1. Field of the Invention
The present invention generally relates to lighting devices, and more particularly to a lighting device providing individual adjustment of the brightness of red, green, and blue light emitting diodes (LEDs) for full-color illuminating and presentation effects on the lamp shade or screen by controlling the amount of current flowing through the LEDs.
2. The Prior Arts
Currently, most of the LED-based color lamps available in the market provide various colored light by individually turning on and off the red, green, and blue LEDs of the lamp. For example, a control circuit of the lamp provides a 3-bit digital signal with each bit controlling whether to turn on (1) or off (0) the red, green, and blue LEDs, respectively. The lamp is therefore able to generate light of seven different colors, including red (001), green (010), blue (100), red plus green (011), green plus blue (110), blue plus red (101), and red plus green plus blue (111). In order to generate light of more different colors, the brightness of the individual red, green, blue LEDs has to be adjustable, instead of having only ‘on’ and ‘off’ two choices, so as to produce more color combinations. However, adjusting the brightness of LEDs by voltage is difficult due to the specific semiconductor characteristics of LEDs. It is well known that, when the LED is forward-biased, a small variation in the voltage applied would incur significantly different amount of current conducting through the LED.
Recently, some techniques for adjusting the brightness of LEDs are disclosed. For example, in the R.O.C. Patent Application No. 89127119, an analog control signal is converted to a digital signal with 256 levels. The digital signal is then applied to a pulse width modulator (PWM) whose output pulses conduct the LED periodically. As the LED is “flashed” very fast, the light from the LED is perceived as continuous and steady due to the visual persistence of human eyes. The digital signal alters the duty cycle of the pulses output by the PWM and, by increasing or decreasing the duty cycle of the pulses, the LED is able to deliver light of various brightness. However, when the brightness of the LED is reduced (i.e., low duty cycle), an observer would perceive flickers as the 1/16-second maximum duration of human visual persistence is exceeded. A lamp based on the PWM-based approach therefore can only provide stable lighting in the medium-to-high brightness range and delivers only a small number of color combinations. In another technique disclosed in R.O.C. Patent Application No. 93102287, a PWM is also used to vary the brightness of two sets of LEDs. This technique would suffer the same drawbacks of the previous one.
In addition, the aforementioned prior arts are for illumination purpose and therefore several tens of LEDs have to be adopted as the light source. Currently, the efficiency of LEDs is compatible to lamps using tungsten filament, in which around 80% of the power is converted into heat and wasted. Therefore, when a large number of LEDs are used, complicated heat dissipation mechanism has to be designed and employed, causing significant cost increase and reducing the applicability of the LED-based lamps.
Accordingly, a major objective of the present invention is to provide a LED-based lighting device in which the brightness of the LEDs can be varied continuously from complete darkness to full illumination so as to deliver light of theoretically unlimited number of colors (i.e., full-color).
Another objective of the present invention is that, in addition to the large number of possible colors, the lighting device does not rely on human visual persistence to compensate the flashes of LEDs, and therefore is able to deliver highly stable, flicker-free, and comfortable lighting no matter what the color and brightness are.
Still another objective of the present invention is to provide a low-cost, easy-to-operate, and multi-function lighting device that not only can function as an ordinary illumination device such as a desk lamp, a floor lamp, a wall lamp, etc., but, with its various colored light, also can be used to adjust a room's lighting condition so as to provide a soothing, relaxing, romantic, or even exotic atmosphere, to fit precisely the user's preference and mood.
To achieve the foregoing objectives, the lighting device of the present invention mainly contains a light source unit, a control unit, and a light display unit. The light source unit contains a number of red, green, and blue LEDs. The control unit relies on potentiometers to apply voltages of appropriate levels based on user adjustment to a number of corresponding constant current sources, respectively. The constant current sources thereby provide various amount of constant current through the red, green, and blue LEDs of the light source unit respectively. In other words, instead of using voltage or voltage pulses to control or drive the LEDs, the present invention controls the current flowing through the LEDs so as to adjust the brightness of the LEDs and thereby produces various color combinations. The stable provision of current of the constant current sources is the major factor contributing to the flicker-free and comfortable lighting of the LEDs.
Due to its capability in producing theoretically unlimited number of color combinations, the present invention can be applied for various purposes, with the light display unit playing an important role. The light display unit basically is a lamp shade or lamp screen, but it can be more versatile than that. The light display unit can be made of materials of appropriate transparency. Additionally, colored patterns or textures of appropriate transparency can be formed on the outer surface of the light display unit so that, as the color of light from the light source unit is varied, the colors of the patterns or textures would be varied as well, delivering different visual effect.
The foregoing and other objects, features, aspects and advantages of the present invention will become better understood from a careful reading of a detailed description provided herein below with appropriate reference to the accompanying drawings.
The following descriptions are exemplary embodiments only, and are not intended to limit the scope, applicability or configuration of the invention in any way. Rather, the following description provides a convenient illustration for implementing exemplary embodiments of the invention. Various changes to the described embodiments may be made in the function and arrangement of the elements described without departing from the scope of the invention as set forth in the appended claims.
As illustrated in
As illustrated in
The output of the constant current sources 22, 32, and 42 is connected to the LEDs 51, 52, and 53, through current limiters 23, 33 and 43, respectively. As described above, the constant current sources 22, 32 and 42 receive the output voltages VREG from the potentiometers 21, 31 and 41, respectively, and, based on the voltages applied to them, the constant current sources 22, 32, and 42 produce an appropriate amount of current to flow through the LEDs 51, 52, and 53. According to the Ohm's law, the current flowing through each LED can be determined by the equation:
IL=(VREG−VBE)/RL,
where RL is the internal resistance of the LEDs 51, 52 or 53, and VBE is the forward bias voltage of the transistor in the constant current source. As VBE and RL are constant, when the voltage output from the potentiometers 21, 31 and 41 varies, the current supplied from the constant current sources 22, 32, and 42 varies accordingly. Three current limiters 23, 33 and 43 can be incorporated between the constant current sources 22, 32, and 42 and the LEDs 51, 52, and 53, to prevent the current flowing through the LEDs 51, 52 and 53 exceeding their maximum ratings.
As illustrated in
In another embodiment as shown in
As shown in
In another embodiment shown in
The LED full-color lighting device as provided has at least the following advantages, in comparison to the prior arts. Firstly, the adoption of the controllable constant current sources provides constant current through the LEDs, such that the color and brightness of the light delivered by the present invention is highly stable. The user's eyes will not be stressed as there is no human visual persistence involved and there is no flickering at all.
Secondly, the current provided by the constant current sources flowing through the LEDs is adjusted by the potentiometer. After the adjustment, the resultant current is maintained constant again. As such, the brightness of the light delivered can be smoothly and stably adjusted from complete darkness to full brightness. Therefore, the present invention can produce light of theoretically any color.
Thirdly, the control circuit of the lighting device is implemented with commercially available and low-cost components to achieve full-color illuminating and presentation effect. The lighting device can not only be used for illumination. A user of the present invention can easily and conveniently change a room's ornamentation and atmosphere by adjusting the light color from the lighting device so as to deliver a soothing, relaxing, romantic, or even exotic feeling up to the user's particular preference and mood. Colored patterns or textures can be provided on the outer surface of the light display unit 10 so that the color of the light from the light source units would mix with the colors of the patterns or textures to produce a visual effect as if some of the patterns or textures are changed.
Although the present invention has been described with reference to the preferred embodiments, it will be understood that the invention is not limited to the details described thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0942213553 | Sep 2005 | TW | national |