The invention involves the mobile communication industry, especially involves a kind of full-band antenna system for the mobile phone.
With the continuous development of the mobile terminal devices, such as mobile phone and tablet personal computer, people's demand for the devices' appearance is becoming higher and higher. At the same time, the device which has a metal case becomes popular among consumers because of its texture and abrasive resistance.
The related technological metal case usually has forms of closed ring, metal ring with gap, or metal backing. Metal cases in these forms bring big challenge to the antenna design of mobile terminal devices, for example the mobile phone. These closed or not-closed metal rings and metal backings are usually taken as a part of the antenna. Because the length of the ring or the backing is certain, it is difficult to debug the resonant frequency of the antenna, and its performance is worse.
Thus, it is necessary to provide a new type of antenna system for the mobile phone to solve the problems mentioned above.
Many aspects of the embodiment can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
The present invention will hereinafter be described in detail with reference to an exemplary embodiment. To make the technical problems to be solved, technical solutions and beneficial effects of present disclosure more apparent, the present disclosure is described in further detail together with the figures and the embodiment. It should be understood the specific embodiment described hereby is only to explain this disclosure, not intended to limit this disclosure.
As shown in
As shown in
The feed part 202 includes a feeding point 204, a feeding route 205 extending from the feeding point 204, as well as a first feeder branch 206 and a second feeder branch 207 extending from an end of the feeding route 205. And the first feeder branch 206 and the second feeder branch 207 respectively extend in reverse, and they are exactly in line. There are metal shrapnel or elastic metal structure connected with the lower head 103 on the end of both the first feeder branch 206 and the second feeder branch 207. And the first feeder branch 206 and the second feeder branch 207 electrically connect with the lower head 103 directly through the metal shrapnel or elastic metal structure. That is to say, the first feeder branch 206 and the second feeder branch 207 supply electricity to the lower head 103 directly, and take the lower head 103 as a radiator of the main antenna module 200. Actually, the first feeder branch 206, the second feeder branch 207, the lower head 103 and the ground pins 203 collectively form the PIFA (Planar Inverted F-shaped Antenna). And the PIFA can cover the low frequency band (from 700 to 960 MHz) of the main antenna module 200.
The current begins from the first feeder branch 206 and the second feeder branch 207, flows through the lower header 103, and returns to the ground point 203, thus forming a loop antenna. The loop antenna can cover the high frequency band (from 2300 to 2700 MHz) of the main antenna module 200.
In this embodiment of the invention, the quantity of the ground point 203 is two, one of which is in the same line with the first feeder branch 206 as well as the second feeder branch 207. The other ground point 203 is set far away from the first one. Specifically, the other ground point 203 is in the corner of the earth plate 201B, nearby the feed part 202.
It's worth noting that the first feeder branch 206, the second feeder branch 207 and the location of the ground point 203 all will have influence on the radiant efficiency of antenna. So, the positions of the first feeder branch 206, the second feeder branch 207 and the ground point 203 cannot be set up randomly.
The earth plate 201B has a semi-closed gap, and it includes an avoid part 201C used to avoid the feeding part 202, and a gap part 201D used to connect with the avoid part 201C. The gap part 201D is shown as the dashed box in
As shown in
In this embodiment of the invention, the value of the variable capacitance TCP3 can change from 0.3 pF to 2.97 pF. L1=5.1 nH, L2=3.6 nH, C1=0.5 pF.
It is to be understood, however, that even though numerous characteristics and advantages of the present embodiment have been set forth in the foregoing description, together with details of the structures and functions of the embodiment, the disclosure is illustrative only, and changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the invention to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
201510212532.6 | Apr 2015 | CN | national |