None.
Not applicable.
Not applicable.
Heating, ventilation, and/or air conditioning (HVAC) furnaces are widely used in commercial and residential environments for heating and otherwise conditioning interior spaces. To reduce emissions, HVAC furnaces may premix fuel/air completely prior to combustion. To help achieve this, HVAC furnaces sometimes comprise a premixer, such as a venturi premixer used to mix air and fuel prior to combustion. Some premixers may be designed for efficiently mixing fuel/air while also minimizing both pressure losses and the size of the premixer. In some furnaces, the air-fuel mixture outputted by the premixer may not be mixed to an effective level to provide for efficient burning of the air-fuel mixture.
In some embodiments of the disclosure, a heating, ventilation, and/or air conditioning (HVAC) furnace is disclosed as comprising a venturi premixer and a disturber disposed downstream relative to the premixer and in an undivided output of the venturi premixer.
In other embodiments of the disclosure, a receiving tube for a furnace is disclosed as comprising a flowspace disposed within the receiving tube and a disturber at least partially disposed within the flowspace wherein the flowspace is configured to be at least one of (1) directly connected to an output of a venturi premixer and (2) substantially enveloping an output of a venturi premixer, and wherein the receiving tube is configured to allow passage of fluid therethrough in an undivided flowpath.
In yet other embodiments of the disclosure, a method of operating a heating, ventilation, and/or air conditioning (HVAC) furnace is disclosed as comprising mixing air and fuel using a venturi to generate an air-fuel mixture, outputting the air-fuel mixture from the venturi into a receiving tube along an undivided flowpath, disturbing the air-fuel mixture using a disturber disposed within the interior of the receiving tube, and outputting the disturbed air-fuel mixture from the venturi along the undivided flowpath.
These and other features will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings and claims.
For a more complete understanding of the present disclosure, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description, wherein like reference numerals represent like parts.
Effectively mixing air and fuel in a furnace prior to combustion may be accomplished by disposing a disturber downstream of the furnace's premixer. It may be desirable to further mix the air-fuel mixture downstream of the premixer in order to allow for a more complete combustion of the mixture that may result in relatively lower emissions. Accordingly, a furnace with a disturber located downstream of the premixer for more effectively mixing the air-fuel mixture is provided. The disturber may be configured to shape a velocity distribution of the air-fuel mixture in order to more evenly distribute the air-fuel mixture downstream. The furnace may comprise one or more premixers, each having one or more disturbers located downstream therefrom. A post-combustion chamber may be disposed downstream of the premixer and disturber for distributing the air-fuel mixture to a plurality of outputs. A heat exchanger tube may be located downstream of each outlet for receiving the air-fuel mixture after combustion.
Referring to
The mixture distributing box 122 may be mounted to the partition panel 110 so that an inlet 123 of distributing box 122 may direct an air-fuel mixture received from the premixer 160 to the burner 125. The mixture distributing box 122 may promote even distribution of the air-fuel mixture across a cross-sectional area of an air-fuel mixture flowpath and/or may promote even distribution of the air-fuel mixture across an upstream side of the burner 125. The mixing of the air and fuel prior to entering the distributing box 122 may be aided by a mixing device such as the premixer 160 (see
In some embodiments, the burner 125 may extend across substantially an entire cross-sectional area of the air-fuel mixture flowpath. The air-fuel mixture may flow from the mixture distributing box 122 through the burner 125 and into the post-combustion chamber 126. The burner 125 may be permeable, such as to allow the air-fuel mixture to travel through the burner 125 without a substantial pressure drop across the burner 125. For example, the burner 125 may comprise a great number of small perforations over a substantial portion of the upstream and downstream sides of the burner 125. Alternatively, a substantial portion of the upstream and downstream sides of the burner 125 may comprise one or more layers of woven material configured to allow the air-fuel mixture to flow therethrough. Still further, in other alternative embodiments, the burner 125 may comprise a combination of both perforations and woven material.
The burner 125 may be received within a cavity formed by the coupling of the mixture distributing box 122 and the post-combustion chamber 126. In some embodiments, a flange 129 of the burner 125 may be sandwiched between the mixture distributing box 122 and the post-combustion chamber 126 so that substantially all of the air-fuel mixture may pass through the burner 125 prior to exiting the above-described cavity. When the burner 125 is received within the above-described cavity the upstream side of the burner 125 may face the mixture distributing box 122 and an opposing downstream side of the burner 125 may face the post-combustion chamber 126. Post-combustion chamber 126 may be configured to output the combusted air-fuel mixture into multiple parallel flowpaths, as will be discussed further herein.
The one or more upstream heat exchangers 130 may be configured to receive an at least partially combusted air-fuel mixture downstream of the burner 125 and each upstream heat exchanger 130 may form a separate flowpath downstream relative to the burner 125. The downstream heat exchanger 134 may be configured to receive the at least partially combusted air-fuel mixture from the upstream heat exchangers 130. Heat exchanger 134 may comprise a fin-tube type heat exchanger and/or plate-fin type heat exchanger, either of which may comprise one or more tubes 136. In other embodiments, the heat exchanger may comprise a so-called clamshell heat exchanger.
In some embodiments, the at least partially combusted air-fuel mixture may be transferred from the one or more upstream heat exchangers 130 to downstream heat exchanger 134 through the manifold 132. While furnace 100 is described above as comprising one burner 125, alternative furnace embodiments may comprise more than one burner 125. In some cases, additional burners 125 may be utilized to increase an overall heating capacity. In some embodiments, several burners 125 may be aligned in parallel, so that multiple parallel air-fuel mixture flowpaths may be formed. Further, while furnace 100 is disclosed as comprising at least one upstream heat exchanger 130 and a downstream heat exchanger 134, alternative furnace embodiments may comprise only one upstream heat exchanger no downstream heat exchanger 134, and/or multiple downstream heat exchangers 134.
An igniter 154 (see
Substantially enclosing the burner 125 within a cavity formed by the connecting of the mixture distributing box 122 and the post-combustion chamber 126 and substantially combusting the air-fuel mixture near the burner 125 may reduce the surface temperatures of the post-combustion chamber 126 and upstream heat exchangers 130 as compared to embodiments utilizing other types of burners. While the downstream side of the burner 125 is disclosed as facing the post-combustion chamber 126 while the upstream side of the burner 125 faces the mixture distributing box 122, in alternative embodiments, the burner 125 may be positioned differently and/or the flow of the air-fuel mixture may be passed through the burner 125 in a different manner. The post-combustion chamber 126 may be connected to the upstream heat exchangers 130 so that the at least partially combusted air-fuel mixture enters directly into the upstream heat exchangers 130, as will be discussed further herein. The post-combustion chamber 126 may seal the air-fuel mixture flowpath from secondary dilution air as well as position the burner 125 in a manner conducive for transferring the at least partially combusted air-fuel mixture to the upstream heat exchangers 130. While the upstream heat exchangers 130 are disclosed as comprising a plurality of tubes, in alternative embodiments, the upstream heat exchangers may comprise clamshell heat exchangers, drum heat exchangers, shell and tube type heat exchangers, and/or any other suitable type of heat exchanger.
Referring now to
Referring now to
The outer tube 162 may comprise a first end 162a, second end 162b, a fuel injector 163 and a port 164 providing fluid communication between injector 163 and the interior of the tube 162. Premixer 160 may be configured to provide for mixing between fuel from injector 163 and air, which may enter premixer 160 via a bore 193 that may be formed within upper portion 190 of venturi 185. The effective and thorough mixing of air and fuel within premixer 160 may allow for more efficient burning of the air-fuel mixture by a burner (e.g., burner 125 of
Referring now to
Tube 162 may further comprise an upper flange 168 at upper end 162b. Upper portion 190 of venturi 185 may comprise a flange 194 at first end 190a that extends radially outward from an outer surface 193 of upper portion 190. Upper portion 190 of venturi 185 may be disposed within bore 167 of tube 162 such that a lower radial surface 168a of the flange 168 of tube 162 may engage an upper radial surface 194a of the flange 194 of upper portion 190. The physical engagement between flange 194 of upper portion 190 and flange 168 of tube 162 may seal or restrict fluid flow between surfaces 194a and 168a. Fluid communication between the area exterior of premixer 160 and bore 167 (e.g., section 167c) may be provided for via bore 193 of upper portion 190.
Lower portion 180 and upper portion 190 of venturi 185 may be axially positioned relative to each other within bore 167 such that second end 190b of upper portion 190 may extend partially into bore 183 of lower portion 180, providing a gap 186 between outer surface 193 of upper portion 190 and inner surface 182 of lower portion 180. Thus, a path of fluid communication may be provided between section 167b of the bore 167 of tube 162 and bore 183 of lower portion 180 via gap 186. Also, flange 184 of lower portion 180 may be positioned on the outer surface 181 such that second end 180b extends partially into lower section 167c of the bore 167 of tube 162.
Tube 162 may further comprise a disturber 169 in the form of a longitudinal member disposed axially between second end 180b of the lower portion 180 of venturi 185 and second end 162b. Disturber 169 may be configured to disturb or obstruct a fluid that is flowing axially from first end 162a towards second end 162b of tube 162. Disturber 169 may also be configured to shape a velocity profile of the air-fuel mixture by creating additional mixing zones towards the center of the fluid flow downstream of the disturber 169. Disturber 169 may comprise an outer surface 169a having a width 169b (as shown in
H
mix=(Dtube−Ddiff)/2
In the embodiment of
An air-fuel mixture flowpath 170 may be created by inducing a relatively lower pressure at end 162b of tube 160 (e.g., via a blower disposed downstream of mixer 160) such that air from an area exterior of premixer 160 may enter bore 193 of the upper portion 190 of venturi 185 and fuel from injector 163 may enter bore 167c of tube 162 via port 164. Thus, air-fuel mixture flowpath 170 may be formed from the mixing of air from an air flowpath 170a and fuel from a fuel flowpath 170b within bore 167 and venturi 185. Flowpath 170 may extend across disturber 169 and may be disturbed such that additional mixing of air and fuel may take place as a result of extending across disturber 169.
Flowpath 170 may also include upstream air-fuel mixing zones 170c disposed in section 167c upstream from disturber 169 and proximal to inner surface 165, which may allow for additional mixing of the air-fuel mixture within zones 170c. Mixing zones 170c may arise from the expansion in diameter between diameter 183a of lower portion 180 and diameter 167a of tube 160. Flowpath 170 may also include a downstream mixing zone 170d disposed within section 167c but downstream of disturber 169 and proximal to longitudinal axis 161, which may allow for additional mixing of the air-fuel mixture.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
The method 400 may continue at block 420 where the air-fuel mixture may be disturbed via a disturber, such as disturber 169, positioned at least partially within the air-fuel mixture flowpath, such as intake flowpath 197. The disturber may be positioned within a tube downstream of the air-fuel mixer and/or so-called premixer and may additionally mix the air and fuel within a flowpath or flowspace disposed downstream of the mixer. The disturber may take the form of a longitudinal member extending radially across at least a portion of the flowpath or flowspace, however, in other embodiments, the disturber may take other forms (e.g., a tab, a helical member, etc.).
The method 400 may continue at block 430 where the air-fuel mixture may pass through a mixture distributing box to be more evenly distributed across an upstream side of a burner, such as burner 125. The mixing process may be aided by a deflector located within the mixture distributing box that may comprise the effect of deflecting or disturbing the flow of the air-fuel mixture. For example, the deflector may be placed in front of the outlet of the air-fuel mixing box, altering the flow of the air and fuel within the air-fuel mixing box and thereby causing the air-fuel mixture to be more evenly distributed across a cross-sectional area of the air-fuel mixture flowpath.
The method 400 may continue at block 440 where the air-fuel mixture may be moved through a burner. The burner may comprise a thin and elongate body with an upstream side and a downstream side. The upstream side and downstream side of the burner may be permeable to allow the air-fuel mixture to pass through the burner. For example, the burner may comprise a great number of small perforations and/or a woven material over a substantial portion of the upstream and downstream sides of the burner. Further, the burner may be contained within a cavity comprising internal space of a mixture distributing box and internal space of a post-combustion chamber so that the air-fuel mixture leaving the air-fuel mixture distribution box passes through the upstream and downstream sides of the burner.
The method 400 may continue at block 450, where the air-fuel mixture may be ignited. The downstream side of the burner may face the post-combustion chamber. An igniter may be mounted in the post-combustion chamber near the downstream side of the burner. The igniter may comprise a pilot light, a piezoelectric spark, or a hot surface igniter. As the air-fuel mixture may pass through the burner, the igniter may ignite and cause at least partial combustion of the air-fuel mixture to begin near the downstream side of the burner.
The method 400 may continue at block 460 by directing the at least partially combusted air-fuel mixture into a heat exchanger, such as heat exchanger 130. Combustion may at least partially occur near the downstream side of the burner so that heat is generated and forced downstream of the burner and into the post-combustion chamber. In this embodiment, the combustion may occur generally at or near the downstream side of the burner. In alternative embodiments, combustion may occur both at the upstream and downstream sides of the burner as well as within an interior of the burner. The post-combustion chamber may be configured to divide a single flowpath associated with the burner into multiple parallel flowpaths. One or more of the multiple parallel flowpaths may extend through a heat exchanger. The heat exchangers may be tubular in design with an upstream end connected to the post-combustion chamber and a downstream end connected to either a heat exchanger exhaust chamber or to a manifold. An upstream end of a downstream heat exchanger may be connected to the manifold and a downstream end of the downstream heat exchanger may be connected to a heat exchanger exhaust chamber. A heat exchanger exhaust chamber may be disposed downstream from the heat exchanger(s) and may be configured to recombine the plurality of parallel flowpaths associated with the heat exchanger(s) into a single and/or fewer flowpaths. The at least partially combusted air-fuel mixture may comprise NOx. The level of NOx in the at least partially combusted air-fuel mixture may be lowered by varying the combustion temperature of the air-fuel mixture and/or the ratio of air to fuel within the mixture.
The method 400 may continue at block 470 by conditioning air outside of the heat exchanger. As the at least partially combusted air-fuel mixture moves through the heat exchanger(s) toward the heat exchanger exhaust chamber, the heat exchanger(s) may be heated. Air that is exterior to the heat exchanger(s) may be moved into contact with the heat exchanger(s). As the air moves across the heat exchanger(s), heat may be transferred from the heat exchanger(s) to the air contacting the heat exchanger(s).
The method 400 may continue at block 480 by venting the conditioned air into an air conditioned space, for example, an office space or living area of a home. The heated air may be used to warm the space in order to increase comfort levels for occupants and/or to maintain the contents of the space at a pre-determined temperature.
Referring now to
At least one embodiment is disclosed and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of the disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, Rl, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=Rl+k*(Ru−Rl), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of. Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention.