Full color single pixel including doublet or quadruplet Si nanowires for image sensors

Information

  • Patent Grant
  • 9543458
  • Patent Number
    9,543,458
  • Date Filed
    Friday, May 30, 2014
    10 years ago
  • Date Issued
    Tuesday, January 10, 2017
    8 years ago
Abstract
An image sensor comprising a substrate and one or more of pixels thereon. The pixels have subpixels therein comprising nanowires sensitive to light of different color. The nanowires are functional to covert light of the colors they are sensitive to into electrical signals.
Description
BACKGROUND

An image sensor may be fabricated to have a large number of sensor elements (pixels), generally more than 1 million, in a (Cartesian) square grid. The pixels may be photodiodes, or other photosensitive elements, that are operable to convert electromagnetic radiation (light) into electrical signals.


Recent advances in semiconductor technologies have enabled the fabrication of nanostructures such as nanotubes, nanocavities and nanowires. Optical properties of nanostructures have been one of the recent research focuses. Among the available nanostructures, nanowires have drawn a lot of interest because of their usefulness as an optoelectronic sensor element. An image sensor that harness unique optical properties of nanowires is therefore desirable.


SUMMARY

Described herein is an image sensor comprising a substrate and one or more of pixels thereon, wherein each of the pixels comprises a first subpixel and a second subpixel; the first subpixel comprises a first nanowire operable to generate an electrical signal upon exposure to light of a first wavelength; the second subpixel comprises a second nanowire operable to generate an electrical signal upon exposure to light of a second wavelength different from the first wavelength; the first and second nanowires extend essentially perpendicularly from the substrate. The term “image sensor” as used herein means a device that converts an optical image to an electric signal. An image sensor can be used in digital cameras and other imaging devices. Examples of image sensors include a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) active pixel sensor. The term “pixel” as used herein means the smallest addressable light-sensing element of an image sensor. Each pixel is individually addressable. Pixels in an image sensor can be arranged in a two-dimensional grid. Each pixel samples characteristics such as intensity and color of a small area of an image projected onto the image sensor. The color sampled by a pixel can be represented by three or four component intensities such as red, green, and blue, or cyan, magenta, yellow, and black. Many image sensors are, for various reasons, not capable of sensing different colors at the same location. Therefore, each pixel is divided into regions known as “subpixels”, each of the regions being capable of sensing a single color. The color sampled by a pixel can be calculated from the single colors sensed by the subpixels in the pixel. The term nanowires “extending essentially perpendicularly from the substrate” as used herein means that angles between the nanowires and the substrate are from 85° to 90°. The term “nanowire” as used herein means a structure that has a size constrained to at most 1000 nm in two dimensions and unconstrained in the other dimension.


According to an embodiment, each pixel of the image sensor can further comprise one or more photodiodes located between the substrate and the nanowires. The term “photodiode” as used herein means a type of photodetector capable of converting light into either current or voltage. A photodiode can have a p-n junction or p-i-n junction. When a photon of sufficient energy strikes the photodiode, it excites an electron, thereby creating a free electron and a hole. The electron and hole can be collected to at electrodes of the photodiode as a current or voltage.


According to an embodiment, the substrate comprises silicon, silicon oxide, silicon nitride, sapphire, diamond, silicon carbide, gallium nitride, germanium, indium gallium arsenide, lead sulfide and/or a combination thereof.


According to an embodiment, at least one pixel of the image sensor comprises a clad; the first subpixel and the second subpixel of the at least one pixel are embedded in the clad. The term “clad” as used herein means a layer of substance surrounding the subpixels. The term “embed” as used herein means to surround or cover something closely.


According to an embodiment, the image sensor further comprises a material in space between the pixels.


According to an embodiment, the clad comprises silicon nitride, silicon oxide, and/or a combination thereof.


According to an embodiment, the clad is substantially transparent to visible light.


According to an embodiment, the first and second nanowires have refractive indexes equal to or greater than a refractive index of the clad.


According to an embodiment, the material has a refractive index smaller than a refractive index of the clad.


According to an embodiment, the first nanowire and the second nanowire have different absorption spectra. The term “absorptance” as used herein means a fraction of light absorbed at a specified wavelength. The term “absorption spectrum” as used herein means absorptance as a function of wavelength.


According to an embodiment, the first nanowire and the second nanowire have a distance of at least 100 nm.


According to an embodiment, each of the first and second nanowires has a p-n or p-i-n junction therein. The term “p-i-n junction” as used herein means a structure of a lightly doped or intrinsic semiconductor region sandwiched between a p-type semiconductor region and an n-type semiconductor region. The p-type and n-type regions can be heavily doped for Ohmic contacts. The term “p-n junction” as used herein means a structure with a p-type semiconductor region and an n-type semiconductor region in contact with each other.


According to an embodiment, the electrical signal comprise an electrical voltage, an electrical current, an electrical conductance or resistance, and/or a change thereof.


According to an embodiment, the first nanowire and/or the second nanowire has a surface passivation layer. The terms “passivation” and “passivate” as used herein means a process of eliminating dangling bonds (i.e., unsatisfied valence on immobilized atoms).


According to an embodiment, the image sensor is operable to absorb substantially all (e.g. >50%, >70%, or >90%) visible light (light with wavelengths of about 390 to 750 nm.) impinged thereon. Absorbing >50%, 70% or 90% of all visible light as used herein means that the image sensor has absorptance greater than 50%, greater than 70%, or greater than 90% across the entire visible spectrum (about 390 to 750 nm wavelength), respectively.


According to an embodiment, the image sensor further comprises electronic circuitry operable to detect electrical signals generated by the first and second nanowires.


According to an embodiment, the first and second nanowires comprise silicon.


According to an embodiment, the first nanowire has a radius of about 25 nm (e.g. from 23 to 27 nm) and the second nanowire has a radius of about 40 nm (e.g. from 38 to 42 nm).


According to an embodiment, the clad has a cylindrical shape with a diameter of about 300 nm (e.g. 280 to 320 nm).


According to an embodiment, the pixels have different orientations. The term “different orientations” as used herein is illustrated in FIGS. 1B and 2B and means a pixel is rotated and offset laterally relative to a neighbor pixel thereof.


According to an embodiment, the photodiodes have absorption spectra different from absorption spectra of the first and second nanowires. Two absorption spectra being “different” as used herein means the absorption spectra have different absorptance at one or more one wavelength.


According to an embodiment, each of the pixels further comprises a third subpixel and the third subpixel comprises a third nanowire operable to generate an electrical signal upon exposure to light of a third wavelength different from the first and second wavelengths, wherein the third nanowire extends essentially perpendicularly from the substrate.


According to an embodiment, the third nanowire comprises silicon.


According to an embodiment, the third nanowire has a radius of about 45 nm (e.g. from 42 to 48 nm).


According to an embodiment, the image sensor further comprises couplers above each of the pixels, each of the couplers having a convex surface and being effective to focus substantially all visible light impinged thereon into the clad.


According to an embodiment, each of the couplers has substantially the same footprint as the pixel underneath. The term “footprint” as used herein means an area perpendicularly projected by a structure such as a pixel or a coupler on the substrate.


According to an embodiment, the image sensor further comprises an infrared filter operable to prevent infrared light from reaching the pixels. The term “infrared light” as used herein means electromagnetic radiation with a wavelength between 0.7 and 300 micrometres. The term” infrared filter” as used herein means a device operable to reflect or block infrared light while allowing visible light to pass through.


According to an embodiment, the image sensor does not comprise an infrared filter.


According to an embodiment, the first nanowire and/or the second nanowire has a transistor therein or thereon. A “transistor” as used herein means a semiconductor device used to amplify and switch electronic signals. It is made of a solid piece of semiconductor material, with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals changes the current flowing through another pair of terminals.


According to an embodiment, the image sensor further comprises electronic circuitry operable to detect electrical signals from the photodiodes.


According to an embodiment, a method of manufacturing an image sensor, comprising dry etching or VLS growth, wherein the image sensor comprises a substrate and one or more of pixels thereon, wherein each of the pixels comprises at a first subpixel and a second subpixel, the first subpixel comprises a first nanowire operable to generate an electrical signal upon exposure to light of a first wavelength, the second subpixel comprises a second nanowire operable to generate an electrical signal upon exposure to light of a second wavelength different from the first wavelength, wherein the first and second nanowires extend essentially perpendicularly from the substrate. The VLS growth is a method for the growth of one-dimensional structures, such as nanowires, from chemical vapor deposition. Growth of a crystal through direct adsorption of a gas phase on to a solid surface is generally very slow. The VLS growth circumvents this by introducing a catalytic liquid alloy phase which can rapidly adsorb a vapor to supersaturation levels, and from which crystal growth can subsequently occur from nucleated seeds at the liquid-solid interface. The physical characteristics of nanowires grown in this manner depend, in a controllable way, upon the size and physical properties of the liquid alloy.


According to an embodiment, a method of sensing an image comprises: projecting the image onto an image sensor, wherein the image sensor comprises a substrate and one or more of pixels thereon, wherein each of the pixels comprises at a first subpixel and a second subpixel, the first subpixel comprises a first nanowire operable to generate an electrical signal upon exposure to light of a first wavelength, the second subpixel comprises a second nanowire operable to generate an electrical signal upon exposure to light of a second wavelength different from the first wavelength, wherein the first and second nanowires extend essentially perpendicularly from the substrate; detecting the electrical signals from the first nanowire and the second nanowire; calculating a color of each pixel from the electrical signals.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present disclosure will now be disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:



FIG. 1A shows a schematic cross-sectional view of an image sensor according to an embodiment.



FIG. 1B shows a schematic top view of the image sensor of FIG. 1A.



FIG. 1C shows exemplary absorption spectra of two nanowires in two subpixels in a pixel of the image sensor of FIG. 1A and a photodiode on the substrate of the image sensor of FIG. 1A.



FIG. 2A shows a schematic cross-sectional view of an image sensor according to an embodiment.



FIG. 2B shows a schematic top view of the image sensor of FIG. 2A.



FIG. 2C shows exemplary absorption spectra of three nanowires in three subpixels in a pixel of the image sensor of FIG. 2A and the substrate of the image sensor of FIG. 2A.



FIG. 2D shows exemplary absorption spectra of four nanowires in four subpixels in a pixel of the image sensor of FIG. 2A and the substrate of the image sensor of FIG. 2A.



FIG. 3 shows a schematic of couplers and an infrared filter.



FIG. 4 shows exemplary color-matching functions of three subpixels in the image sensor, and color-matching functions the CIE standard observer.





DETAILED DESCRIPTION

In the following detailed description, reference is made to the accompanying drawings, which form a part thereof. In the drawings, similar symbols typically identify similar components, unless the context dictates otherwise. The illustrative embodiments described in the detail description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here.


The human eye has photoreceptors (called cone cells) for medium- and high-brightness color vision, with sensitivity peaks in short (S, 420-440 nm), middle (M, 530-540 nm), and long (L, 560-580 nm) wavelengths (there is also the low-brightness monochromatic “night-vision” receptor, called rod cell, with peak sensitivity at 490-495 nm). Thus, in principle, three parameters describe a color sensation. The tristimulus values of a color are the amounts of three primary colors in a three-component additive color model needed to match that test color. The tristimulus values are most often given in the CIE 1931 color space, in which they are denoted X, Y, and Z.


In the CIE XYZ color space, the tristimulus values are not the S, M, and L responses of the human eye, but rather a set of tristimulus values called X, Y, and Z, which are roughly red, green and blue, respectively (note that the X, Y, Z values are not physically observed red, green, blue colors. Rather, they may be thought of as ‘derived’ parameters from the red, green, blue colors). Two light sources, made up of different mixtures of various wavelengths, may appear to be the same color; this effect is called metamerism. Two light sources have the same apparent color to an observer when they have the same tristimulus values, no matter what spectral distributions of light were used to produce them.


Due to the nature of the distribution of cones in the eye, the tristimulus values depend on the observer's field of view. To eliminate this variable, the CIE defined the standard (colorimetric) observer. Originally this was taken to be the chromatic response of the average human viewing through a 2° angle, due to the belief that the color-sensitive cones resided within a 2° arc of the fovea. Thus the CIE 1931 Standard Observer is also known as the CIE 1931 2° Standard Observer. A more modern but less-used alternative is the CIE 1964 10° Standard Observer, which is derived from the work of Stiles and Burch, and Speranskaya.


The color matching functions are the numerical description of the chromatic response of the observer as described above.


The CIE has defined a set of three color-matching functions, called, x(λ), y(λ), and z(λ), which can be thought of as the spectral sensitivity curves of three linear light detectors that yield the CIE XYZ tristimulus values X, Y, and Z. These functions are known collectively as the CIE standard observer.


The tristimulus values for a color with a spectral power distribution I(λ) are given in terms of the standard observer by:







X
=



0





I


(
λ
)





x
_



(
λ
)









λ




,





Y
=



0





I


(
λ
)





y
_



(
λ
)









λ




,





Z
=



0





I


(
λ
)





z
_



(
λ
)









λ




,





wherein λ is the wavelength of the equivalent monochromatic light (measured in nanometers).


EXAMPLES


FIG. 1A shows a schematic partial cross-sectional view of an image sensor 100, according to an embodiment. The image sensor 100 comprises a substrate 110, one or more pixels 150. At least one pixel 150 comprises a clad 140 and a plurality of subpixels embedded in the clad 140. Two subpixels 151 and 152 are shown in FIG. 1A as an example. Each of the subpixels comprises a nanowire (e.g. a nanowire 151a in the subpixel 151 and a nanowire 152a in the subpixel 152) extending essentially perpendicularly from the substrate 110. Space between the pixels 150 is preferably filled with a material 160. Each pixel 150 can further comprise one or more photodiodes 120 located between the substrate 110 and the nanowires 151a and 152a.


The substrate 110 can comprise any suitable material such as silicon, silicon oxide, silicon nitride, sapphire, diamond, silicon carbide, gallium nitride, germanium, indium gallium arsenide, lead sulfide, and/or a combination thereof.


The photodiode 120 can be any suitable photodiode. The photodiode 120 can have a p-n junction of a p-i-n junction and any suitable circuitry. The photodiode 120 preferably has a footprint that completely encloses a footprint of the clad 140.


The clad 140 can comprise any suitable material, such as silicon nitride, silicon oxide, and/or a combination thereof. The clad 140 is preferably substantially transparent to visible light, preferably with a transmittance of at least 50%, more preferably at least 70%, most preferably at least 90%. In one example, the clad 140 is silicon nitride and has a cylindrical shape with a diameter of about 300 nm.


The material 160 can comprise any suitable material such as silicon dioxide. A refractive index of the material 160 is preferably smaller than a refractive index of the clad 140.


The nanowires (e.g. 151a and 152a) in the subpixels (e.g. 151 and 152) have refractive indexes equal to or greater than the refractive index of the clad 140. The nanowires and the photodiode 120 have different absorption spectra. For example, the nanowire 151a has strong absorptance in blue wavelengths, as shown by an exemplary absorption spectrum 181 in FIG. 1C; the nanowire 152a has a strong absorptance in green wavelengths, as shown by an exemplary absorption spectrum 182 in FIG. 1C; the photodiode 120 has strong absorptance in red wavelengths, as shown by an exemplary absorption spectrum 180 in FIG. 1C. The nanowires can have different diameters and/or different materials. Each nanowire in one pixel 150 preferably has a distance of at least 100 nm, preferable at least 200 nm, to a nearest neighboring nanowire in the same pixel. The nanowires can be positioned at any suitable positions in the clad 140.


The nanowires (e.g. 151a and 152a) in the subpixels (e.g. 151 and 152) are operable to generate electrical signals upon receiving light. One exemplary nanowire is a photodiode with a p-n or p-i-n junction therein, details of which can be found in U.S. patent application Publication Ser. Nos. 12/575,221 and 12/633,305, each of which is hereby incorporated by reference in its entirety. The electrical signals can comprise an electrical voltage, an electrical current, an electrical conductance or resistance, and/or a change thereof. The nanowires can have a surface passivation layer.


Substantially all visible light (e.g. >50%, >70%, or >90%) impinged on the image sensor 100 is absorbed by the subpixels (e.g. 151 and 152) and the photodiode 120. The subpixels and the photodiode absorb light with different wavelengths.


The image sensor 100 can further comprise electronic circuitry 190 operable to detect electrical signals from the subpixels and the photodiode 120.


In one specific example, each pixel 150 has two subpixels 151 and 152. Each subpixel 151 and 152 has only one nanowire 151a and 152a, respectively. The nanowire 151a comprises silicon, has a radius of about 25 nm, and has a strong absorptance in blue wavelengths. The nanowire 152a comprises silicon, has a radius of about 40 nm and has a strong absorptance in cyan wavelengths. The nanowires 151a and 152a are about 200 nm apart but embedded in the same clad 140. Each of the pixels 150 can have more than two subpixels according to an embodiment. The nanowires can comprise other suitable materials such as mercury cadmium telluride. The nanowires can have other suitable radii from 10 nm to 250 nm.



FIG. 1B shows a schematic partial top view of the image sensor 100. As shown in exemplary FIG. 1B, the pixels 150 can have different orientations, which reduces or eliminates effects of directions of incident light.


In one embodiment, the subpixels 151 and 152 and the photodiode 120 in each pixel 150 of the image sensor 100 has color matching functions substantially the same as the color matching functions of the CIE 1931 2° Standard Observer or the CIE 1964 10° Standard Observer.



FIG. 2A shows a schematic partial cross-sectional view of an image sensor 200, according to an embodiment. The image sensor 200 comprises a substrate 210, one or more pixels 250. The substrate 210 preferably does not comprise any photodiode therein. At least one pixel 250 comprises a clad 240 and a plurality of subpixels embedded in the clad 240. Three subpixels 251, 252 and 253 are shown in FIG. 2A as an example. Each of the subpixels comprises a nanowire (e.g. a nanowire 251a in the subpixel 251, a nanowire 252a in the subpixel 252 and a nanowire 253a in the subpixel 253) extending essentially perpendicularly from the substrate 210. Space between the pixels 250 is preferably filled with a material 260.


The substrate 210 can comprise any suitable material such as silicon, silicon oxide, silicon nitride, sapphire, diamond, silicon carbide, gallium nitride, germanium, indium gallium arsenide, lead sulfide and/or a combination thereof.


The clad 240 can comprise any suitable material, such as silicon nitride, silicon oxide, etc. The clad 240 is preferably substantially transparent to visible light, preferably with a transmittance of at least 50%, more preferably at least 70%, most preferably at least 90%. In one example, the clad 240 is silicon nitride and has a cylindrical shape with a diameter of about 300 nm.


The material 260 can comprise any suitable material such as silicon dioxide. A refractive index of the material 260 is preferably smaller than a refractive index of the clad 240.


The nanowires (e.g. 251a, 252a and 253a) in the subpixels (e.g. 251, 252 and 253) have refractive indexes equal to or greater than the refractive index of the clad 240. The nanowires and the substrate 210 have different absorption spectra. For example, the nanowire 251a has strong absorptance in blue wavelengths, as shown by an exemplary absorption spectrum 281 in FIG. 2C; the nanowire 252a has a strong absorptance in green wavelengths, as shown by an exemplary absorption spectrum 282 in FIG. 2C; the nanowire 253a has a strong absorptance across the entire visible spectrum, as shown by an exemplary absorption spectrum 283 in FIG. 2C; the substrate 210 has a strong absorptance in red wavelengths, as shown by an exemplary absorption spectrum 280 in FIG. 2C. The nanowires can have different diameters and/or different materials. Each nanowire in one pixel 250 preferably has a distance of at least 100 nm, preferable at least 200 nm, to a nearest neighboring nanowire in the same pixel. The nanowires in the clad 240 can be positioned at any suitable positions in the clad 240. The nanowires can have a surface passivation layer. The nanowires can comprise other suitable materials such as mercury cadmium telluride. The nanowires can have other suitable radii from 10 nm to 250 nm.


The nanowires (e.g. 251a, 252a and 253a) in the subpixels (e.g. 251, 252 and 253) are operable to generate electrical signals upon receiving light. One exemplary nanowire is a photodiode with a p-n or p-i-n junction therein, details of which can be found in U.S. patent application Publication Ser. Nos. 12/575,221 and 12/633,305, each of which is hereby incorporated by reference in its entirety. The electrical signals can comprise an electrical voltage, an electrical current, an electrical conductance or resistance, and/or a change thereof.


Substantially all visible light impinged on the image sensor 200 is absorbed by the subpixels (e.g. 251, 252 and 253). The subpixels absorb light with different wavelengths.


The image sensor 200 can further comprise electronic circuitry 290 operable to detect electrical signals from the subpixels.


In one specific example, each pixel 250 has three subpixels 251, 252 and 253. Each subpixel 251, 252 and 253 has only one nanowire 251a, 252a and 253a, respectively. The nanowire 251a comprises silicon, has a radius of about 25 nm, and has a strong absorptance in blue wavelengths. The nanowire 252a comprises silicon, has a radius of about 40 nm and has a strong absorptance in green wavelengths. The nanowire 253a comprises silicon, has a radius of about 45 nm and has a strong absorptance across the entire visible spectrum. The nanowires 251a, 252a and 253a are about 200 nm apart but embedded in the same clad 240. The clad 140 is cylindrical in shape with a diameter of about 400 nm. Each of the pixels 250 can have more than three subpixels according to an embodiment.


In another specific example, each pixel 250 has four subpixels 251, 252, 253 and 254. Each subpixel 251, 252, 253 and 254 has only one nanowire 251a, 252a, 253a and 254a respectively. The nanowire 251a comprises silicon, has a radius of about 25 nm, and has a strong absorptance in blue wavelengths. The nanowire 252a comprises silicon, has a radius of about 40 nm and has a strong absorptance in green wavelengths. The nanowire 253a comprises silicon, has a radius of about 45 nm and has a strong absorptance across the entire visible spectrum. The nanowire 254a comprises silicon, has a radius of about 35 nm and has a strong absorptance in blue green wavelength (e.g. 400 to 550 nm). The nanowires 251a, 252a, 253a and 254a are about 200 nm apart but embedded in the same clad 240. The clad 140 is cylindrical in shape with a diameter of about 400 nm. FIG. 2D shows exemplary absorption spectra 291, 292, 293 and 294 of the nanowires 251a, 252a, 253a and 254a, respectively.



FIG. 2B shows a schematic partial top view of the image sensor 200. As shown in exemplary FIG. 2B, the pixels 250 can have different orientations, which reduces or eliminates effects of directions of incident light.


According to an embodiment, the image sensor 100 or 200 can further comprise couplers 350 above each pixel 150 or 250, as shown in FIG. 3. Each of the couplers 350 preferably has substantially the same footprint as the pixel underneath and has a convex surface. The coupler 350 is effective to focus substantially all visible light impinged thereon into the clad 140 or 240.


According to an embodiment, as shown in FIG. 3, the image sensor 100 or 200 can further comprise an infrared filter 360, which is operable to prevent infrared light, such as light with wavelengths above 650 nm, from reaching the pixels. According to an embodiment, the image sensor 100 or 200 does not comprise an infrared filter.


According an embodiment, the nanowires can be made by a dry etching process or a Vapor Liquid Solid (VLS) growth method. Of course, it will be appreciated that other materials and/or fabrication techniques may also be used for fabricating the nanowires in keeping with the scope of the invention. For instance, nanowires fabricated from an indium arsenide (InAs) wafer or related materials could be used for IR applications.


The nanowires can also be made to have a strong absorption in wavelengths not in the visible spectrum, such as in the ultraviolet (UV) or infrared (IR) spectra. In an embodiment, each nanowire can have transistor (e.g., transistor 151ab in FIG. 1A) therein or thereon.


In one embodiment, the subpixels 251, 252 and 253 in each pixel 250 of the image sensor 200 has color matching functions substantially the same as the color matching functions of the CIE 1931 2° Standard Observer or the CIE 1964 10° Standard Observer.



FIG. 4 shows exemplary color-matching functions 451, 452 and 453 of the subpixels 251, 252 and 253, respectively. The color-matching functions 461, 462 and 463 are the x(λ), y(λ), and z(λ) of the CIE standard observer.


The image sensor 100 or 200 can be used to sense and capture images. A method of sensing an image comprises projecting the image onto the image sensor 100 or 200 using any suitable optics such as lenses and/or mirrors; detecting an electrical signal from the nanowire in each subpixel in each pixel using suitable circuitry; calculating a color of each pixel from the electrical signals of the subpixels therein.


The foregoing detailed description has set forth various embodiments of the devices and/or processes by the use of diagrams, flowcharts, and/or examples. Insofar as such diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof.


Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation.


The subject matter described herein sometimes illustrates different components contained within, or connected with, other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermediate components.


With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.


All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety.


While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims
  • 1. An image sensor comprising a substrate and one or more of pixels thereon, wherein each of the pixels comprises a first subpixel and a second subpixel; the first subpixel comprises a first nanowire; the second subpixel comprises a second nanowire; the first and second nanowires extend essentially perpendicularly from the substrate, wherein each pixel of the image sensor further comprises one or more photodiodes, wherein the first nanowire and/or the second nanowire has a transistor therein or thereon.
  • 2. The image sensor of claim 1, wherein the substrate comprises silicon, silicon oxide, silicon nitride, sapphire, diamond, silicon carbide, gallium nitride, germanium, indium gallium arsenide, lead sulfide and/or a combination thereof.
  • 3. The image sensor of claim 1, wherein at least one pixel comprises a clad; the first subpixel and the second subpixel of the at least one pixel are embedded in the clad.
  • 4. The image sensor of claim 3, wherein the clad is substantially transparent to visible light.
  • 5. The image sensor of claim 3, further comprising couplers above each of the pixels, each of the couplers having a convex surface and being effective to focus substantially all visible light impinged thereon into the clad.
  • 6. The image sensor of claim 1, wherein the first nanowire and the second nanowire have different absorption spectra.
  • 7. The image sensor of claim 1, wherein each of the first and second nanowires has a p-n or p-i-n junction therein.
  • 8. The image sensor of claim 1, being operable to absorb at least 50% of all visible light impinged thereon.
  • 9. The image sensor of claim 1, further comprising electronic circuitry operable to detect electrical signals generated by the first and second nanowires.
  • 10. The image sensor of claim 1, wherein the pixels have different orientations.
  • 11. A method of manufacturing an image sensor, comprising dry etching or VLS growth, wherein the image sensor comprises a substrate and one or more of pixels thereon, wherein each of the pixels comprises at a first subpixel and a second subpixel, the first subpixel comprises a first nanowire, the second subpixel comprises a second nanowire, wherein the first and second nanowires extend essentially perpendicularly from the substrate, wherein each pixel of the image sensor further comprises one or more photodiodes, wherein the first nanowire and/or the second nanowire has a transistor therein or thereon.
  • 12. The method of claim 11, wherein each of the pixels further comprises a third subpixel and the third subpixel comprises a third nanowire operable to generate an electrical signal upon exposure to light.
  • 13. The method of claim 12, wherein each of the pixels further comprises a fourth subpixel and the fourth subpixel comprises a fourth nanowire operable to generate an electrical signal upon exposure to light of a fourth wavelength different from the first, second and third wavelengths, wherein the fourth nanowire extends essentially perpendicularly from the substrate.
  • 14. The method of claim 11, wherein the photodiodes have absorption spectra different from absorption spectra of the first and second nanowires.
  • 15. The method of claim 11, the image sensor further comprises an infrared filter operable to prevent infrared light from reaching the pixels.
  • 16. A method of sensing an image comprises: projecting the image onto an image sensor, wherein the image sensor comprises a substrate and one or more of pixels thereon, wherein each of the pixels comprises at a first subpixel and a second subpixel, the first subpixel comprises a first nanowire, the second subpixel comprises a second nanowire, wherein the first and second nanowires extend essentially perpendicularly from the substrate, wherein each pixel of the image sensor further comprises one or more photodiodes; detecting the electrical signals from the first nanowire and the second nanowire; and calculating a color of each pixel from the electrical signals, wherein the first nanowire and/or the second nanowire has a transistor therein or thereon.
  • 17. The method of claim 16, wherein the first and the second nanowires are adapted to absorb infra-red (IR) light.
  • 18. The method of claim 16, wherein different pixels of the one or more of pixels comprise spatially separated clads.
  • 19. The method of claim 16, wherein the one or more photodiodes are located between the substrate and the first and second nanowires.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/967,880, filed Dec. 14, 2010. This application is related to U.S. patent application Ser. Nos. 12/204,686 (granted as U.S. Pat. No. 7,646,943), Ser. No. 12/648,942 (granted as U.S. Pat. No. 8,229,255), Ser. No. 12/270,233 (granted as U.S. Pat. No. 8,274,039), Ser. No. 12/472,264 (granted as U.S. Pat. No. 8,269,985), Ser. Nos. 12/472,271, 12/478,598, 12/573,582, 12/575,221, 12/633,323, 12/633,318, 12/633,313, 12/633,305, 12/621,497, 12/633,297, 61/266,064, 61/357,429, 61/306,421, 12/945,492, 12/910,664, 12/966,514, 12/966,535 and 12/966,573, the disclosures of which are hereby incorporated by reference in their entirety.

US Referenced Citations (518)
Number Name Date Kind
1918848 Land Jul 1933 A
3903427 Pack Sep 1975 A
4017332 James Apr 1977 A
4292512 Miller Sep 1981 A
4316048 Woodall Feb 1982 A
4357415 Hartman Nov 1982 A
4387265 Dalal Jun 1983 A
4394571 Jurisson Jul 1983 A
4400221 Rahilly Aug 1983 A
4443890 Eumurian Apr 1984 A
4513168 Borden Apr 1985 A
4531055 Shepherd, Jr. Jul 1985 A
4620237 Traino Oct 1986 A
4678772 Segal Jul 1987 A
4827335 Saito May 1989 A
4846556 Haneda Jul 1989 A
4857973 Yang Aug 1989 A
4876586 Dyck Oct 1989 A
4880613 Satoh Nov 1989 A
4896941 Hayashi Jan 1990 A
4950625 Nakashima Aug 1990 A
4971928 Fuller Nov 1990 A
4972244 Buffet Nov 1990 A
4990988 Lin Feb 1991 A
5071490 Yokota Dec 1991 A
5081049 Green Jan 1992 A
5096520 Faris Mar 1992 A
5124543 Kawashima Jun 1992 A
5217911 Denda Jun 1993 A
5247349 Olego Sep 1993 A
5272518 Vincent Dec 1993 A
5311047 Chang May 1994 A
5347147 Jones Sep 1994 A
5362972 Yazawa Nov 1994 A
5374841 Goodwin Dec 1994 A
5391896 Wanlass Feb 1995 A
5401968 Cox Mar 1995 A
5449626 Hezel Sep 1995 A
5468652 Gee Nov 1995 A
5602661 Schadt Feb 1997 A
5612780 Rickenbach Mar 1997 A
5671914 Kalkhoran Sep 1997 A
5696863 Kleinerman Dec 1997 A
5723945 Schermerhorn Mar 1998 A
5747796 Heard May 1998 A
5767507 Uenlue Jun 1998 A
5798535 Huang Aug 1998 A
5844290 Furumiya Dec 1998 A
5853446 Carre Dec 1998 A
5857053 Kane Jan 1999 A
5877492 Fujieda Mar 1999 A
5880495 Chen Mar 1999 A
5885881 Ojha Mar 1999 A
5900623 Tsang May 1999 A
5943463 Unuma Aug 1999 A
5968528 Deckner Oct 1999 A
6013871 Curtin Jan 2000 A
6033582 Lee Mar 2000 A
6037243 Ha Mar 2000 A
6046466 Ishida Apr 2000 A
6074892 Bowers Jun 2000 A
6100551 Lee Aug 2000 A
6270548 Campbell Aug 2001 B1
6301420 Greenaway Oct 2001 B1
6326649 Chang Dec 2001 B1
6388243 Berezin May 2002 B1
6388648 Clifton May 2002 B1
6407439 Hier Jun 2002 B1
6459034 Muramoto Oct 2002 B2
6463204 Ati Oct 2002 B1
6542231 Garrett Apr 2003 B1
6563995 Keaton May 2003 B2
6566723 Vook May 2003 B1
6680216 Kwasnick Jan 2004 B2
6709929 Zhang Mar 2004 B2
6720594 Rahn Apr 2004 B2
6771314 Bawolek Aug 2004 B1
6805139 Savas Oct 2004 B1
6812473 Amemiya Nov 2004 B1
6904187 Fischer et al. Jun 2005 B2
6927145 Yang Aug 2005 B1
6960526 Shah Nov 2005 B1
6967120 Jang Nov 2005 B2
6969899 Yaung Nov 2005 B2
6987258 Mates Jan 2006 B2
6996147 Majumdar Feb 2006 B2
7052927 Fletcher May 2006 B1
7064372 Duan Jun 2006 B2
7105428 Pan Sep 2006 B2
7106938 Baek et al. Sep 2006 B2
7109517 Zaidi Sep 2006 B2
7153720 Augusto Dec 2006 B2
7163659 Stasiak Jan 2007 B2
7192533 Bakkers Mar 2007 B2
7208783 Palsule Apr 2007 B2
7230286 Cohen Jun 2007 B2
7235475 Kamins Jun 2007 B2
7241434 Anthony Jul 2007 B2
7253017 Roscheisen Aug 2007 B1
7254151 Lieber Aug 2007 B2
7262400 Yaung Aug 2007 B2
7265328 Mouli Sep 2007 B2
7272287 Bise Sep 2007 B2
7285812 Tang Oct 2007 B2
7306963 Linden Dec 2007 B2
7307327 Bahl Dec 2007 B2
7311889 Awano Dec 2007 B2
7326915 Kaluzhny Feb 2008 B2
7330404 Peng Feb 2008 B2
7335962 Mouli Feb 2008 B2
7336860 Cyr Feb 2008 B2
7339110 Mulligan et al. Mar 2008 B1
7358583 Reznik Apr 2008 B2
7381966 Starikov Jun 2008 B2
7388147 Mulligan Jun 2008 B2
7416911 Heath Aug 2008 B2
7446025 Cohen Nov 2008 B2
7462774 Roscheisen Dec 2008 B2
7471428 Ohara Dec 2008 B2
7491269 Legagneux Feb 2009 B2
7507293 Li Mar 2009 B2
7521322 Tang Apr 2009 B2
7524694 Adkisson Apr 2009 B2
7582587 Dufresne et al. Sep 2009 B2
7582857 Gruev Sep 2009 B2
7598482 Verhulst Oct 2009 B1
7622367 Nuzzo Nov 2009 B1
7626685 Jin Dec 2009 B2
7646138 Williams Jan 2010 B2
7646943 Wober Jan 2010 B1
7647695 MacNutt Jan 2010 B2
7649665 Kempa Jan 2010 B2
7655860 Parsons Feb 2010 B2
7663202 Wang Feb 2010 B2
7692860 Sato Apr 2010 B2
7704806 Chae Apr 2010 B2
7713779 Firon May 2010 B2
7719678 Kamins May 2010 B2
7719688 Kamins May 2010 B2
7732769 Snider Jun 2010 B2
7732839 Sebe Jun 2010 B2
7736954 Hussain Jun 2010 B2
7740824 Godfried Jun 2010 B2
7790495 Assefa Sep 2010 B2
7872324 Kim Jan 2011 B2
7888155 Chen Feb 2011 B2
7902540 Cohen Mar 2011 B2
7948555 Kwon et al. May 2011 B2
7972885 Dutta Jul 2011 B1
8030729 Quitoriano Oct 2011 B2
8035184 Dutta Oct 2011 B1
8049203 Samuelson Nov 2011 B2
8063450 Wernersson Nov 2011 B2
8067299 Samuelson Nov 2011 B2
8067736 Gruss Nov 2011 B2
8084728 Tsang Dec 2011 B2
8093675 Tsunemi Jan 2012 B2
8118170 Sato Feb 2012 B2
8143658 Samuelson Mar 2012 B2
8154127 Kamins Apr 2012 B1
8193524 Bjorek Jun 2012 B2
8208776 Tokushima Jun 2012 B2
8212136 Shirai et al. Jul 2012 B2
8212138 Landis Jul 2012 B2
8222705 Ogino Jul 2012 B2
8242353 Karg Aug 2012 B2
8269985 Wober Sep 2012 B2
8274039 Wober Sep 2012 B2
8299472 Yu Oct 2012 B2
8330090 Agarwal Dec 2012 B2
8384007 Yu Feb 2013 B2
8455857 Samuelson Jun 2013 B2
8471190 Wober Jun 2013 B2
8514411 Wober Aug 2013 B2
8546742 Wober Oct 2013 B2
8748799 Wober Jun 2014 B2
8766272 Yu et al. Jul 2014 B2
8791470 Wober Jul 2014 B2
8810808 Wober Aug 2014 B2
8835831 Yu et al. Sep 2014 B2
8866065 Wober Oct 2014 B2
9000353 Seo Apr 2015 B2
20020003201 Yu Jan 2002 A1
20020020846 Pi Feb 2002 A1
20020021879 Lee Feb 2002 A1
20020071468 Sandstrom Jun 2002 A1
20020104821 Bazylenko Aug 2002 A1
20020109082 Nakayama Aug 2002 A1
20020117675 Mascarenhas Aug 2002 A1
20020129761 Takami Sep 2002 A1
20020130311 Lieber Sep 2002 A1
20020172820 Majumdar Nov 2002 A1
20030003300 Korgel Jan 2003 A1
20030006363 Campbell Jan 2003 A1
20030077907 Kao Apr 2003 A1
20030089899 Lieber May 2003 A1
20030103744 Koyama Jun 2003 A1
20030132480 Chau Jul 2003 A1
20030160176 Vispute Aug 2003 A1
20030189202 Li Oct 2003 A1
20030227090 Okabe Dec 2003 A1
20040011975 Nicoli Jan 2004 A1
20040021062 Zaidi Feb 2004 A1
20040026684 Empedocles Feb 2004 A1
20040058058 Shchegolikhin Mar 2004 A1
20040065362 Watabe Apr 2004 A1
20040075464 Samuelson Apr 2004 A1
20040095658 Buretea May 2004 A1
20040109666 Kim Jun 2004 A1
20040114847 Fischer et al. Jun 2004 A1
20040118337 Mizutani Jun 2004 A1
20040118377 Bloms Jun 2004 A1
20040122328 Wang Jun 2004 A1
20040124366 Zeng Jul 2004 A1
20040155247 Benthien Aug 2004 A1
20040156610 Charlton Aug 2004 A1
20040160522 Fossum Aug 2004 A1
20040180461 Yaung Sep 2004 A1
20040213307 Lieber Oct 2004 A1
20040217086 Kawashima Nov 2004 A1
20040223681 Block Nov 2004 A1
20040241965 Merritt Dec 2004 A1
20040252957 Schmidt et al. Dec 2004 A1
20040261840 Schmit Dec 2004 A1
20050009224 Yang Jan 2005 A1
20050035381 Holm Feb 2005 A1
20050082676 Andry Apr 2005 A1
20050087601 Gerst Apr 2005 A1
20050095699 Miyauchi May 2005 A1
20050109388 Murakami May 2005 A1
20050116271 Kato Jun 2005 A1
20050133476 Islam Jun 2005 A1
20050161662 Majumdar Jul 2005 A1
20050164514 Rauf Jul 2005 A1
20050190453 Dobashi Sep 2005 A1
20050201704 Ellwood Sep 2005 A1
20050218468 Owen Oct 2005 A1
20050224707 Guedj Oct 2005 A1
20050242409 Yang Nov 2005 A1
20050284517 Shinohara Dec 2005 A1
20060011362 Tao Jan 2006 A1
20060027071 Barnett Feb 2006 A1
20060038990 Habib Feb 2006 A1
20060113622 Adkisson Jun 2006 A1
20060115230 Komoguchi et al. Jun 2006 A1
20060121371 Wu Jun 2006 A1
20060146323 Bratkovski Jul 2006 A1
20060162766 Gee Jul 2006 A1
20060180197 Gui Aug 2006 A1
20060208320 Tsuchiya et al. Sep 2006 A1
20060257071 Bise Nov 2006 A1
20060260674 Tran Nov 2006 A1
20060273262 Sayag Dec 2006 A1
20060273389 Cohen Dec 2006 A1
20060284118 Asmussen Dec 2006 A1
20070012980 Duan Jan 2007 A1
20070012985 Stumbo Jan 2007 A1
20070017567 Gronet Jan 2007 A1
20070023799 Boettiger Feb 2007 A1
20070025504 Tumer Feb 2007 A1
20070029545 Striakhilev Feb 2007 A1
20070052050 Dierickx Mar 2007 A1
20070076481 Tennant Apr 2007 A1
20070082255 Sun Apr 2007 A1
20070099292 Miller May 2007 A1
20070104441 Ahn May 2007 A1
20070107773 Fork May 2007 A1
20070108371 Stevens May 2007 A1
20070114622 Adkisson May 2007 A1
20070120254 Hurkx May 2007 A1
20070126037 Ikeda Jun 2007 A1
20070137697 Kempa Jun 2007 A1
20070138376 Naughton Jun 2007 A1
20070138380 Adkisson Jun 2007 A1
20070138459 Wong Jun 2007 A1
20070139740 Igura Jun 2007 A1
20070140638 Yang Jun 2007 A1
20070145512 Rhodes Jun 2007 A1
20070148599 True Jun 2007 A1
20070152248 Choi Jul 2007 A1
20070155025 Zhang Jul 2007 A1
20070164270 Majumdar Jul 2007 A1
20070170418 Bowers Jul 2007 A1
20070172623 Kresse Jul 2007 A1
20070172970 Uya Jul 2007 A1
20070187787 Ackerson Aug 2007 A1
20070196239 Vink Aug 2007 A1
20070200054 Reznik Aug 2007 A1
20070205483 Williams Sep 2007 A1
20070217754 Sasaki Sep 2007 A1
20070228421 Shioya Oct 2007 A1
20070238265 Kurashina Oct 2007 A1
20070238285 Borden Oct 2007 A1
20070241260 Jaeger Oct 2007 A1
20070246689 Ge Oct 2007 A1
20070248958 Jovanovich Oct 2007 A1
20070272828 Xu Nov 2007 A1
20070278500 Lin Dec 2007 A1
20070285378 Lankhorst Dec 2007 A1
20070290193 Tucker Dec 2007 A1
20070290265 Augusto Dec 2007 A1
20080001498 Muller Jan 2008 A1
20080006319 Bettge Jan 2008 A1
20080029701 Onozawa Feb 2008 A1
20080035965 Hayashi Feb 2008 A1
20080036038 Hersee Feb 2008 A1
20080044984 Hsieh Feb 2008 A1
20080047601 Nag Feb 2008 A1
20080047604 Korevaar Feb 2008 A1
20080055451 Kanbe Mar 2008 A1
20080065451 For Mar 2008 A1
20080073742 Adkisson Mar 2008 A1
20080079022 Yamamoto Apr 2008 A1
20080079076 Sheen Apr 2008 A1
20080083963 Hsu Apr 2008 A1
20080088014 Adkisson Apr 2008 A1
20080090401 Bratkovski Apr 2008 A1
20080092938 Majumdar Apr 2008 A1
20080096308 Santori Apr 2008 A1
20080108170 Adkisson May 2008 A1
20080116537 Adkisson May 2008 A1
20080128760 Jun Jun 2008 A1
20080137188 Sato et al. Jun 2008 A1
20080143906 Allemand et al. Jun 2008 A1
20080145965 Reznik Jun 2008 A1
20080149914 Samuelson Jun 2008 A1
20080149944 Samuelson Jun 2008 A1
20080157253 Starikov Jul 2008 A1
20080166883 Liu Jul 2008 A1
20080169017 Korevaar Jul 2008 A1
20080169019 Korevaar Jul 2008 A1
20080173615 Kim Jul 2008 A1
20080178924 Kempa Jul 2008 A1
20080188029 Rhodes Aug 2008 A1
20080191278 Maekawa Aug 2008 A1
20080191298 Lin Aug 2008 A1
20080211945 Hong Sep 2008 A1
20080218740 Williams Sep 2008 A1
20080224115 Bakkers Sep 2008 A1
20080225140 Raynor Sep 2008 A1
20080233280 Blanchet Sep 2008 A1
20080237568 Kobayashi Oct 2008 A1
20080246020 Kawashima Oct 2008 A1
20080246123 Kamins Oct 2008 A1
20080248304 Hanrath Oct 2008 A1
20080251780 Li Oct 2008 A1
20080258747 Kluth Oct 2008 A1
20080260225 Szu Oct 2008 A1
20080264478 Ahn Oct 2008 A1
20080266556 Kamins Oct 2008 A1
20080266572 Kamins Oct 2008 A1
20080271783 Murakami Nov 2008 A1
20080277646 Kim Nov 2008 A1
20080283728 Inoue Nov 2008 A1
20080283883 Shim Nov 2008 A1
20080297281 Ayazi Dec 2008 A1
20080311693 Maxwell Dec 2008 A1
20080311712 Anwar Dec 2008 A1
20090001498 Wang Jan 2009 A1
20090020150 Atwater Jan 2009 A1
20090020687 Lehmann et al. Jan 2009 A1
20090032687 Lapstun Feb 2009 A1
20090046362 Guo Feb 2009 A1
20090046749 Mizuuchi Feb 2009 A1
20090050204 Habib Feb 2009 A1
20090052029 Dai et al. Feb 2009 A1
20090057650 Lieber Mar 2009 A1
20090072145 Peczalski Mar 2009 A1
20090104160 Young Apr 2009 A1
20090120498 Yamazaki May 2009 A1
20090121136 Gruss May 2009 A1
20090127442 Lee May 2009 A1
20090146198 Joe Jun 2009 A1
20090151782 Ko Jun 2009 A1
20090152664 Klem Jun 2009 A1
20090153961 Murakami Jun 2009 A1
20090165844 Dutta Jul 2009 A1
20090173976 Augusto Jul 2009 A1
20090179225 Fertig Jul 2009 A1
20090179289 Park Jul 2009 A1
20090188552 Wang Jul 2009 A1
20090189144 Quitoriano Jul 2009 A1
20090189145 Wang Jul 2009 A1
20090194160 Chin Aug 2009 A1
20090199597 Danley Aug 2009 A1
20090201400 Zhang Aug 2009 A1
20090206405 Doyle Aug 2009 A1
20090211622 Frolov Aug 2009 A1
20090223558 Sun Sep 2009 A1
20090224245 Umezaki Sep 2009 A1
20090224349 Gambino Sep 2009 A1
20090230039 Hoenig Sep 2009 A1
20090233445 Lee Sep 2009 A1
20090242018 Ahn Oct 2009 A1
20090243016 Kawahara Oct 2009 A1
20090244514 Jin Oct 2009 A1
20090260687 Park Oct 2009 A1
20090261438 Choi Oct 2009 A1
20090266418 Hu Oct 2009 A1
20090266974 Verhulst Oct 2009 A1
20090272423 Niira Nov 2009 A1
20090278954 Kanamori Nov 2009 A1
20090278998 El-Ghoroury Nov 2009 A1
20090289320 Cohen Nov 2009 A1
20090305454 Cohen Dec 2009 A1
20100006817 Ohlsson Jan 2010 A1
20100019252 Bratkovski Jan 2010 A1
20100019296 Cha Jan 2010 A1
20100019355 Kamins Jan 2010 A1
20100025710 Yamada Feb 2010 A1
20100072577 Nuzzo et al. Mar 2010 A1
20100078055 Vidu Apr 2010 A1
20100078056 Hovel Apr 2010 A1
20100090341 Wan Apr 2010 A1
20100101633 Park Apr 2010 A1
20100104494 Meng Apr 2010 A1
20100110433 Nedelcu et al. May 2010 A1
20100116976 Wober May 2010 A1
20100126573 Youtsey May 2010 A1
20100127153 Agarwal May 2010 A1
20100132779 Hong Jun 2010 A1
20100133986 Kim Jun 2010 A1
20100136721 Song Jun 2010 A1
20100148221 Yu Jun 2010 A1
20100163714 Wober Jul 2010 A1
20100163941 Jung Jul 2010 A1
20100178018 Augusto Jul 2010 A1
20100186809 Samuelson Jul 2010 A1
20100187404 Klem Jul 2010 A1
20100200065 Choi Aug 2010 A1
20100207103 Farrow Aug 2010 A1
20100218816 Guha Sep 2010 A1
20100221866 Graham et al. Sep 2010 A1
20100229939 Shen Sep 2010 A1
20100230653 Chen Sep 2010 A1
20100237454 Fujisawa Sep 2010 A1
20100240104 Zhang et al. Sep 2010 A1
20100244108 Kohnke Sep 2010 A1
20100244169 Maeda Sep 2010 A1
20100249877 Naughton Sep 2010 A1
20100258184 Laughlin Oct 2010 A1
20100276572 Iwabuchi Nov 2010 A1
20100277607 Choi Nov 2010 A1
20100282314 Coakley Nov 2010 A1
20100295019 Wang Nov 2010 A1
20100302440 Wober Dec 2010 A1
20100304061 Ye Dec 2010 A1
20100308214 Wober Dec 2010 A1
20100313952 Coakley Dec 2010 A1
20100319763 Park Dec 2010 A1
20100320444 Dutta Dec 2010 A1
20110018424 Takada Jan 2011 A1
20110036396 Jayaraman Feb 2011 A1
20110037133 Su Feb 2011 A1
20110049572 Jeon et al. Mar 2011 A1
20110050042 Choi Mar 2011 A1
20110057231 Jeon et al. Mar 2011 A1
20110057234 Jeon et al. Mar 2011 A1
20110057286 Jeon et al. Mar 2011 A1
20110076847 Aqui Mar 2011 A1
20110080508 Katsuno Apr 2011 A1
20110084212 Clark Apr 2011 A1
20110127490 Mi Jun 2011 A1
20110133060 Yu Jun 2011 A1
20110133160 Yu Jun 2011 A1
20110135814 Miyauchi Jun 2011 A1
20110139176 Cheung Jun 2011 A1
20110146771 Chuang Jun 2011 A1
20110147870 Ang Jun 2011 A1
20110180894 Samuelson Jul 2011 A1
20110195577 Kushibiki Aug 2011 A1
20110220191 Flood Sep 2011 A1
20110226937 Yu Sep 2011 A1
20110248315 Nam Oct 2011 A1
20110249219 Evans Oct 2011 A1
20110249322 Wang Oct 2011 A1
20110253982 Wang Oct 2011 A1
20110272014 Mathai Nov 2011 A1
20110297214 Kim Dec 2011 A1
20110309237 Seo et al. Dec 2011 A1
20110309240 Yu et al. Dec 2011 A1
20110309331 Yu Dec 2011 A1
20110315988 Yu Dec 2011 A1
20110316106 Kim Dec 2011 A1
20120006390 Huo et al. Jan 2012 A1
20120009714 Mouli Jan 2012 A1
20120014837 Fehr et al. Jan 2012 A1
20120029328 Shimizu Feb 2012 A1
20120031454 Fogel Feb 2012 A1
20120060905 Fogel Mar 2012 A1
20120075513 Chipman et al. Mar 2012 A1
20120153124 Yu Jun 2012 A1
20120168613 Yu Jul 2012 A1
20120192939 Tamboli et al. Aug 2012 A1
20120196383 Nitkowski et al. Aug 2012 A1
20120196401 Graham Aug 2012 A1
20120240999 Yoshida Sep 2012 A1
20120258563 Ogino Oct 2012 A1
20120280345 Zhu Nov 2012 A1
20120291859 Vineis Nov 2012 A1
20120298843 Yu Nov 2012 A1
20120313073 McKone et al. Dec 2012 A1
20120313078 Fukui Dec 2012 A1
20120318336 Hekmatshoar-Tabari et al. Dec 2012 A1
20120322164 Lal Dec 2012 A1
20130000704 Fogel Jan 2013 A1
20130020620 Wober Jan 2013 A1
20130037100 Platzer Bjorkman Feb 2013 A1
20130112256 Yu May 2013 A1
20130125965 Hazeghi et al. May 2013 A1
20130174896 Ardo et al. Jul 2013 A1
20130174904 Yamasaki Jul 2013 A1
20130220406 Day Aug 2013 A1
20130341749 Yu et al. Dec 2013 A1
20140045209 Chou Feb 2014 A1
20140096816 Atwater et al. Apr 2014 A1
20140117401 Herner May 2014 A1
20150171272 Luo Jun 2015 A1
Foreign Referenced Citations (71)
Number Date Country
1624925 Jun 2005 CN
1306619 Mar 2007 CN
100350429 Nov 2007 CN
101221993 Jul 2008 CN
101459185 Jun 2009 CN
100568516 Dec 2009 CN
101675522 Mar 2010 CN
101681941 Mar 2010 CN
103201858 Jul 2013 CN
1367819 Dec 2003 EP
0809303 Sep 2006 EP
2923651 May 2009 FR
2348399 Apr 2000 GB
359013708 Jan 1984 JP
59198413708 Jan 1984 JP
2000324396 Nov 2000 JP
2002151715 May 2002 JP
2005252210 Sep 2005 JP
2005328135 Nov 2005 JP
2007134562 May 2007 JP
2007152548 Jun 2007 JP
2007184566 Jul 2007 JP
2007520877 Jul 2007 JP
2007201091 Aug 2007 JP
2007317961 Dec 2007 JP
2008288585 Nov 2008 JP
2009506546 Feb 2009 JP
2009236914 Oct 2009 JP
2012543250 Apr 2013 JP
2013513253 Apr 2013 JP
2013513254 Apr 2013 JP
I318418 May 2004 TW
I228782 Mar 2005 TW
200535914 Nov 2005 TW
200536048 Nov 2005 TW
200742115 Apr 2007 TW
200810100 Feb 2008 TW
200814308 Mar 2008 TW
200845402 Nov 2008 TW
200847412 Dec 2008 TW
200915551 Apr 2009 TW
200941716 Oct 2009 TW
I320235 Feb 2010 TW
201027730 Jul 2010 TW
201034172 Sep 2010 TW
201044610 Dec 2010 TW
201140859 Nov 2011 TW
8603347 Jun 1986 WO
0002379 Jan 2000 WO
02069623 Sep 2002 WO
03107439 Dec 2003 WO
03107439 Dec 2003 WO
2005064337 Jul 2005 WO
2007000879 Jan 2007 WO
2008069565 Jun 2008 WO
2008079076 Jul 2008 WO
2008079076 Jul 2008 WO
2008131313 Oct 2008 WO
2008135905 Nov 2008 WO
2008135905 Nov 2008 WO
2008135905 Nov 2008 WO
2008143727 Nov 2008 WO
2008131313 Dec 2008 WO
2009099841 Aug 2009 WO
2009116018 Sep 2009 WO
2009137241 Nov 2009 WO
2010014099 Feb 2010 WO
2010019887 Feb 2010 WO
2010039631 Apr 2010 WO
2010067958 Aug 2010 WO
2011074457 Jun 2011 WO
Non-Patent Literature Citations (233)
Entry
CMOS image sensor pixel microlens array optimization using FDTD Solutions, http://www.lumerical—com/fdtd—microlens/cmos—image—sensor—pixel—microlens.php, pp. 1-2, Jun. 25, 2008.
Adler, Nanowire Lawns Make for Sheets of Image Sensors, NewScientist.com, Jul. 28, 2008.
Babinec et al., High-Flux, Low-Power Diamond Nanowire Single-Photon Source Arrays: An Enabling Material for Optical and Quantum Computing and Cryptography, obtained on Jul. 22, 2010 at URL: http://otd.harvard.edu/technologies/tech.php?case=3702.
Baillie et al., ‘Zero-space microlenses for CMOS image sensors: optical modeling and lithographic process development’, Publication Date May 2004, http://adsabs.harvard.edu/abs/2004SPIE.5377..953B, pp. 1-2.
Baomin, et al., Nanotechology 23 (2012) 194003, 7 pages.
Barclay et al., Chip-Based Microcavities Coupled to NV Centers in Single Crystal Diamond, Applied Physics Letters, Nov. 12, 2009, vol. 95, Issue 19.
Brouri et al., Photon Antibunching in the Flurescence of Individual Colored Centers in Diamond, Optics Letters, Sep. 1, 2000, vol. 25, Issue 17.
Canadian Office Action of Canadian Application No. 3,676,376, dated Oct. 11, 2013.
Catrysse, et al., An Integrated Color Pixel in 0.18pm CMOS Technology, Proceedings IEDM 2001, pp. 559-562.
Choi et al., Optimization of sidewall roughness in silica waveguides to reduce propagation losses, May 2001, Lasers and Electro-Optics, 2001. CLEO '01. Technical Digest. Summaries of papers presented at the Conference on, pp. 175-176.
Chung, Sung-Wook et al. Silicon Nanowire Devices. Applied Physics Letters, vol. 76, No. 15 (Apr. 10, 2000), pp. 2068-2070.
CMOS image sensor pixel optical efficiency and optical crosstalk optimization using FDTD Solutions www.lumerical.com/fdtd—microlens/cmos—image—sensor—pixel—microlens.php, Mar. 19, 2009.
Deptuch et al., Vertically Integrated Circuits at Fermilab, IEEE Transactions on Nuclear Science, Aug. 2010, vol. 54, Issue 4, pp. 2178-2186.
Ekroll, On the Nature of Simultaneous Color Contrast, Dissertation, University of Kiel, 2005.
Fan et al., Large-Scale, Heterogeneous Integration of Nanowire Arrays for Image Sensor Circuitry, Proceedings of the National Academy of Sciences (PNAS) of the United States of America, Aug. 12, 2008, vol. 105, No. 32.
Fang et al., Fabrication of Slantingly-Aligned Silicon Nanowire Arrays for Solar Cell Applications, Nanotechnology, vol. 19, No. 25. 2008.
Furumiya, et al. ‘High-sensitivity and no-crosstalk pixel technology for embedded CMOS image sensor’; IEEE Electron Device Letters, vol. 48, No. 10, Oct. 2001.
Gadelrab et al., The Source-Gated Amorphous Silicon Photo-Transistor, IEEE Transactions on Electron Devices, Oct. 1997, vol. 44, No. 10, pp. 1789-1794.
Gambino et al., ‘CMOS Imager with Copper Wiring and Lightpipe,’ Electron Devices Meeting, 2006. IEDM '06, International Publication Date: Dec. 11-13, 2006, pp. 1-4.
Garnett et al., Light Trapping in Silicon Nanowire Solar Cells, Nanoletters, Jan. 28, 2010, vol. 10, No. 3, pp. 1082-1087.
Ge et al., Orientation-Controlled Growth of Single-Crystal Silicon-Nanowire Arrays, Advanced Materials, Jan. 18, 2005, vol. 17, No. 1, pp. 56-61.
Geyer et al., Model for the Mass Transport during Metal-Assisted Chemical Etching with Contiguous Metal Films as Catalysts, J. Phys. Chem. C 2012, 116, 13446-13451.
Guillaumee, et al.; Polarization Sensitive Silicon Photodiodes Using Nanostructured Metallic Grids, Applied Physics Letters 94, 2009.
Hanrath et al., Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals, J. Am. Chem. Soc., Feb. 20, 2002, vol. 124, No. 7, pp. 1424-1429.
Hanrath et al., Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals, Advanced Materials, Mar. 4, 2003, vol. 15, No. 5, pp. 437-440.
Hochbaum et al., Controlled Growth of Si Nanowire Arrays for Device Integration, Nano Letters, Mar. 2005, vol. 5, No. 3, pp. 457-460.
Holmes et al., Control of Thickness and Orientation of Solution-Grown Silicon Nanowires, Science, Feb. 25, 2000, vol. 287, No. 5457, pp. 1471-1473.
Hopkins, Addressing sidewall roughness using dry etching silicon and Si02, Jul. 1, 2004, ElectroIQ, vol. 47, Issue 7.
Hsu, et al. ‘Light Guide for Pixel Crosstalk Improvement in Deep Submicron CMOS Image Sensor’; IEEE Electron Device Letters, vol. 25, No. 1, Jan. 2004.
International Preliminary Report and Written Opinion re PCT/US2010/059468, mailed Jun. 21, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059491, mailed Jun. 21, 2012.
International Preliminary Report and Written Opinion re PCT/US2010/059496, mailed Jun. 21, 2012.
Office Action issued on Mar. 3, 2014 in Chinese Application No. 200980142671.9.
International Preliminary Report on Patentability for PCT International Application No. PCT/US2010/035722, mailed Nov. 3, 2011.
International Preliminary Report on Patentability for PCT International Patent Application No. PCT/U62009/055963, mailed Mar. 17, 2011.
International Preliminary Search Report on Patentability of PCT/US2011/057325, mailed May 2, 2013 (9 pages).
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/035722, mailed Jul. 20, 2010.
International Search Report and Written Opinion for PCT International Application No. PCT/US2010/035726, mailed Jul. 21, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2009/055963, mailed Oct. 15, 2009.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2009/063592, mailed Jan. 13, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/035727, mailed Sep. 27, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/051435, mailed Dec. 3, 2010.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/051446, mailed Jan. 3, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/057227, mailed Jan. 26, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059468, mailed Feb. 11, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059491, mailed Feb. 9, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059501, mailed Feb. 15, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2010/059504, mailed Apr. 7, 2011.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/060348, mailed Mar. 9, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/064635, mailed Apr. 13, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/066097, mailed Mar. 12, 2012.
International Search Report and Written Opinion for PCT International Patent Application No. PCT/US2011/067712, mailed May 3, 2012.
International Search Report and Written Opinion re PCT/US2011/57325, mailed Jun. 22, 2012.
Jeong, et al., Nano Lett. 2012, 12, 2971-2976.
Jeong et al., J. Vac. Sci. Technol. A 30(6), Nov./Dec. 2012.
Jin-Kon Kim; ‘New Functional Nanomaterials Based on Block Copolymers’ http://www.ziu.edu.cn/adver/subjectizyhd/jz0707061313.html, Jul. 11, 2007.
Juan et al., High Aspect Ratio Polymide Etching Using an Oxygen Plasma Generated by Electron Cyclotron Resonance Source, Journal of Vacuum Science and Technology, Jan./Feb. 1994, vol. 12, No. 1., pp. 422-426.
Junger, et al., Polarization- and wavelength-sensitive sub-wavelength structures fabricated in the metal layers of deep submicron CMOS processes, Proc. of SPIE, vol. 7712, 2010.
Kalkofen et al., Atomic Layer Deposition of Boron Oxide As Dopant Source for Shallow Doping Silicon, Meeting Abstract 943, 217th ECS Meeting MP2010-O1, Apr. 25-30, 2010 Vancouver Canada, El-Advanced Gate Stack, Source / Drain, and Channel Engineering for Si-Based CMOS 6: New Materials, Processes,and Equipment.
Kane, Why Nanowires Make Great Photodetectors, EurekAlert.com article, Apr. 25, 2007.
Kempa, Thomas J. et al. Single and Tandem Axial p-i-n Nanowire Photovoltaic Devices, Nano Letters, 2008, vol. 8, No. 10, 3456-3460.
Kim et al., Electronic Structure of Vertically Aligned Mn-Doped CoFe2O4 Nanowires and Their Application as Humidity Sensors and Photodetectors, Journal of Physical Chemistry C, Apr. 7, 2009.
Law et al., Semiconductor Nanowires and Nanotubes, Annu. Rev. Mater. Res., 2004, vol. 34, pp. 83-122.
Lee et al., Vertical Pillar-Superlattice Array and Graphene Hybrid Light Emitting Diodes, Nano Letters, 2010, vol. 10, pp. 2783-2788.
Lin et al., Fabrication of Nanowire Anisotropic Conductive Film for Ultra-fine Pitch Flip Chip Interconnection, Electronic Components and Technology Conference, Jun. 20, 2005, 55th Proceedings, pp. 66-70.
Lin et al., Reducing Dark Current in a High-Speed Si-Based Interdigitated Trench-Electrode MSM Photodetector, IEEE Transactions on Electron Devices, May 2003, vol. 50, No. 5, pp. 1306-1313.
Loncar et al., Diamond Nanotechnology, SPIE Newsroom, May 18, 2010, obtained at url: http://spie.org/x40194.xml?ArticleID=x40194.
Loose et al., CMOS Detector technology, Scientific Technology, Scientific Detector Workshop, Sicily 2005, Experimental Astronomy, vol. 19, Issue 1-3, pp. 111-134.
Lu et al., Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate, NanoLetters, Jan. 2003, vol. 3, No. 1, pp. 93-99.
Lugstein et al., Ga/Au Alloy Catalyst for Single Crystal Silicon-Nanowire Epitaxy, Applied Physics Letters, Jan. 8, 2007, vol. 90, No. 2, pp. 023109-1-023109-3.
Madou, Properties and Growth of Silicon, Including Crystalline Silicon, Fundamentals of Microfabrication, 2nd Ed., Press, 2002, pp. 125-204. CRC.
Makarova et al., Fabrication of High Density, High-Aspect-Ratio Polyimide Nanofilters, Journal of Vacuum Science and Technology, Nov./Dec. 2009, vol. 27, No. 6., pp. 2585-2587.
Mei-Ling Kuo et al. “Realization of a near-perfect antireflection coating for silicon solar energy utilization” (Nov. 1, 2008, vol. 33, No. 21, Optics Letters).
Morales et al., A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires, Science, Jan. 9, 1998, vol. 279, pp. 208-211.
Mukhopadhyay, When PDMS Isn't the Best, American Chemical Society, May 1, 2007.
N. L. Dmitruk, et al.; ‘Modeling and Measurement of Optical Response of 1D Array of Metallic Nanowires for Sensing and Detection Application’; 26th International Conference on Microelectronics (MIEL 2008), NIS, Serbia, May 11-14, 2008.
Nguyen et al., Deep Reactive Ion etching of Polyimide for Microfluidic Applications, Journal of the Korean Physical Society, Sep. 2007, vol. 51, No. 3, pp. 984-988.
Ozgur Yavuzcetin, et al.; ‘Index-tuned Anti-reflective Coating using a Nanostructured Metamaterial’; http://www.umass.edu/research/rld/bioportal/vuewtech.php?tid=40, Feb. 28, 2007.
Pain et al., A Back-Illuminated Megapixel CMOS Image Sensor, IEEE Workshop on Charge-Coupled Devices and Advanced Image Sensors, Karuizawa, Japan, Jun. 9-11, 2005, Jet Propulsion Laboratory, National Aeronautics and Space Administration, Pasadena California.
Parraga et al., Color and Luminance Information in Natural Scenes, Journal of Optical Society of America A, Optics, Image, Science and Vision, Jun. 1998, vol. 15, No. 6.
Reynard Corporation; ‘Anti-Reflection Coatings (AR)’, http://www.reynardcorp.com/coating—anti—reflection.php, dowwnloaded Jun. 4, 2009.
Rosfjord et al., Nanowire Single-Photon Detector with an Integrated Optical Cavity and Anti-Reflection Coating, Optics Express: The International Electronic Journal of Optics; Jan. 23, 2006, vol. 14, No. 2, pp. 527-534.
Rugani, First All-Nanowire Sensor, Technology Review, Aug. 13, 2008, Published by MIT.
Rutter, Diamond-Based Nanowire Devices Advance Quantum Science, SEAS Communications, Feb. 14, 2010, obtained at url:http://news.harvard.edu/gazette/story/2010/02/digging-deep-into-diamonds/.
Sarkar et al., Integrated polarization-analyzing CMOS image sensor for detecting incoming light ray direction, Sensors Application Symposium (SAS), Mar. 29, 2012, p. 194-199, 1010 IEEE.
Schmidt et al., Realization of a Silicon Nanowire Vertical Surround-Gate Field-Effect Transistor, Small, Jan. 2006, vol. 2, No. 1, pp. 85-88.
Seo, et. al., “Multicolored vertical silicon nanowires,” Nano Letters, vol. 11 issue 4, pp. 1851-1856, 2010.
Shimizu et al., Homoepitaxial Growth of Vertical Si Nanowires on Si(100) Substrate using Anodic Aluminum Oxide Template, (abstract only), Materials Research Society, Fall 2007.
Shockley, et al., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. of Appl. Physics, vol. 32, No. 3, Mar. 1961, 10 pages.
Song et al., Vertically Standing Ge Nanowires on GaAs(110) Substrates, Nanotechnology 19, Feb. 21, 2008.
Taiwanese Office Action of Taiwan Patent Application No. 099116881, issued Jul. 18, 2013 (8 pages).
Thelander et al., Nanowire-Based One-Dimensional Electronics, Materials Today, Oct. 2006, vol. 9, No. 10, pp. 28-35.
Trentler, Timothy J. et al. Solution-Liquid-Solid Growth of Cyrstalline III-V Semiconductors: An Analogy to Vapor Liquid-Solid Growth. vol. 270(5243), Dec. 15, 1995, pp. 1791-1794.
Tseng, et al. Crosstalk improvement technology applicable to 0.14m CMOS image sensor; IEEE International Electron Devices Meeting, Dec. 13-15, 2004; IEDM Technical Digest, pp. 997-1000.
U.S. Final Office Action for U.S. Appl. No. 12/966,514, mailed Mar. 19, 2013, 50 pages.
U.S. Final Office Action for U.S. Appl. No. 13/494,661, mailed Mar. 7, 2013, 10 pages.
U.S. Office Action for U.S. Appl. No. 12/573,582, dated Jun. 28, 2012.
U.S. Office Action for U.S. Appl. No. 12/633,313, dated Aug. 1, 2013, 20 pages.
U.S. Office Action for U.S. Appl. No. 12/966,514, dated Aug. 15, 2013, 17 pages.
U.S. Office Action for U.S. Appl. No. 12/966,535, mailed Jun. 14, 2013, 22 pages.
U.S. Office Action for U.S. Appl. No. 12/966,573, dated Aug. 6, 2013, 13 pages.
U.S. Office Action for U.S. Appl. No. 13/048,635, mailed Jun. 6, 2013, 24 pages.
U.S. Office Action for U.S. Appl. No. 13/494,661, notification date Nov. 7, 2012.
Verheijen, Marcel A. et al. Growth Kinetics of Heterostructured GaP-GaAs Nanowires. J. Am, Chem. Soc. 2006, 128, 1353-1359.
Wagner et al., Vapor-Liquid-Solid Mechanism of Single Crystal Growth, Applied Physics Letters, Mar. 1, 1964, vol. 4, No. 5, pp. 89-90.
Wang, Introduction to Nanotechnology—Where Opportunities arise & Great Future Being Built from Small Things, Fall 2008.
Wong et al., Lateral Nanoconcentrator Nanowire Multijunction Photovoltaic Cells, GCEP Progress report, Apr. 20, 2009, pp. 1-18.
Ye et al., Fabrication Techniques of High Aspect Ratio Vertical Lightpipes Using a Dielectric Photo Mask, SPIE, Proceedings, Feb. 2010, vol. 7591.
Zhang et al., Ultrahigh Responsivity Visible and Infrared Detection Using Silicon Nanowire Phototransistors, Nanoletters, May 14, 2010, vol. 10, No. 6, pp. 2117-2120.
Office Action issued on Jan. 28, 2014 in Taiwanese Application No. 100146327.
Office Action issued on Mar. 17, 2014 in Korean Application No. 10-2013-7018243.
U.S. Office Action for U.S. Appl. No. 12/910,664, mailed Feb. 26, 2014.
U.S. Office Action for U.S. Appl. No. 12/966,514, mailed Feb. 25, 2014.
U.S. Office Action for U.S. Appl. No. 14/021,672 mailed May 9, 2014.
U.S. Office Action for U.S. Appl. No. 12/945,492 mailed May 13, 2014.
U.S. Office Action for U.S. Appl. No. 12/966,514 mailed Sep. 23, 2014.
Berstein et al., “Modern Physics”, Chapter 14, Section 6, pp. 420-421, 2000, Prentice-Hall, Inc.
University of California San Diego, Class ECE 183 Lab 1, 2013.
U.S. Office Action for U.S. Appl. No. 13/693,207 mailed Oct. 9, 2014.
Office Action issued on Jun. 24, 2014 in Taiwanese Application No. 098129911.
Office Action for U.S. Appl. No. 12/966,514 mailed Nov. 2, 2015.
Office Action for U.S. Appl. No. 12/633,313 mailed Oct. 21, 2015.
Office Action for U.S. Appl. No. 13/963,847 mailed Sep. 1, 2015.
Office Action for U.S. Appl. No. 12/945,492 mailed Sep. 9, 2015.
Office Action for U.S. Appl. No. 14/459,398 mailed Sep. 16, 2015.
Office Action for U.S. Appl. No. 14/274,448 mailed Aug. 26, 2015.
Office Action for U.S. Appl. No. 13/288,131 mailed Oct. 22, 2015.
Office Action for U.S. Appl. No. 14/450,815 mailed Oct. 28, 2015.
Office Action for U.S. Appl. No. 12/945,429 mailed Sep. 4, 2015.
Office Action issued on Oct. 29, 2014 in Korean Application No. 10-2013-7020107.
Corrected Notice of Allowability issued on Oct. 14, 2014 in U.S. Appl. No. 12/966,535.
U.S. Office Action for U.S. Appl. No. 13/543,307 mailed Dec. 24, 2014.
U.S. Office Action for U.S. Appl. No. 14/274,448 mailed Dec. 5, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2014/056558 mailed Dec. 12, 2014.
Office Action issued on Nov. 11, 2014 in Taiwanese Application No. 098129911.
Notice of Allowance issued on Dec. 1, 2014 in U.S. Appl. No. 12/910,664.
Office Action issued Feb. 23, 2015 in U.S. Appl. No. 13/925,429.
Notice of Allowance issued Jan. 30, 2015 in U.S. Appl. No. 14/487,375.
International Search Report and Written Opinion for International Application No. PCT/US2014/050544 mailed Jan. 9, 2015.
Office Action for U.S. Appl. No. 12/982,269, mailed Jan. 15, 2015.
Office Action for U.S. Appl. No. 12/945,492 mailed Jan. 16, 2015.
Office Action for U.S. Appl. No. 13/963,847 mailed Mar. 12, 2015.
Office Action for U.S. Appl. No. 12/966,514 mailed Mar. 10, 2015.
Office Action issued on Jan. 16, 2015 in Chinese Application No. 201180054442.9.
Office Action issued on Mar. 4, 2015 in U.S. Appl. No. 13/556,041.
Office Action for U.S. Appl. No. 14/281,108 mailed Apr. 6, 2015.
Office Action for U.S. Appl. No. 14/450,812 mailed Apr. 1, 2015.
Office Action for U.S. Appl. No. 12/633,313 mailed Apr. 9, 2015.
Bernstein et al. “Modern Physics”, Chapter 14, Section 6, pp. 420-421, 2000 by Prentice-Hall Inc.
Kosonocky, et al., 160×244 Element PtSi Schottky-Barrier IR-CCD Image Sensor, IEEE Transactions on Electron Devices, vol. Ed-32, No. 8, Aug. 1985.
Office Action issued May 22, 2015 in Taiwanese Application No. 099142971.
Office Action mailed May 26, 2015 in Japanese Application No. 2014 138265.
Office Action for U.S. Appl. No. 14/068,864 mailed Jun. 15, 2015.
Office Action issued on May 5, 2015 in Chinese Application No. 201410264248.9.
Office Action for U.S. Appl. No. 14/450,812 mailed Jul. 23, 2015.
Office Action for U.S. Appl. No. 14/293,164 mailed Aug. 14, 2015.
Office Action issued Jul. 9, 2015 in Taiwanese Application No. 102124069.
A. Gu et al., “Design and growth of III-V nanowire solar cell arrays on low cost substrates,” Conf. Record, 35rd IEEE Photovoltaic Specialists Conference, Honolulu, Jun. 2010, pp. 20-25.
Office Action issued Jun. 23, 2015 in Chinese Application No. 201310284409.6.
Office Action issued Aug. 12, 2015 in Chinese Application No. 201180054442.9.
Office Action mailed Sep. 30, 2015 in Japanese Application No. 2014-094365.
Office Action for U.S. Appl. No. 14/450,812 mailed Oct. 28, 2015.
Office Action dated Oct. 6, 2015 in Taiwanese Application No. 100141376.
Office Action dated Sep. 11, 2015 in Taiwanese Application No. 103143553.
International Search Report and Written Opinion mailed Nov. 27, 2015 in International Application No. PCT/US2015/038999.
Office Action for U.S. Appl. No. 12/633,313 mailed Aug. 1, 2014.
Office Action issued on Jun. 19, 2014 in Taiwanese Application No. 099133891.
U.S. Office Action for U.S. Appl. No. 12/982,269 mailed Jun. 11, 2014.
U.S. Office Action for U.S. Appl. No. 13/106,851 mailed May 29, 2014.
U.S. Office Action for U.S. Appl. No. 13/556,041 mailed Jun. 12, 2014.
Office Action for U.S. Appl. No. 13/693,207 mailed May 7, 2015.
Kim, Y.S. et al., “ITO/AU/ITO multilayer thin films for transparent conducting electrode applications”, Applied Surface Science, vol. 254 (2007), pp. 1524-1527.
Philipp, H.R. et al., “Optical Constants of Silicon in the Region 1 to 10 ev”, Physical Review, vol. 120, No. 1, pp. 37-38.
Office Action for U.S. Appl. No. 13/543,307 mailed Apr. 17, 2015.
Office Action issued Mar. 19, 2015 in Chinese Application No. 201180065814.8.
Office Action for U.S. Appl. No. 13/288,131 mailed Apr. 17, 2015.
Office Action issued on Mar. 18, 2015 in Chinese Application No. 201180066970.6.
Office Action issued Apr. 3, 2015 in Chinese Application No. 201180051048.X.
Office Action issued May 15, 2015 in U.S. Appl. No. 14/274,448.
Office Action for U.S. Appl. No. 12/982,269 mailed May 22, 2015.
Office Action issued Feb. 25, 2016 in Chinese Application No. 201180051048.X.
Office Action issued Feb. 1, 2016 in Taiwanese Application 102124069.
Office Action issued Feb. 6, 2016 in Chinese Application No. 201180054442.9.
Office Action issued Feb. 4, 2016 in U.S. Appl. No. 14/274,448.
Office Action issued Mar. 7, 2016 in U.S. Appl. No. 14/450,812.
Office Action issued Dec. 28, 2015 in Taiwanese Application No. 102149110.
Office Action issued Dec. 25, 2015 in Chinese Application No. 201410264248.9.
Office Action issued Dec. 30, 2015 in Taiwanese Application No. 104123757.
International Search Report and Written Opinion mailed Nov. 27, 2015 in International Application PCT/US2015/038999.
Office Action issued Jan. 15, 2016 in Chinese Application No. 201180066970.6.
International Preliminary Report on Patentability issued Feb. 9, 2016 in International Application PCT/US2014/050544.
International Search Report and Written Opinion mailed Feb. 9, 2016 in International Application PCT/US2015/55710.
Office Action issued Oct. 22, 2015 in Taiwanese Application No. 103139449.
Office Action issued Oct. 16, 2015 in Taiwanese Application No. 103145582.
Office Action issued on Nov. 25, 2015 in Japanese Application No. 2015-005091.
Office Action issued Nov. 17, 2015 in Taiwanese Application 103102171.
Office Action issued Nov. 20, 2015 in Taiwanese Application 104108370.
Office Action issued on Nov. 27, 2015 in Taiwanese Application No. 100138526.
International Search Report and Written Opinion mailed Jan. 8, 2016 in International Application No. PCT/US2015/055728.
Office Action issued Jan. 4, 2016 in U.S. Appl. No. 14/311,954.
Office Action issued Nov. 9, 2015 in U.S. Appl. No. 14/503,598.
Office Action issued Jan. 15, 2016 in U.S. Appl. No. 14/632,739.
Office Action issued Jan. 4, 2016 in U.S. Appl. No. 14/293,164.
Office Action issued Jan. 7, 2016 in U.S. Appl. No. 14/322,503.
Office Action issued Jan. 14, 2016 in U.S. Appl. No. 14/459,398.
Office Action issued Apr. 21, 2016 in U.S. Appl. No. 14/322,503.
Office Action issued Apr. 14, 2016 in U.S. Appl. No. 14/704,143.
Office Action issued Apr. 27, 2016 in U.S. Appl. No. 14/291,888.
Office Action mailed Mar. 29, 2016 in Japanese Application No. 2014-138265.
International Preliminary Report on Patentability issued on Mar. 22, 2016 in International Application PCT/US2014/056558.
Decision issued on Jan. 30, 2016 in Taiwanese Application 099142971.
Office Action issued Apr. 6, 2016 in Taiwanese Application 100149997.
Decision issued Mar. 28, 2016 in Taiwanese Application 103143553.
Office Action issued Apr. 27, 2016 in Chinese Application 201410265340.7.
Office Action issued Apr. 29, 2016 in Chinese Application 201301284409.6.
Office Action issued Jul. 6, 2016 in U.S. Appl. No. 14/334,848.
Notice of Allowance issued Jun. 22, 2016 in U.S. Appl. No. 14/293,164.
Office Action issued Jun. 3, 2016 in U.S. Appl. No. 14/459,398.
Office Action issued Jun. 1, 2016 in U.S. Appl. No. 13/693,207.
Notice of Allowance issued Jul. 25, 2016 in U.S. Appl. No. 12/945,492.
Office Action issued May 16, 2016 in U.S. Appl. No. 12/633,313.
Office Action issued Jun. 29, 2016 in Chinese Application 201280030352.0.
Office Action issued Jun. 16, 2016 in Taiwanese Application 100138526.
Office Action issued Jun. 17, 2016 in Chinese Application 201410264248.9.
Notice of Allowance mailed Aug. 30, 2016 in U.S. Appl. No. 14/291,888.
Office Action issued Aug. 22, 2016 in U.S. Appl. No. 14/450,812.
International Search Report and Written Opinion mailed Aug. 18, 2016 in International Application No. PCT/US2016/032774.
Office Action issued Nov. 3, 2016 in U.S. Appl. No. 14/501,983.
Office Action issued Sep. 28, 2016 in U.S. Appl. No. 14/516,402.
Office Action issued Sep. 27, 2016 in U.S. Appl. No. 14/704,143.
Office Action issued Sep. 22, 2016 in U.S. Appl. No. 14/032,166.
Notice of Allowance mailed Oct. 20, 2016 in U.S. Appl. No. 14/632,739.
Office Action issued Oct. 11, 2016 in U.S. Appl. No. 14/516,162.
Related Publications (1)
Number Date Country
20140263967 A1 Sep 2014 US
Continuations (1)
Number Date Country
Parent 12967880 Dec 2010 US
Child 14291888 US