This application claims priority to European application 13180320.7 filed Aug. 14, 2013, the contents of which are hereby incorporated in its entirety.
The present invention relates to steam turbines, in particular, to full arc admission steam turbine, further in particular, to a full arc admission steam turbine converted from a partial arc admission steam turbine.
Generally, control of steam turbines comprises partial arc admission and full arc admission depending on whether all nozzles are active during operation. They have different advantages in respective application, which is known per se to those skilled in the art. Quite often, a partial arc admission steam turbine is required to be converted to be a full arc admission steam turbine, such as retrofitting exiting partial arc admission steam turbine and adapt to applications where full arc admission is desired.
Conventionally, a partial arc admission steam turbine comprises a plurality of nozzle boxes, at least two, which are assembled to be a complete circle, and which are communicated correspondingly with a plurality of nozzle plates, generally one nozzle box for each nozzle plate. To achieve full arc admission, the nozzle boxes could be removed. However, on some machines where the nozzle boxes are welded to the turbine casing, the removing requires significant site work and a long outage for this turbine. This approach also increases the duty of the existing outer casing of the turbine which makes it necessary to re-qualify the design hence imposing difficulty for implementation.
As another approach, the whole outer casing of the turbine may be replaced with new full arc admission casing. However, this solution is extremely expensive and requires site pipework welding and hence long outage.
As another approach, the pipework between the control valves and the casing can be joined to create the effect of full arc admission. However, this requires requalification of the pipework, which may involve complete upgrade of the system.
In view of this, there exists the need of a solution that may be used to convert existing partial arc steam turbine into full arc admission in a cost effective, operable, and reliable manner.
It is an object of the present invention is to provide a full arc admission steam turbine, which comprises a plurality of nozzle boxes for inducing steam, and a plurality of nozzle plates for bearing nozzles, one nozzle plate corresponding to each nozzle box, the steam turbine further comprises a plurality of spacer plates corresponding to the plurality of nozzle boxes, wherein the spacer plate is disposed between the nozzle plate and the nozzle box, by which a flow path is formed between the plurality of nozzle boxes and the plurality of the nozzle plates through the plurality of spacer plates to achieve a full arc admission.
According to one example embodiment of the present invention, the spacer plate is configured to be part of a circle, and the spacer plate comprise an outer ring, an inner ring separated from the inner ring by a communication space formed as part of the flow path, and two link portions disposed at opposite leading and trailing ends of the outer ring and the inner ring to connect the outer ring and the inner ring, wherein the link portion has a less length in a axial direction of the steam turbine than that of the outer ring and the inner ring.
According to one example embodiment of the present invention, when two adjacent spacer plates are assembled in a head-to-toe manner, the link portion on the leading end of one of the two adjacent spacer plates rests against the link portion on the trailing end of the other of the two adjacent spacer plates.
According to one example embodiment of the present invention, when the plurality of the spacer plates are assembled in a head-to-toe manner, the flow path comprises a complete ring shape part around the axial direction of the steam turbine that is formed by the plurality of the spacer plates.
According to one example embodiment of the present invention, two series of fastener holes are disposed on the inner ring and the outer ring of the spacer plate, wherein one series of the two series of fastener holes is used to connect the spacer plate to the nozzle box, respectively, and the other series of the two series of fastener holes is used to connect the nozzle plate to the spacer plate, respectively.
According to one example embodiment of the present invention, one series of fastener holes are disposed on the inner ring or the outer ring of the spacer plate so as to be used to connect the nozzle plate, the spacer plate and the nozzle box together.
According to one example embodiment of the present invention, the spacer plate comprises on its leading end a protrusion and a recess on its trailing end, where, when two adjacent spacer plates are assembled, the protrusion on the leading end of one of the two spacer plates engage with the recess on the trailing end of the other of the two spacer plates.
According to one example embodiment of the present invention, the recess on the trailing end of the spacer plate consists of peripheral walls around the trailing end of the spacer plate, leaving an open side facing the nozzle plate when assembled.
According to one example embodiment of the present invention, the nozzle plate comprises on a side facing the spacer plate a hook, and the spacer plate comprises on a side facing the nozzle plate a notch, where the hook on the nozzle plate engages with the notch on the spacer plate when the nozzle plate and the spacer plate are assembled.
According to one example embodiment of the present invention, the spacer plate is shaped to be a semi-circle, a quadrant of a circle, one sixth of a circle, or one eighth of a circle.
With the solution according to embodiments of the present invention, existing partial arc steam turbine may be easily converted to be a full arc admission steam turbine. This will reduce cost of equipment upgrading. Outage due to onsite conversion may be significantly reduced.
The objects, advantages and other features of the present invention will become more apparent upon reading of the following non-restrictive description of preferred embodiments thereof, given for the purpose of exemplification only, with reference to the accompany drawing, through which similar reference numerals may be used to refer to similar elements, and in which:
According to one example embodiment of the present invention, the steam turbine 100 comprises a plurality of spacer plates 130 disposed between the nozzle boxes 110 and the nozzle plates 120, by which a part of a steam flow path 150 as shown by the double-head arrow in
As is known to those skilled in the art, a typical partial admission steam turbine utilizes four nozzle boxes and four nozzle plates to distribute steam flow during normal operation thereof, where an outlet of the nozzle box 110 is configured to be a quadrant of a circle, to which a nozzle area 122 of the nozzle plate 120 matches as shown in
According to one example embodiment, the link portion 136 may have a width less than that of the outer ring 132 and the inner ring 134 as shown in
As another example embodiment of the present invention, leakage proof features are provided on the spacer plate 130 in order to prevent steam flow leakage when the spacer plates 130 are assembled during operation. As shown in
As one example embodiment of the present invention as shown in
Additionally, as shown in the circle in
With the solution according to embodiments of the present invention, existing partial arc steam turbine may be easily converted to be a full arc admission steam turbine. This will reduce cost of equipment upgrading. Outrage due to onsite conversion may be significantly reduced.
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
13180320 | Aug 2013 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
2651495 | Corbett | Sep 1953 | A |
4847039 | Kendall et al. | Jul 1989 | A |
6196793 | Braaten | Mar 2001 | B1 |
6631858 | Farineau et al. | Oct 2003 | B1 |
7207773 | O'Clair | Apr 2007 | B2 |
20030103845 | Hamlin | Jun 2003 | A1 |
Number | Date | Country |
---|---|---|
10 2010 034 569 | Feb 2012 | DE |
1 847 689 | Oct 2007 | EP |
Number | Date | Country | |
---|---|---|---|
20150050134 A1 | Feb 2015 | US |