plug assembly to seal an opening in an elongated member. In one aspect, a fuel rail is provided. The fuel rail includes an elongated member, a first member, and a second member. The elongated member extends along a longitudinal axis between a first and a second end defining a first passageway therebetween. The first member has a first wall surface with at least one inward projection extending from the first wall surface toward the longitudinal axis defining a second passageway. The second member is disposed in the second passageway and has a second wall. The second wall has an outer surface with at least one outward projection extending away from the longitudinal axis and contiguous to the first wall surface between the first end and the at least one inward projection. The second member is shaped as a blind hole with its outer surface surrounding its internal surface about the longitudinal axis.
In another aspect, a fuel rail is provided. The fuel rail includes an elongated member, a first member, a securement, and a second member. The elongated member extends between a first end and a second end along a longitudinal axis. The elongated member defines a first passageway therebetween. The first member is disposed in the first passageway proximate the first end. The first member has a first wall surface defining a second passageway. The first wall includes at least one first projection. The securement is formed between the first member and the first passageway. The second member is disposed in the second passageway. The second member has a second wall defining a blind hole. The second wall has an outer surface surrounding an internal surface about the longitudinal axis and contiguous to the at least one first projection. The second wall includes at least one second projection contiguous to the first wall surface.
In yet another aspect, the present invention provides a plug assembly for sealing a fluid passage in a fuel rail. The plug assembly includes a first and second member. The first member extends between a first member end and a second member end along a longitudinal axis. The first member has a first wall. The first wall includes at least one inward projection extending from a first wall surface towards the longitudinal axis. Inside the first member, the second member has a second wall with at least one outward projection extending away from the longitudinal axis on an outer surface and contiguous to the first wall surface. The outward projection is located between the first member end and the at least one inward projection.
In a further aspect, the present invention also provides a method of assembling a pressure pulsation damper within a passage of a fuel rail extending along a longitudinal axis. The method can be achieved by forming a first seal between the fuel rail and a first sleeve located inside the passage; inserting the pressure pulsation damper through the first sleeve into the passage; and forming a second seal between the first sleeve and a second sleeve.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate an embodiment of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention.
Preferably, the outer sleeve 120 is generally cylindrical in shape with a first sleeve end 128 and second sleeve end 124, and an outside diameter of an outer surface 122a and inner surface 122b less than that of the fuel rail 110. Both the fuel rail 110 and the outer sleeve 120 are orientated about the same longitudinal axis, A—A, as shown in
The gap “G” can be filled by a suitable securement 140. The securement 140 may include a suitable material such as, for example, a glue, an epoxy resin, solder, brazing, or a weld that bonds the outer sleeve 120 and the fuel rail 110 together to provide a hermetic seal. Preferably, the securement 140 is a copper-braze that fills a substantial portion of the length of the outer sleeve 120 along the longitudinal axis as shown in
The inner sleeve 130 may be pressed into the outer sleeve 120 by a device such as a mandrel 160. The mandrel 160 is removed after the inner sleeve 130 is press fit into the outer sleeve 120 (
It is believed that the use of multiple inward projections can provide for redundancy in the seal while lowering the amount of pressure necessary for the press fit.
The method of assembling a pressure pulsation damper 170 within a passage of a fuel rail can be achieved by forming the first seal between the fuel rail 110 and the outer sleeve 120. The first seal is preferably bonded by copper brazing. The pressure pulsation damper 170 can then be inserted through the outer sleeve 120 into the fuel rail 110 after the brazing is completed. Applicant has discovered that the brazing of a fuel rail 110 with the fuel damper 170 disposed in the fuel rail could result in damage to the fuel damper 170. By utilization of the sealing assembly 100, damage to the fuel damper 170 is believed to be alleviated.
The pressure pulsation damper 170 can be configured into many shapes and configurations. In one embodiment, as shown in
Because the brazing can be performed before the pressure pulsation damper 170 is inserted, it is believed that the pressure pulsation damper 170 would not be damaged as the assembly of the pressure pulsation damper 170 into the fuel rail 110 occurs after brazing is complete. A second seal formed by the respective protrusions of the inner and outer sleeves can be provided by press fitting the inner sleeve 130 into the outer sleeve 120 (
Although the preferred embodiments have been described in relation to a fuel rail, the preferred embodiments can be utilized to seal any elongated member having a passage extending therethrough, such as, for example, a fluid pipe or a radiator core.
While the present invention has been disclosed with reference to certain embodiments, numerous modifications, alterations and changes to the described embodiments are possible without departing from the sphere and scope of the present invention, as defined in the appended claims. Accordingly, it is intended that the present invention not be limited to the described embodiments, but that it has the full scope defined by the language of the following claims, and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3964339 | Antonio et al. | Jun 1976 | A |
4113006 | Clapp | Sep 1978 | A |
4202463 | Mogler | May 1980 | A |
4646816 | Rothstein | Mar 1987 | A |
4809872 | Pavur | Mar 1989 | A |
4823411 | Nettel | Apr 1989 | A |
5044338 | Shelton | Sep 1991 | A |
5160226 | Lee et al. | Nov 1992 | A |
5370252 | Parsons et al. | Dec 1994 | A |
5617827 | Eshleman et al. | Apr 1997 | A |
5779085 | Havlinek et al. | Jul 1998 | A |
5944057 | Pierce | Aug 1999 | A |
6148797 | Gmelin | Nov 2000 | A |
6321719 | Schwegler | Nov 2001 | B1 |
6520155 | Boecking | Feb 2003 | B1 |
20020043249 | Lee et al. | Apr 2002 | A1 |
Number | Date | Country | |
---|---|---|---|
20050235963 A1 | Oct 2005 | US |