The present invention is directed to the containment and detection of fugitive emissions, for example, leaking from valves and bolted flange connections. Also, the present invention is directed to a system for detecting and monitoring emissions. In another embodiment, the present invention relates to enclosures for valves and pipe connections or joints. In another aspect, the present invention relates to novel detectors for the detection of fugitive emissions.
One of the major environmental concerns is the amount of polluting emissions which are leaked directly into the atmosphere due to the failure of present systems. The existing systems are expensive and technically inadequate. It is believed that the two primary sources responsible for over 95% of industrial fugitive emissions are valve stuffing boxes and bolted pipe flange connections used in the oil and gas, and petrochemical industries.
One example of the present state of the art in detection systems includes equipment which monitors large areas; such equipment detects leaks only after the emissions have entered the atmosphere. Another detection system requires an individual to use small, hand-held units in order to detect leaks. This method is unreliable, especially if detection takes place in the presence of even a small cross wind. Both methods allow leakage to continue for significant periods of time before detection and correction can occur. The ever stricter standards set by environmental agencies has led to the need for a more effective and efficient monitoring system for fugitive emissions. The present invention provides a solution to eliminate 95% of the fugitive emissions.
The present invention is directed to a monitoring system which detects fugitive emissions, for example, those leaking from valves and bolted flange connections in the oil and gas, and petrochemical industries. The invention is also directed to systems applicable in the chemical, pharmaceutical and the food processing industries. The system of the present invention may be comprised of a set of enclosures, a set of detectors for the enclosures, a set of signalers in communication with the detectors, and, if desired, a central processing location for monitoring the status of the enclosed sites.
The present invention is also directed to novel enclosures for pipe flange connections and valve stuffing boxes as used in the oil and gas, and petrochemical industries. The pipe flange connection enclosures are comprised of members, preferably two semi-circle shaped members, which when combined encompass the flange connection. The members form a centrally located internal channel. On either side of the centrally located channel are walls, preferably of gaskets or seals, such that when the semi-circle members are joined around or encompass a pipe flange connection, the centrally located channel forms an enclosure around the gasket area between the pipe flanges of the connection. The channel of one of the members includes a port for sealably receiving a detector of the present invention. Alternatively, one of the members also includes a port in the channel for receiving a vent plug.
The present invention is also directed to new enclosures for valve stuffing boxes. The valve stuffing box enclosures are preferably comprised of two members or half-pieces preferably shaped when joined like a hollow frustrum, i.e., it is frustro-conical in shape when joined. Each member may include, according to one embodiment, gaskets or seals around the inside top portion, i.e., the narrow end of the frustrum and at the inside bottom portion, i.e., the wider end of the frustrum. In addition, one member of the pair includes lengthwise channels for receiving the other member having lengthwise gaskets or seals.
In a preferred embodiment, the valve stuffing box enclosures of the present invention are comprised of two members or half-pieces (mirrored pieces/halves) that when joined are preferably shaped like a hollow frustrum. Preferably, the enclosures do not include any gaskets or seal-type material around any of the edges of the members. Preferably, each member includes a receiver to receive a side of the other half to form a mechanical connection between the two halves. The receiver of one half and the opposing side of the other half when joined form a mechanical seal such that emissions leaked from the valve stuffing box are reliably detected by the detector in communication with the inside space of the enclosure.
The invention is also directed to valve stuffing box enclosures comprising first and second members (mirror image half-pieces) having an inside and an outside, the outside having preferably, a greater circumference than the inside. Each member includes a receiver on the inside running vertically along an edge of the member, preferably for a majority of the length of said member. The receivers are constructed preferably as folds or pleats integral with the member such that they accept the other member when joined together to form a mechanical seal on the inside of the members sufficient to ensure reliable detection by a detector associated with the enclosure.
The valve stuffing box enclosures are preferably used in conjunction with the pipe flange connection enclosure. The valve stuffing box enclosures are designed to overlap and connect to the pipe flange enclosure forming a heretofore unknown and unrealized combination for the containment and detection of emissions from valve stuffing boxes.
The present invention is also directed to a heretofore unknown adsorption detector. The preferred detector is comprised of a substrate, e.g., metal or ceramic, electrode elements, adsorbent particles, like carbon, of substantially the same size, and an elastomer or a binder type gas permeable material. Preferably, the detector is operated in a non-current saturated mode or in a linear region and can detect substances having a Van der Waals “a” constant of less than about 9. Optionally, if desired, the detector may include non-adsorbent particles. Further, if desired, the detector may include a temperature detector or sensor. In some systems, for example, smaller systems, an indicating cartridge can be used as the detector and signaler. For instance, chemical-treated granules affixed to paper or chemical granules will change color when a threshold emission occurs. The indicator material (or detector/signaler) is enclosed in a housing, like a cylinder, which is installed or connected to the enclosures of the present invention. It is the main object of the present invention to provide a monitoring system to detect emissions before any significant amounts reach the atmosphere which is both convenient and inexpensive to use.
It is another object of the present invention to provide a monitoring system for valve stuffing boxes and pipe flange connections as used in the oil and gas and petrochemical industries.
It is another object of this invention to provide novel enclosures for pipe flange connections and valve stuffing boxes.
It is another object of the present invention to provide novel adsorption detectors for detecting fugitive emissions at heretofore unmeasurable low levels in the field.
FIG. IA shows an emissions indicating strip 10 (a detector and signaler) contained within an acrylic or fiberglass cylinder 15. The emissions indicating strip 10 is chemically-treated paper, here shown in the shape of a tube; the paper discloses a color change when emissions react with the chemical present on the surface of the paper (for example, paper treated with litmus will show a color change from red to blue when exposed to ammonia). Similarly, chemically-treated granule detectors/signalers change color upon reaction with emissions, or emissions actuate a gas detector which would trip a relay and activate a light signaler to switch on, also within the acrylic cylinder. The lower portion of the cylinder 15 has threads 12 for insertion into a stuffing box enclosure coupling 30, or into a flange enclosure coupling 40. Cylinder cap 16 seals cylinder 15 and has a one-way cylinder cap vent 18 to relieve any pressure build-up from within the stuffing box enclosure or flange enclosure.
The present invention is also directed to a system comprised of a set of enclosures, a set of emission detectors for the enclosures, and a set of signalers, like transmitters, for the enclosures. The enclosures of the present invention include enclosures for pipe flange connections and valve stuffing boxes. Referring to
The pipe flange connection enclosure may be secured around the pipe flange connection by any suitable means, e.g., a wing-nut assembly as shown in
It should also be recognized that the pipe flange connection enclosure may also be constructed of a single unitary piece that is adjustable to form the appropriate desired enclosure around the gasket area between the two joined pipe flanges. This unitary construction obviously can be used at the point when the flanges are joined. The preferred embodiments have been described in relation to existing pipe flange connections, however, the same discussion and basic construction applies equally to unitary enclosures.
The enclosure of the present invention for a pipe flange connection may be comprised of: (a) a flange-enclosure assembled from two mirror-image half-clamps or semi-circle members for disposition around or to encompass the circular outer surfaces of two connected flanges, each of the members having a threaded coupling and two extensions located at each end of the members oriented perpendicularly to the outer surface of the members; (b) a resilient seal ring is affixed to the outer edge of the inside diameter of each of the members; (c) another seal ring is affixed to the opposing outer edge of the inside diameter of each of the members such that when the members are disposed around the outer surfaces of the two flanges a seal is created; (d) a resilient gasket seal is affixed to the surface of the extensions of one of the members; (e) means for joining the two members thereby defining an air space between the flanges; (f) a cylindrical indicating cartridge (detector and signaler) with one open end having outer threads and an opposing end sealed with a one-way vent cap, the cartridge is designed to exhibit or signal a change upon exposure of its contents with emissions from between the two the flanges, and the open end of said cartridge being threadably disposed in the coupling of one of the members; and (g) a plug threadably disposed in the coupling of the other.
The pipe flange connection enclosure members 25 may be constructed from extruded aluminum. The extrusion design allows for the acceptance of a standard closed cell foam sheet gasket material which is cut to fit in the grooves or internal channels of the extruded aluminum sheet. The extruded aluminum material is cut to the appropriate lengths and then rolled to whatever diameter that is necessary. The design preferably requires two identical members 25 or halves to enclose the outside diameter of mating flanges, with one gasket fitting on one side and the other gasket fitting on the other side, thus capturing any leak occurring in the gasket area between the mating flanges. Preferably, on each flange enclosure half 25, it will have a half-inch hole 40 drilled in order to accept either a vent plug or a detector or detector/signaler assembly. The method of installation is to put one half of the flange enclosure on the topside of the mating flanges, and fit the other half of the flange enclosure on the bottom. A simple attaching mechanism is utilized to secure and seal the two halves together around the mating flanges and compress the two halves together tight enough to prevent any outside ambient conditions, i.e., air-tight, from violating the airspace on the inside without creating a pressure containing part.
The present invention includes enclosures for valve stuffing boxes. (See
The enclosure for valve stuffing boxes of the present invention may be comprised of (a) a casing assembled from two half-casings or members, shaped to be disposed around the outer configuration of a gland flange and yoke of a valve bonnet, each of the half-casings or members including a threaded coupling; (b) a resilient upper seal ring affixed around the inner edge of the upper portion of each of the half casings, designed to create a seal with the upper portion of the yoke; (c) a resilient lower seal ring affixed around the inner edge of the lower portion of each of the half-casings designed to create a seal with the lower portion of the yoke; (d) two resilient gasket seals, disposed along the length of each one of the longitudinal edges of one of the two half-casings; (e) a groove along the length of both longitudinal edges of the other of the two half-casings designed to accept a resilient gasket seal creating a seal between the two assembled half-casings; (f) four lip gasket seals, each affixed at one of the four abutting corners of one of the two half-casings, to complete a seal between the two half-casings and the yoke of the valve bonnet; (g) means for joining the two half-casings; (h) a cylindrical indicating cartridge, having one open end with outer threads, and having the opposing end sealed with a one-way venting cap, the indicating cartridge (detector/signaler) is designed to exhibit a change upon exposure to emissions from the valve bonnet, and the open end of the indicating cartridge being threadably disposed in the coupling of one of the half-casings; and (i) a plug threadably disposed in the coupling of the other of the half-casings.
It should also be recognized that the valve stuffing box enclosure, while being described in relation to existing valve stuffing boxes, can also be of an unitary construction and enclosed around the valve stuffing box when it is assembled or connected in the field. The basic construction of the non-unitary enclosure applies equally to the unitary construction.
The valve stuffing box enclosures are preferably made from a standard sheet of aluminum. The valve enclosures have a certain height and circumference depending on manufacture, design, and pressure class of the valve to be enclosed. After cutting the sheet material to the desired specification, the material is then rolled per the appropriate configuration. The preferred valve enclosure design requires two halves or members that attach to the yoke down to the base of the bonnet on the bolted area where the valve is joined at the body bonnet connection. On each half, according to one embodiment, there is affixed an extruded gasket comprised of a closed cell sponge or silicone material secured around the top, vertical, and bottom of the two valve enclosure half-casings. The first half-casing of the valve enclosure fits against the yoke and valve bonnet and the other half-casing accepts or fits on the outside of the other half. Each valve enclosure is affixed with simple attachment means to provide a snug fit from top, vertical, and bottom by drawing the two halves together creating a protected environment from outside ambient conditions so that pressure is not contained in the valve enclosure. Preferably, the enclosure contains a hole to accept a vent plug.
The detectors of the present invention are, according to one embodiment, adsorption type detectors. The detectors of the present invention may be comprised of a substrate, electrode elements, adsorbent particles, and an elastomer or binder. Additionally, the detectors may be further comprised of non adsorbent particles like metal oxides, e.g., titanium oxide. Optionally, the detectors of the present invention may include a temperature detector. In operation, a voltage is supplied across the detector which has a standard resistivity. When the detector is exposed to an emission of certain substances, the resistivity of the detector changes. Referring to
The optional temperature detector is manufactured onto the substrate, e.g., in the same manner as on the electrode elements. The temperature detector unlike the electrode elements is not covered by the elastomer/binder and may be comprised of platinum, preferably 95% pure for use in high temperature applications.
Preferably, the temperature detector is fabricated utilizing the same techniques described above for the fabrication of the electrode element of the adsorption detector. It is preferred to simply fabricate the temperature detector on the backside of the substrate on which the adsorption detector is fabricated. Referring to
The detector of the present invention may be comprised of carbon and elastomer/binder on a substrate with electrode elements or as follows: from about 35% to about 60% by weight elastomer, from about 15% to about 35% by weight adsorbent particles, and, optionally, from about 25% to about 35% by weight non adsorbent particles. Specific example formulations include: (1) 30% by weight metal oxide, 20% by weight carbon, and 50% by weight elastomer/binder; (2) 27.75% by weight metal oxide, 26% by weight carbon, and 46.25% by weight elastomer/binder; (3) 28.50% by weight metal oxide, 24.0% by weight carbon, and 47.50% by weight elastomer/binder; and (4) 27% by weight metal oxide, 28% by weight carbon, and 45% by weight elastomer/binder. Preferably, the metal oxide is titanium dioxide which can be of one uniform size, e.g., 1 micron, the carbon is purified carbon particles of substantially the same size available from Carbone of America under the tradename “UCP-1-M-Grade,” e.g., 1, micron or less, and the elastomer is silicone, e.g., “SYLGUARD” available from Dow Chemical.
Generally, the adsorption detectors of the present invention can be fabricated using micro-electronic fabrication technology. Specifically, photolithographic reduction and thick-film metallization and silk-screening techniques may be used. Indeed, it is preferred that the adsorbent particles, like carbon, mixed with the elastomer are placed as a layer onto the surface of the electrode element by silk-screening. It is believed that the thickness of this layer affects the sensitivity of the detector.
In making the above described detector, the following steps are followed: (1) mix carbon and silicone to form a mixture, (2) add a metal oxide to the mixture (optional), (3) mix or blend to ensure an equal dispersion of components throughout and in the silicone material, and (4) apply the mixture to the substrate making sure the thickness is uniform. The particles may be substantially contained within the elastomer, i.e., substantially non-protruding from the surface or they may protrude from the surface depending upon the application of the detector.
The adsorption detector of the present invention, unlike prior art adsorption detectors, can detect substances having a Van der Waals' “a” constant of less than about 9 when operated in a non-current saturated mode or in a linear region using carbon or adsorbent particles of substantially uniform size. The term “current saturated mode” as used herein means that small increments in the voltage across the detection device do not show the corresponding increases in the current flowing through the device as would otherwise be predicted by Ohm's Law, but instead the current flowing through the device remains substantially constant. Another way of expressing the same, is that in a current saturated mode, voltage is applied to the detection device to a level after which the current no longer increases linearly, that is, it operates in a nonlinear region. Of course, in a non-current saturated mode, as the voltage is increased the current increases linearly or as predicted by Ohm's law, i.e., the detector is operating in a linear region.
The present inventive system may also be utilized with transmitters, in communication with a set of detectors and a set of enclosures. The transmitters send signals, e.g., to one central processing location identifying the status of a particular possible emission site. For example, each transmitter can have its own predetermined programmed identification code and an internal clock to transmit a status report on a predetermined time interval. The system can be set up that in the event a certain transmitter misses a check-in period, the system will allow for a predetermined number of missed check-in times before setting off an alarm. Any transmitter useful in the present inventive system preferably is equipped with a low battery transmission signal which notifies when the battery or power supply source must be replaced.
An example of a transmitter that may be useful in conjunction with the present invention operates with a 3.0 volt, 3.2 volt or 3.5 volt battery power supply and is a one-way R.F. transmitter, i.e., radio frequency, 900 megahertz spread spectrum system which is capable of handling up to 3000 points in a single cell site. The transmitter is in communication with the detector such that upon the detector coming into contact with an emission, the resistivity of the detector changes and the transmitter sends an alarm signal. The alarm can be audible, visual, local, and/or at a remote location.
While the preferred embodiment has been described with reference to a gas detector, other detectors may be utilized including temperature, pressure, and level detectors alone or in combination with others. In relation to the preferred embodiment utilizing a gas detector, it is especially preferred to use it in combination with a temperature detector.
While the illustrative embodiments of the invention have been described with particularity, it will be understood that various other modifications will be apparent to and can be readily made by those skilled in the art without departing from the spirit and scope of the invention. Accordingly, it is not intended that the scope of claims appended hereto be limited to the examples and description set forth herein, but rather that the claims be construed as encompassing all the features of patentable novelty which reside in the present invention, including all features which would be treated as equivalents thereof by those skilled in the art to which the invention pertains.
This application is a continuation of U.S. patent application Ser. No. 10/736,324 filed Dec. 15, 2003; now abandoned which is a continuation of U.S. patent application Ser. No. 10/369,926 filed on Feb. 18, 2003, now U.S. Pat. No. 6,722,185; which is a continuation of U.S. patent application Ser. No. 09/536,486 filed on Mar. 27, 2000, now U.S. Pat. No. 6,530,259; which is a continuation application of U.S. Ser. No. 09/199,234 filed on Nov. 24, 1998, now U.S. Pat. No. 6,041,645; which is a continuation of U.S. Ser. No. 08/836,927 filed on Aug. 13, 1996, now U.S. Pat. No. 5,979,227; which is a national application of PCT/US95/15064 filed on Nov. 17, 1995, and a continuation-in-part application of application Ser. No. 08/341,419 filed on Nov. 17, 1994, now U.S. Pat. No. 5,610,324; which is a continuation-in-part application of Ser. No. 08/148,997 filed on Nov. 8, 1993, abandoned.
Number | Name | Date | Kind |
---|---|---|---|
1559461 | Ruben | Oct 1925 | A |
2460215 | Chase | Jan 1949 | A |
2817230 | McCully | Dec 1957 | A |
2766614 | Cook | Oct 1959 | A |
2954797 | Dryer | Oct 1960 | A |
3045198 | Dolan et al. | Jul 1962 | A |
3247478 | Craig | Apr 1966 | A |
3485085 | Hawkins | Dec 1969 | A |
3507145 | Loh | Apr 1970 | A |
3767519 | Kojima et al. | Oct 1973 | A |
3879985 | Maslen | Apr 1975 | A |
4019371 | Chaplin et al. | Apr 1977 | A |
4107724 | Ralph | Aug 1978 | A |
4123836 | Buckell | Nov 1978 | A |
4129030 | Dolan | Dec 1978 | A |
4160246 | Martin et al. | Jul 1979 | A |
4194389 | Laging | Mar 1980 | A |
4195288 | Morton | Mar 1980 | A |
4213180 | Marchak et al. | Jul 1980 | A |
4224595 | Dolan | Sep 1980 | A |
4232736 | Pillette | Nov 1980 | A |
4237721 | Dolan | Dec 1980 | A |
4282743 | Pickett | Aug 1981 | A |
4295669 | LaPrade et al. | Oct 1981 | A |
4458521 | Pillette | Jul 1984 | A |
4466273 | Pillette | Aug 1984 | A |
4507954 | Boutwell | Apr 1985 | A |
4557139 | Cantwell et al. | Dec 1985 | A |
4601194 | Miller et al. | Jul 1986 | A |
4674320 | Hirschfeld | Jun 1987 | A |
4696191 | Claytor et al. | Sep 1987 | A |
4723441 | Sweeney | Feb 1988 | A |
4727749 | Miller et al. | Mar 1988 | A |
4827246 | Dolan et al. | May 1989 | A |
4851303 | Madou et al. | Jul 1989 | A |
4864847 | Anderson et al. | Sep 1989 | A |
4876884 | Jansch | Oct 1989 | A |
4926680 | Hasha et al. | May 1990 | A |
4963293 | Burack et al. | Oct 1990 | A |
5039561 | Debe | Aug 1991 | A |
5170659 | Kemp | Dec 1992 | A |
5209105 | Hasha et al. | May 1993 | A |
5259404 | Case et al. | Nov 1993 | A |
5272997 | van der Lely et al. | Dec 1993 | A |
5287384 | Avery et al. | Feb 1994 | A |
5299264 | Schotz et al. | Mar 1994 | A |
5330720 | Sorbo et al. | Jul 1994 | A |
5348044 | Eugene et al. | Sep 1994 | A |
5385297 | Rein et al. | Jan 1995 | A |
5387462 | Debe | Feb 1995 | A |
5390206 | Rein et al. | Feb 1995 | A |
5505718 | Roe et al. | Apr 1996 | A |
5506864 | Schilling | Apr 1996 | A |
5568121 | Lamensdorf | Oct 1996 | A |
5610324 | Lawson | Mar 1997 | A |
5654246 | Newkirk et al. | Aug 1997 | A |
5676712 | Anderson | Oct 1997 | A |
5774052 | Hamm et al. | Jun 1998 | A |
5798945 | Benda | Aug 1998 | A |
5948271 | Wardwell et al. | Sep 1999 | A |
5950150 | Lloyd et al. | Sep 1999 | A |
5979227 | Lawson et al. | Nov 1999 | A |
6041645 | Lawson et al. | Mar 2000 | A |
Number | Date | Country |
---|---|---|
63289434 | Nov 1988 | JP |
Number | Date | Country | |
---|---|---|---|
20090115602 A1 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10736324 | Dec 2003 | US |
Child | 12350691 | US | |
Parent | 10369926 | Feb 2003 | US |
Child | 10736324 | US | |
Parent | 09536486 | Mar 2000 | US |
Child | 10369926 | US | |
Parent | 09199234 | Nov 1998 | US |
Child | 09536486 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08836927 | US | |
Child | 09199234 | US | |
Parent | 08341419 | Nov 1994 | US |
Child | 08836927 | US | |
Parent | 08148997 | Nov 1993 | US |
Child | 08341419 | US |