Full display mirror actuator

Information

  • Patent Grant
  • 9694752
  • Patent Number
    9,694,752
  • Date Filed
    Friday, November 6, 2015
    9 years ago
  • Date Issued
    Tuesday, July 4, 2017
    7 years ago
Abstract
A rearview mirror for a vehicle includes a housing defining an interior cavity and an open side and further includes a substrate having a reflective surface thereon extending within the open side of the housing and an actuation mechanism moveably coupling the substrate with the housing. The actuation mechanism includes a mounting plate rotatably coupled within the cavity at a first end thereof. The mounting plate defines a socket open opposite the first end and first and second scalloped surfaces adjacent the socket. The actuation mechanism further includes an actuation wheel rotatably coupled within the cavity of the housing and engageable with the socket to cause rotation of the mounting plate and engageable with the first scalloped surface to secure the mounting plate in a first position and with the second scalloped surface to secure the mounting plate in a second position.
Description
TECHNOLOGICAL FIELD

The present disclosure relates generally to a full-display rearview mirror for a motor vehicle and more particularly, relates to a mechanism for automatic movement of the display mirror substrate between active and inactive positions.


BACKGROUND

Automotive rearview mirrors including video displays therein may be referred to as full-display mirrors. Such mirrors are currently required to include functionality as an ordinary, reflective rearview mirror that can be implemented as an alternative to the included video display, which can be done, for example, in response to a loss of power to the video display or the like. Incorporation of such functionality has been accomplished by including a reflective surface over the video display that is at least partially transparent such that the display is visible therethrough. To prevent the reflected image from interfering with the video image, when available, the mirror may be tilted upward, toward the vehicle headliner, such that the reflective image is less noticeable to the driver and. Such tilting has been implemented, for example, by use of a bi-modal lever that the driver can use to manually move the mirror between the upwardly-tilted position associated with video display use and a position whereby the reflective surface can be used in connection with the rearview mirror. Such mechanisms require manual input by the user and may give an undesirable appearance of an ordinary prism-mirror. Accordingly, further advances may be desired.


SUMMARY

According to one aspect of the present disclosure, a rearview mirror for a vehicle includes a housing defining an interior cavity and an open side, a substrate extending within the open side of the housing and having a reflective surface thereon, and an actuation mechanism moveably coupling the substrate with the housing. The actuation mechanism includes a mounting plate rotatably coupled within the cavity of the housing at a first end of the mounting plate. The mounting plate defines a socket open opposite the first end and first and second scalloped surfaces adjacent the socket. The actuation mechanism further includes an actuation wheel coupled within the cavity of the housing opposite the first end of the mounting plate and rotatable about an axis. The actuation wheel has a pin engageable with the socket to cause rotation of the mounting plate between a first position and a second position and a cam alternately engageable with the first scalloped surface to secure the mounting plate in the first position and with the second scalloped surface to secure the mounting plate in the second position.


According to another aspect of the present disclosure, a rear-vision system for a vehicle includes a video camera mounted on the vehicle in a position to capture an image of a portion of an exterior thereof and a display mirror assembly. The display mirror assembly includes a substrate having a display in electronic communication with the camera for presenting the image thereon with a one-way reflective layer overlying the display. The mirror assembly further includes a mounting plate defining a socket open opposite the first end and a first scalloped surface adjacent the socket, a mounting structure coupled between the mounting plate and a portion of the vehicle, and a housing supporting the display and defining an internal cavity and being rotatably coupled with a first end of the mounting plate within in the cavity. An actuation wheel is coupled within the cavity of the housing and is rotatable about an axis. The actuation wheel includes a pin and a peripheral surface alternately respectively engageable with the socket and the first scalloped surface through a rotational motion of the actuation wheel.


According to yet another aspect of the present disclosure, a vehicle includes a windshield, a headliner adjacent an upper edge of the windshield, and a mirror assembly. The mirror assembly includes a substrate having a display and a one-way reflective layer overlying the display, a mounting plate defining a socket open opposite the first end and a first scalloped surface adjacent the socket, a mounting structure coupled with the mounting plate and coupling with the vehicle adjacent the upper edge of the windshield, and a housing supporting the display and defining an internal cavity and being rotatably coupled with a first end of the mounting plate within in the cavity. An actuation wheel is coupled within the cavity of the housing and is rotatable about an axis. The actuation wheel includes a pin and a peripheral surface alternately respectively engageable with the socket and the first scalloped surface through a rotational motion of the actuation wheel that moves the housing relative to the mounting plate between a first position and a second position.


These and other features, advantages, and objects of the present device will be further understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a front perspective view of a rearview mirror assembly including an actuation mechanism for tilting a display substrate included therewith;



FIG. 1B is a rear perspective view of the rearview mirror assembly of FIG. 1A;



FIG. 2 is a perspective view of a portion of a vehicle interior including the rearview mirror of FIG. 1A;



FIG. 3 is a front perspective view of the rearview mirror of FIG. 1A with the actuation mechanism in an additional configuration provided thereby;



FIG. 4 is a front perspective view of a portion of the actuation mechanism in a configuration corresponding to an active position of the rearview mirror of FIG. 1A;



FIG. 5 is a schematic view of portions of the actuation mechanism of FIG. 4;



FIGS. 6-10 are front perspective views of a portion of the actuation mechanism at successive stages during a movement away from the configuration of FIG. 4; and



FIG. 11 is a front perspective view of a portion of the actuation mechanism in a configuration corresponding to an inactive position of the rearview mirror of FIG. 1A.





DETAILED DESCRIPTION OF EMBODIMENTS

For purposes of description herein the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the device as oriented in FIG. 1A. However, it is to be understood that the device may assume various alternative orientations and step sequences, except where expressly specified to the contrary. It is also to be understood that the specific devices and processes illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the inventive concepts defined in the appended claims. Hence, specific dimensions and other physical characteristics relating to the embodiments disclosed herein are not to be considered as limiting, unless the claims expressly state otherwise.


Referring now to FIG. 1A, reference numeral 10 generally designates a rearview mirror for a vehicle 12 (of which the interior thereof is shown in FIG. 2). Rearview mirror 10 includes a housing 14 defining an interior cavity 16 and an open side 18 to the cavity 16. A mounting plate 20 having a first end 22 and a second end 24 opposite the first end 22 is rotatably coupled at the first end 22 thereof with housing 14 within cavity 16. Adjacent to second end 24, mounting plate 20 defines a socket 26 open on a portion of mounting plate 20 and extending toward first end 22. Mounting plate 20 further defines a first scalloped surface 28 and a second scalloped surface 30. The first and second scalloped surfaces 28 and 30 are positioned on opposite of an apex 32 formed at an intersection between first and second scalloped surfaces 28 and 30.


Rearview mirror 10 further includes an actuation wheel 34 rotatably coupled within cavity 16 of housing 14 on an axis 36. The actuation wheel 34 includes a pin 38 spaced apart from axis 36. Wheel 34 is positioned such that that rotation thereof moves pin 38 into an out of engagement with socket 26 to cause a rotation of mounting plate about first end 22 between a first position and a second position. Actuation wheel 34 further includes a cam 40 coupled with pin 38. As further shown in FIG. 4, cam 40 defines a peripheral surface 41 that includes a first engagement portion 42 and a second engagement portion 44 and a bypass portion 46 between the first and second engagement portions 42 and 44. Cam 40 is shaped such that first and second engagement portions 42 and 44 are respectively moveable into engagement with the first scalloped surface 28 when the mounting plate is in the first position (see FIG. 4) and the second scalloped surface 30 when the mounting plate is in the second position (see FIG. 11). Cam 40 is further shaped such that bypass portion 46 generally aligns with apex 32 and is spaced apart therefrom at a point during the rotation of mounting plate 20 (see FIG. 9). Rearview mirror 10 further includes a substrate 52 having a reflective surface 54 thereon, substrate 52 being coupled with mounting plate 20 and extending within the open side 18 of housing 14.


As shown in FIG. 2, rearview mirror 10 can be used in connection with a vehicle interior 56, as shown in FIG. 2, including as a portion of a rearview vision system. In one embodiment substrate 52 can include a video display screen along a portion or an entirety thereof such that rearview mirror is what may be referred to as a full-display mirror. A substrate 52 including such a display is referred to herein as “display substrate” 52 and may be capable of displaying an image replicating that which would be available from a typical reflective mirror by receiving an image from an appropriately-positioned video camera 53 or the like when the display is in an “active” state shown, for example, in FIG. 3. Such an image can be supplemented with other information presented on display substrate 52. In combination with such a display substrate 52, mirror surface 54 may be applied thereover as a coating or separate element having properties of a one-way mirror to both provide a reflected image as well as to permit a video image of display substrate 52 to be visible therethrough. As further illustrated in FIG. 2, rearview mirror 10 can be electronically connected with camera 53 by electronic circuitry 63 within vehicle 12. Further, control circuitry 65 can be provided to both cause display substrate 52 to display the image from camera 53 and to implement corresponding movement of substrate 52 by way of control of the actuation mechanism described in further detail herein. Control circuitry 65 can further be connected with an on-board computer 67 to, for example, receive information regarding a state of the vehicle 12, for use by control circuitry 65, as discussed further below.


In connection with such an arrangement, the above-described internal components of rearview mirror 10, including mounting plate 20 and actuation wheel 34 can move substrate 52 within and with respect to housing 14 by rotation of mounting plate 20 about first end 22 thereof. Such movement can be useful to position substrate 52 according to whether or not display substrate 52 is in an off state or an on state. When display substrate 52 is in an inactive state, as depicted in FIG. 1A, reflective surface 54 may be intended to be used and/or positioned to allow rearview mirror 10 to act as a typical rearview mirror, meaning that substrate 52 is intended to be positioned such that an image to the rear of vehicle 12 is reflected toward the driver of vehicle 12.


When in the above-described active state, however, the presence of the reflective surface 54 over display substrate 52 can cause the image reflected by reflective surface 54 to compete with an image presented on display substrate 52. To alleviate such image competition, substrate 52 can be moved such that reflective surface 54 reflects an image of the headliner 60 toward the driver. Because vehicle headliners are of generally consistent, non-reflective material, such an image may compete less with the video image of display substrate 52. Accordingly, rearview mirror 10, by way of the actuation mechanism, including mounting plate 20 and actuation wheel 34, can provide for automatic repositioning of display substrate 52 between an appropriate position thereof for use of reflective surface 54 when display substrate 52 is in the inactive state and for viewing of a displayed image, without undesirable competition, when display substrate 52 is in an active state.


As shown in FIG. 1, when display substrate 52 is inactive, rearview mirror can be configured such that display substrate 52 is in a first position, as indicated by line 55. When display substrate 52 is oriented as such, the exact orientation of the first position can be adjusted by a user for use of reflective surface 54 when display substrate 52 is inactive by movement of housing 14 (to which substrate 52 is fixed) about a mounting structure 58, in a manner similar to that which is used for conventional rearview mirrors. Mounting structure 58 may be coupled with mounting plate 20 with mounting plate 20 being moveable within and with respect to housing 14. In this manner, mounting plate 20 may remain stationary with respect to mounting structure 58 (outside of such adjustment) during repositioning of display substrate 22 by the actuation mechanism, which serves to move housing, and thus substrate 52, with respect to mounting plate 20 and, thus, with respect to mounting structure 58, as described further below.


Upon activation of the display substrate 52, rearview mirror 10, as described further below, can cause display substrate 52, along with housing 14, to tilt upward with respect to mounting plate 20, thereby orienting reflective surface 54 toward headliner 60, as shown in FIG. 3. Such orientation can be achieved by tilting of housing 14 with respect to mounting plate 20 about first end 22 of mounting plate 20 through an angle of between about 5° and about 10° and, in one embodiment, about 6°, although such an angle can vary based on the location and structure of rearview mirror 10. Such rotation results in substrate 52 rotating into the second position, indicated by line 57, illustrated in FIG. 3, which is positioned at an angle 78 with respect to the first position line 55 corresponding to the rotation of housing 14 with respect to mounting plate 20 (e.g. about 6°). Upon deactivation of display substrate 52, rearview mirror 10 can return display substrate 52 to the orientation shown in FIG. 1.


The movement of display substrate 52 by rearview mirror 10 can be achieved by rotation of actuation wheel 34 to move mounting plate 20 by operative engagement of pin 38 with socket 26. Rotation of actuation wheel 34 can be implemented automatically upon a change in the state (from active to inactive or vice versa) of display substrate 52. In an example, actuation wheel 34 can be automatically rotated to cause movement of display substrate 52 from the active state (shown in FIG. 3) to the inactive state (shown in FIG. 1) upon a detected malfunction of display substrate 52 or powering down of vehicle 12. By the use of actuation wheel 34 to move housing 14 with respect to mounting plate 20 to achieve such positioning of substrate 52, housing 14 can be left in the selected position for off-state usage of rearview mirror 10, meaning that upon deactivation of display substrate 52, resulting in a return of substrate 52 to the position shown in FIG. 1, rearview mirror 10 may be in a generally acceptable position for inactive state usage thereof.


As described above, movement of substrate 52 can be achieved by the above-described configuration and mutual positioning of actuation wheel 34 and mounting plate 20. For clarity with respect to FIGS. 4-11, rotational movement of actuation wheel 34 about axis 36 is described as moving second end 24 of mounting plate 20 in a generally outward or inward direction with respect to housing 14, thereby rotating mounting plate 20 with respect to housing. As discussed above, when positioned within vehicle 12, mounting plate is stationary, meaning that such relative movement of mounting plate 20 with respect to housing 14, such as in the progression shown in FIGS. 4-11, is understood as implementing movement of housing 14, which relates to movement of substrate 52 between the first position 55 (FIG. 1A) and the second position 57 (FIG. 3).


Returning now to FIG. 1A, housing 14 is shown in the form of a single-piece structure, which can be made to generally replicate the appearance of a standard rearview mirror, and can further be made from a single piece of injection molded plastic or the like, although other materials are possible. Housing 14 is structured so that interior cavity 16 is of a sufficient depth to retain internal structures thereof, including actuation wheel 34 and other related structures, as well as control circuitry for display substrate 52. Housing 14 is also structured such that open side 18 is sufficiently large to accept substrate 52 therein in a manner that again can generally replicate the appearance of a typical rearview mirror.


Mounting plate 20, as described above, is rotatably coupled with housing 14 at first end 22 thereof. Such coupling can be achieved by the incorporation of a hinge into respective portions of housing 14 and first end 22 of mounting plate 20 or by the coupling of a separate hinge (not shown) between mounting plate 20 and housing 14. As further shown in FIG. 1A, mounting plate 20 can generally extend through a majority of a vertical height of housing 14 and can further be of a width sufficient to stably couple with mounting structure 58, including by connection with a ball joint portion 59 that extends from mounting plate 20 through hole 61 in a corresponding portion of housing 14. Mounting plate 20 can, in turn, be moveably coupled with housing 14 about a hinge or the like on first end 22 thereof with substrate 52 supported on housing 14.


Turning now to FIGS. 4 and 5, mounting plate 20 is shown as having an extension arm 64, of which two are shown in the Figures, extending from second end 24 thereof. As shown in FIG. 4, extension arms 64 are positioned on opposite lateral sides of mounting plate 20 such that actuation wheels 34, of which two are also shown in the Figures, are positioned therebetween. The use of two extension arms 64 in connection with two corresponding actuation wheels 34 may help lead to a generally more stable arrangement during movement of substrate 52 between positions, as well as when retained in the inactive position shown in FIG. 1A and the active position shown in FIG. 3, however a single extension arm 64 and a single actuation wheel 34 may be used. Each of the illustrated extension arms 64 includes a respective socket 26, as described previously, as shown in FIG. 4, sockets 26 include openings 66 on respective ends of corresponding extension arms 64 and are at least somewhat elongated in the direction toward first end 22 of mounting plate 20. Sockets 26 may further be flared slightly in the area of opening 66 to provide for increased reliability with respect to the engagement of pin 38.


As further shown in FIG. 4 extension arms 64 also include the aforementioned first scalloped surface 28 and second scalloped surface 30 each of which are positioned vertically above respective sockets 26. As shown, first scalloped surface 28 and second scalloped surface 30 are generally mirror images of one another, each defining a scalloped radius 68 such that first scalloped surface 28 and second scalloped surface 30 each extend along a generally articulate path away from apex 32 which is positioned therebetween. As mentioned previously, apex 32 generally aligns with socket 26. As further shown in FIG. 4 first and second scalloped surfaces 28 and 30 extend generally inward along the respective extension arms 64 so as to define arcuate surfaces.


As further shown in FIG. 4 actuation wheels 34 can serve to both move mounting plate 20 between the active state of FIG. 1A and the inactive state of FIG. 3, as well as to securely maintain mounting plate 20 in such positions. Such movement and retention of mounting plate 20 is shown in FIGS. 4-11, in which FIG. 4 shows mounting plate 20 in a locking phase with actuation wheels 34 positioned so as to maintain mounting plate, and accordingly substrate 52 in the inactive position (FIG. 3). As depicted in FIGS. 4 and 5, when in such a locking state, actuation wheels 34 are oriented with respect to extension arms 64 such that the respective pins 38 are disengaged from corresponding sockets 26. In such position pins 38 are out of alignment with sockets 26 in both the vertical direction 70, as well as the longitudinal horizontal direction 72. As further shown, when in such a locking position, wheel 34 is positioned such that first engagement portion 42 of cam 40 is engaged with first scalloped surface 28. As shown, first engagement portion 42 may be shaped so as to generally match the shape of scalloped surface 28, including being configured with the same radius 68 as scalloped surface 28. In this manner, first scalloped surface 28 may generally encapsulate at least a portion of first engagement portion 42 such that mounting plate 20 is generally retained in its position with respect to actuation wheel 34, thereby restricting movement thereof. By structuring cam 40 such that first engagement portion 42 is generally positioned, at least along the portion thereof at engagement distance 48 which is greater than height 49 of apex 32 above the axis 36 of wheel 34 (or a minimum distance between apex 32 and axis 36 throughout the range of motion of plate 20), encapsulation of first engagement portion 42 by scalloped surface 28 can be achieved.


Further, cam 40 can be of a generally compressible polymeric material such as various elastomeric materials or the like and can further be oversized relative to the positioning shown in FIGS. 2 and 5, such that when actuation wheel 34 is positioned according to FIGS. 4 and 5, it is compressed at least slightly against first scalloped surface 28, resulting in pressure between cam 40 and first scalloped surface 28. Such a configuration can further stabilize mounting plate 20 when in such a locked state. As such, cam 40 can be configured such that the first and second engagement portions 42 and 44 include the portions of cam 40 that extend from axis 38 at a maximum distance. The frictional force generated between cam 40, against first scalloped surface 28 or second scalloped surface 30 can be sufficient to maintain the engagement between first engagement portion 42 and first scalloped surface 28 (or second engagement portion 44 and second scalloped surface 30 as described further below), including under vibration of rearview mirror 10.


A shown in FIG. 6, as wheel 34 is rotated through an angle 78 of approximately 45 degrees, pin 38 moves into longitudinal horizontal alignment with socket 26, and begins to engage therewith in vertical direction 70. Due to the compression of cam 40 when in the locked state of FIGS. 4 and 5, rotation of wheel 34 through angle 78 of approximately 45 degrees is such that first engagement portion 42 remains generally in contact with first scalloped surface 28. Accordingly, while wheel 34 has begun rotation, mounting plate 20 is still generally maintained in the inactive position. As shown in FIG. 7, continued rotation of wheel 34 will initiate a movement phase when that angle 78 is approximately 100 degrees, which causes disengagement of first engagement portion 42 from first scalloped surface 28 such that cam 40 no longer acts to retain mounting plate 20 in any particular position. However, in such a position of wheel 34, pin 38 is generally fully engaged with socket 26 such that the position of mounting plate 20 is generally dictated by the rotational position of wheel 34 (i.e. second end 24 of mounting plate 20 is generally locked into position with respect to wheel 34).


Continuing to FIG. 8, wheel 34 is shown as having moved through an angle of rotation 78 of approximately 135 degrees. As illustrated, such rotation of wheel 34 is such that mounting plate 20 is at a general midpoint of its rotation between the inactive position shown in FIG. 1A and the active position shown in FIG. 3. Such positioning of mounting plate can correspond to a rotation of approximately 3 degrees from its position in the active position. As further illustrated, socket 26 can be configured with a height 76 that permits movement of pin 38 that includes rotation about axis 36, including along a vertical component of such rotation. Accordingly, such movement of pin 38 can cause rotation of mounting plate 20 by the horizontal component of its rotational movement. Further, the positioning of wheel 34 is such that bypass portion 46 is generally aligned with apex 32 with bypass portion 46 is positioned away from apex 32, thereby allowing the aforementioned rotational movement of mounting plate 20, without interference from cam 40. Such positioning can be achieved by configuration of cam 40 such that bypass portion 46, which may be defined by a portion of cam 40 that has a radius 50 that is greater than radius 68 of both first engagement portion 42 and first scalloped surface 28, extends to a distance from axis 36 that is less than height 49 of apex 32 above axis 36.


Continued rotation of wheel 34, as shown in FIG. 9, through an angle 78 approaching 180 degrees, causes continued rotation of mounting plate 20 toward the active position. As wheel 34 rotates to a rotational angle 78 of approximately 235 degrees, second engagement portion 44 begins to move into contact with second scalloped surface 30, second engagement portion 44 and second scalloped surface 30 being configured to having a similar relationship to that of first engagement portion 42 and first scalloped surface 28. Simultaneously, pin 38 beings to move out of engagement with socket 26 such that continued rotation of wheel 34 toward an angle 78 of rotation of approximately 270 degrees, as shown in FIG. 11, does not cause pin 38 to interfere with the positioning of mounting plate 20 in the active position, shown in FIG. 11. Such interference would otherwise occur due to the horizontal component of the rotational movement of pin 38 about axis 36 at angle 78 of about 270 degrees. Further, such additional rotation of wheel 30, as shown in FIG. 11, causes a compression of cam 40 by continued engagement by second engagement portion 44 with second scalloped surface 30 to help securely maintain mounting plate 20 in the active position, including during disengagement of pin 38 from socket 26.


Returning now to FIG. 1A rearview mirror 10 can include a motor 82 coupled within housing 14 and positioned laterally between extension arms 64. One or more actuation wheels 34 can be coupled with an output shaft of motor 82 such that motor 82 can drive the rotational movement of wheels 34 described above. In an embodiment motor 82 can be a 12 volt DC motor that can be configured to directly drive the rotation of wheels 34 or can include a reduction mechanism, as needed. Motor 82 can be controlled to rotate actuation wheels 34 through the above-described motion in a period of about 2 seconds or less, and can be configured to cause rotation with a torque sufficient to cause the aforementioned compression of cams 40 when in the locked state corresponding to both the active position of FIG. 11, and the inactive position of FIG. 4. Accordingly, substrate 52 can be retained in a selected one of the active position or the inactive position without requiring power to motor 82.


In an embodiment, control circuitry 62 for motor 82 can be configured to move substrate 52 to the inactive position, if necessary, upon a loss of power thereto, which can include an unexpected loss of power or upon the associated vehicle 12 being turned off. The use of the above described 12 volt DC motor in connection with rearview mirror 10, as described above, can allow for a greater tolerance in control of motor 82, due to the disengagement of pin 38 from socket 26 in the above described positions. Further, such a configuration can result in rearview mirror 10 being able to operate, as described above, in temperature conditions ranging from −40° C. to about 90° C.


It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present device. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.


It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present device, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.


The above description is considered that of the illustrated embodiments only. Modifications of the device will occur to those skilled in the art and to those who make or use the device. Therefore, it is understood that the embodiments shown in the drawings and described above is merely for illustrative purposes and not intended to limit the scope of the device, which is defined by the following claims as interpreted according to the principles of patent law, including the Doctrine of Equivalents.

Claims
  • 1. A rearview mirror for a vehicle, comprising: a housing defining an interior cavity and an open side;a substrate extending within the open side of the housing and having a reflective surface thereon; andan actuation mechanism moveably coupling the substrate with the housing and including: a mounting plate rotatably coupled within the cavity of the housing at a first end of the mounting plate, the mounting plate defining a socket open opposite the first end and first and second scalloped surfaces adjacent the socket; andan actuation wheel including a pin, coupled within the cavity of the housing opposite the first end of the mounting plate and rotatable about an axis, the pin moving with rotation of the actuation wheel into engagement with the socket and forcing rotation of the mounting plate between a first position and a second position, the actuation wheel further including a cam alternately engageable with the first scalloped surface in a first orientation opposing movement of the mounting plate out of the first position and with the second scalloped surface in a second orientation opposing movement of the mounting plate out of the second position.
  • 2. The rearview mirror of claim 1, wherein rotation of the actuation wheel includes rotation through a movement phase including engagement of the pin with the socket causing rotation thereof through a predetermined angle.
  • 3. The rearview mirror of claim 1, wherein rotation of the actuation wheel includes rotation through a locking phase including disengagement of the pin from the socket and engagement of the cam with a respective one of the first and second scalloped surfaces.
  • 4. The rearview mirror of claim 1, wherein the substrate includes a display screen, and wherein the reflective surface overlies the display screen.
  • 5. The rearview mirror of claim 1, wherein: the first and second scalloped surfaces define an apex adjacent an intersection therebetween, the apex defining a minimum distance with respect to the axis during rotation of the mounting plate between the first position and the second position;the cam defines a bypass portion having a radius less than the minimum distance.
  • 6. The rearview mirror of claim 1, wherein: the first scalloped surface is positioned at a first distance from the axis when the mounting plate is in the first position; andthe cam defines a first engagement portion, at least a portion of which defines a second distance from the axis that is greater than the first distance, positioned on the cam such that engagement of the cam with the first scalloped surface includes compression of the cam.
  • 7. The rearview mirror of claim 1, wherein the cam defines first engagement portion and a second engagement portion, each including a portion of the cam at a maximum distance from the axis, such portions being positioned between about 220 degrees and about 260 degrees apart about the axis.
  • 8. The rearview mirror of claim 1, further including a motor coupled within the cavity of the housing, the actuation wheel being coupled with and rotatable about the axis by the motor.
  • 9. The rearview mirror of claim 1, wherein the housing defines a hole adjacent the mounting plate, the mirror further including: a mounting structure coupled with the mounting plate and extending through the hole in the housing, the housing being moveable through an angle of about 6 degrees with respect to the mounting structure by movement of the mounting plate between the first position and the second position.
  • 10. A rear-vision system for a vehicle, comprising: a video camera mounted on the vehicle in a position to capture an image of a portion of an exterior thereof; anda display mirror assembly, comprising: a substrate including a display in electronic communication with the camera for presenting the image thereon, a one-way reflective layer overlying the display;a mounting plate defining a first and, a socket open opposite the first end, and a first scalloped surface adjacent the socket;a mounting structure coupled between the mounting plate and a portion of the vehicle;a housing supporting the display and defining an internal cavity and being rotatably coupled with a first end of the mounting plate within in the cavity; andan actuation wheel coupled within the cavity of the housing and rotatable about an axis, the actuation wheel including a pin and a peripheral surface alternately respectively engageable with the socket and the first scalloped surface through a rotational motion of the actuation wheel.
  • 11. The system of claim 10, further comprising: a motor mounted within the cavity of the housing, the actuation wheel being coupled with the motor to drive the rotational motion thereof; andcontrol circuitry coupled with the motor for controlling the motor in driving the rotational motion of the actuation wheel.
  • 12. The system of claim 11, wherein: the rotational motion of the actuation wheel moves the housing relative to the mounting plate between a first position and a second position; andthe control circuitry is further in electronic communication with the display and automatically causes the rotational motion of the actuation wheel to move the housing between the first and second position upon one of an activation or deactivation of the display.
  • 13. The system of claim 12, wherein when in the second position, the substrate is angled toward a headliner of the vehicle by between 5 degrees and 10 degrees relative to the first position.
  • 14. The system of claim 10, wherein: the mounting plate further defines a second scalloped surface adjacent the first scalloped surface;the peripheral surface of the actuation wheel defines a first engagement portion and a second engagement portion alternately engageable with the first scalloped surface to secure the mounting plate in the first position and with the second scalloped surface to secure the mounting plate in the second position through the rotational motion of the actuation wheel.
  • 15. The system of claim 10, wherein: the housing defines a hole adjacent the mounting plate; andthe mounting structure extends through the hole in the housing.
  • 16. A vehicle, comprising: a windshield;a headliner adjacent an upper edge of the windshield; anda mirror assembly, comprising: a substrate including a display and a one-way reflective layer overlying the display;a mounting plate having a first end and defining a socket open opposite the first end and a first scalloped surface adjacent the socket;a mounting structure coupled with the mounting plate and coupling with the vehicle adjacent the upper edge of the windshield;a housing supporting the display and defining an internal cavity and being rotatably coupled with a first end of the mounting plate within in the cavity; andan actuation wheel coupled within the cavity of the housing and rotatable about an axis, the actuation wheel including a pin and a peripheral surface alternately respectively engageable with the socket and the first scalloped surface through a rotational motion of the actuation wheel that moves the housing relative to the mounting plate between a first position and a second position.
  • 17. The vehicle of claim 16, wherein when in the second position, the substrate is angled toward the headliner by between 5 degrees and 10 degrees relative to the first position.
  • 18. The vehicle of claim 16, further comprising a video camera mounted on the vehicle in a position to capture an image of a portion of an exterior thereof, wherein: the display is in electronic communication with the camera for presenting the image thereon.
  • 19. The vehicle of claim 18, further comprising: a motor mounted within the cavity of the housing, the actuation wheel being coupled with the motor to drive the rotational motion thereof; andcontrol circuitry coupled with the motor for controlling the motor in driving the rotational motion of the actuation wheel, the control circuitry further being in electronic communication with the display and automatically causing the rotational motion of the actuation wheel to move the housing between the first and second position upon one of an activation or deactivation of the display.
  • 20. The vehicle of claim 16, wherein: the mounting plate further defines a second scalloped surface adjacent the first scalloped surface;the peripheral surface of the actuation wheel defines a first engagement portion and a second engagement portion alternately engageable with the first scalloped surface in a position opposing movement of the mounting plate out of the first position and with the second scalloped surface in a position opposing movement of the mounting plate out of the second position through the rotational motion of the actuation wheel.
CROSS REFERENCE TO RELATED APPLICATION

This application claims benefit to provisional application No. 62/076,542 filed on Nov. 7, 2014, entitled “FULL DISPLAY MIRROR ACTUATOR,” the disclosure of which is hereby incorporated herein by reference in its entirety.

US Referenced Citations (700)
Number Name Date Kind
2131888 Harris Oct 1938 A
2632040 Rabinow Mar 1953 A
2827594 Rabinow Mar 1958 A
3179845 Kulwiec Apr 1965 A
3280701 Donnelly et al. Oct 1966 A
3467465 Van Noord Sep 1969 A
3581276 Newman May 1971 A
3663819 Hicks et al. May 1972 A
3837129 Losell Sep 1974 A
4109235 Bouthors Aug 1978 A
4139801 Linares Feb 1979 A
4151526 Hinachi et al. Apr 1979 A
4214266 Myers Jul 1980 A
4236099 Rosenblum Nov 1980 A
4257703 Goodrich Mar 1981 A
4258979 Mahin Mar 1981 A
4277804 Robison Jul 1981 A
4286308 Wolff Aug 1981 A
4310851 Pierrat Jan 1982 A
4357558 Massoni et al. Nov 1982 A
4376909 Tagami et al. Mar 1983 A
4479173 Rumpakis Oct 1984 A
4499451 Suzuki et al. Feb 1985 A
D283998 Tanaka May 1986 S
4599544 Martin Jul 1986 A
4630904 Pastore Dec 1986 A
4638287 Umebayashi et al. Jan 1987 A
4640583 Hoshikawa et al. Feb 1987 A
4645975 Meitzler et al. Feb 1987 A
4646158 Ohno et al. Feb 1987 A
4665321 Chang et al. May 1987 A
4665430 Hiroyasu May 1987 A
4692798 Seko et al. Sep 1987 A
4702566 Tukude Oct 1987 A
4716298 Etoh Dec 1987 A
4727290 Smith et al. Feb 1988 A
4740838 Mase et al. Apr 1988 A
4768135 Kretschmer et al. Aug 1988 A
4862037 Farber et al. Aug 1989 A
4891559 Matsumoto et al. Jan 1990 A
4893908 Wolf et al. Jan 1990 A
4902108 Byker Feb 1990 A
4910591 Petrossian et al. Mar 1990 A
4917477 Bechtel et al. Apr 1990 A
4930742 Schofield et al. Jun 1990 A
4934273 Endriz Jun 1990 A
4967319 Seko Oct 1990 A
5004961 Berner et al. Apr 1991 A
5005213 Hanson et al. Apr 1991 A
5008946 Ando Apr 1991 A
5027200 Petrossian et al. Jun 1991 A
5036437 Macks Jul 1991 A
5052163 Czekala Oct 1991 A
5066111 Singleton et al. Nov 1991 A
5066112 Lynam et al. Nov 1991 A
5069535 Baucke et al. Dec 1991 A
5072154 Chen Dec 1991 A
5073012 Lynam Dec 1991 A
5076673 Lynam et al. Dec 1991 A
5086253 Lawler Feb 1992 A
5092939 Nath et al. Mar 1992 A
5096287 Kakinami et al. Mar 1992 A
5115346 Lynam May 1992 A
5121200 Choi et al. Jun 1992 A
5124549 Michaels et al. Jun 1992 A
5124832 Greenberg et al. Jun 1992 A
5128799 Byker Jul 1992 A
5136419 Shabrang Aug 1992 A
5151824 O'Farrell Sep 1992 A
5158638 Osanami et al. Oct 1992 A
5161048 Rukavina Nov 1992 A
5166681 Bottesch et al. Nov 1992 A
5182502 Slotkowski et al. Jan 1993 A
5187383 Taccetta et al. Feb 1993 A
5197562 Kakinami et al. Mar 1993 A
5202787 Byker et al. Apr 1993 A
5228925 Nath et al. Jul 1993 A
5230400 Kakainami et al. Jul 1993 A
5235178 Hegyi Aug 1993 A
5243417 Pollard Sep 1993 A
5253109 O'Farrell et al. Oct 1993 A
5278693 Theiste Jan 1994 A
5280380 Byker Jan 1994 A
5282077 Byker Jan 1994 A
5289321 Secor Feb 1994 A
5294376 Byker Mar 1994 A
5296924 Blancard et al. Mar 1994 A
D346356 Leu Apr 1994 S
5304980 Maekawa Apr 1994 A
5329206 Slotkowski et al. Jul 1994 A
5336448 Byker Aug 1994 A
5347261 Adell Sep 1994 A
5347459 Greenspan et al. Sep 1994 A
5355146 Chiu et al. Oct 1994 A
5379104 Takao Jan 1995 A
5379146 Defendini Jan 1995 A
5381309 Borchardt Jan 1995 A
5384578 Lynam et al. Jan 1995 A
5384653 Benson et al. Jan 1995 A
5386285 Asayama Jan 1995 A
5396054 Krichever et al. Mar 1995 A
5402170 Parulski et al. Mar 1995 A
5408357 Beukema Apr 1995 A
5414461 Kishi et al. May 1995 A
5416318 Hegyi May 1995 A
5418610 Fischer May 1995 A
5421940 Cornils et al. Jun 1995 A
5424952 Asayama Jun 1995 A
5426294 Kobayashi et al. Jun 1995 A
5428464 Silverbrook Jun 1995 A
5430450 Holmes Jul 1995 A
5434407 Bauer et al. Jul 1995 A
5448397 Tonar Sep 1995 A
5451822 Bechtel et al. Sep 1995 A
5452004 Roberts Sep 1995 A
5469298 Suman et al. Nov 1995 A
5471515 Fossum et al. Nov 1995 A
5475441 Parulski et al. Dec 1995 A
5475494 Nishida et al. Dec 1995 A
5481268 Higgins Jan 1996 A
5483346 Butzer Jan 1996 A
5483453 Uemura et al. Jan 1996 A
5485155 Hibino Jan 1996 A
5485378 Franke et al. Jan 1996 A
5488496 Pine Jan 1996 A
5508592 Lapatovich et al. Apr 1996 A
5515448 Nishitani May 1996 A
5523811 Wada et al. Jun 1996 A
5530421 Marshall et al. Jun 1996 A
5535144 Kise Jul 1996 A
5537003 Bechtel et al. Jul 1996 A
5541590 Nishio Jul 1996 A
5541724 Hoashi Jul 1996 A
5550677 Schofield et al. Aug 1996 A
5554912 Thayer et al. Sep 1996 A
5574443 Hsieh Nov 1996 A
5574463 Shirai et al. Nov 1996 A
5576975 Sasaki et al. Nov 1996 A
5587929 League et al. Dec 1996 A
5592146 Kover, Jr. et al. Jan 1997 A
5602542 Windmann et al. Feb 1997 A
5612847 Malecke et al. Mar 1997 A
5614788 Mullins et al. Mar 1997 A
5615023 Yang Mar 1997 A
5617085 Tsutsumi et al. Apr 1997 A
5621460 Hatlestad et al. Apr 1997 A
5634709 Iwama Jun 1997 A
5642238 Sala Jun 1997 A
5646614 Abersfelder et al. Jul 1997 A
5649756 Adams et al. Jul 1997 A
5650765 Park Jul 1997 A
5654736 Green et al. Aug 1997 A
5657149 Buffat et al. Aug 1997 A
5660454 Mori et al. Aug 1997 A
5666028 Bechtel et al. Sep 1997 A
5670935 Schofield et al. Sep 1997 A
5679283 Tonar Oct 1997 A
5680123 Lee Oct 1997 A
5682267 Tonar Oct 1997 A
5684473 Hibino et al. Nov 1997 A
5689370 Tonar Nov 1997 A
5707129 Kobayashi Jan 1998 A
5708410 Blank et al. Jan 1998 A
5708857 Ishibashi Jan 1998 A
5710565 Shirai et al. Jan 1998 A
5714751 Chen Feb 1998 A
5715093 Schierbeek et al. Feb 1998 A
5724176 Nishikitani et al. Mar 1998 A
5724187 Varaprasad et al. Mar 1998 A
5725809 Varaprasad et al. Mar 1998 A
5729194 Spears et al. Mar 1998 A
5736816 Strenke et al. Apr 1998 A
5742026 Dickinson, Jr. Apr 1998 A
5745050 Nakagawa Apr 1998 A
5751211 Shirai et al. May 1998 A
5751832 Panter et al. May 1998 A
5754099 Nishimura et al. May 1998 A
5760828 Cortes Jun 1998 A
5764139 Nojima et al. Jun 1998 A
5767793 Agravante et al. Jun 1998 A
5781105 Bitar et al. Jul 1998 A
5786787 Eriksson et al. Jul 1998 A
5790298 Tonar Aug 1998 A
5793308 Rosinski et al. Aug 1998 A
5793420 Schmidt Aug 1998 A
5796094 Schofield et al. Aug 1998 A
5798727 Shirai et al. Aug 1998 A
5803579 Turnbull Sep 1998 A
5805330 Byker et al. Sep 1998 A
5808778 Bauer et al. Sep 1998 A
5811888 Hsieh Sep 1998 A
5812321 Schierbeek et al. Sep 1998 A
5818625 Forgette et al. Oct 1998 A
5825527 Forgette et al. Oct 1998 A
D400481 Stephens et al. Nov 1998 S
D401200 Huang Nov 1998 S
5837994 Stam et al. Nov 1998 A
5838483 Teowee et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5844505 Van Ryzin Dec 1998 A
5845000 Breed et al. Dec 1998 A
5850176 Kinoshita et al. Dec 1998 A
5867214 Anderson et al. Feb 1999 A
5877897 Schofield et al. Mar 1999 A
5883739 Ashihara et al. Mar 1999 A
5888431 Tonar et al. Mar 1999 A
5889608 Buffat et al. Mar 1999 A
5896119 Evanicky et al. Apr 1999 A
5904729 Ruzicka May 1999 A
5905457 Rashid May 1999 A
D410607 Carter Jun 1999 S
5912534 Benedict Jun 1999 A
5923027 Stam et al. Jul 1999 A
5923457 Byker et al. Jul 1999 A
5928572 Tonar et al. Jul 1999 A
5935613 Benham et al. Aug 1999 A
5940011 Agravante et al. Aug 1999 A
5940201 Ash et al. Aug 1999 A
5942853 Piscart Aug 1999 A
5949331 Schofield et al. Sep 1999 A
5956012 Turnbull et al. Sep 1999 A
5956079 Ridgley Sep 1999 A
5956181 Lin Sep 1999 A
5959555 Furuta Sep 1999 A
5990469 Bechtel et al. Nov 1999 A
5995273 Chandrasekhar Nov 1999 A
5998617 Srinivasa Dec 1999 A
6002511 Varaprasad Dec 1999 A
6008486 Stam et al. Dec 1999 A
6009359 El-Hakim et al. Dec 1999 A
6018308 Shirai Jan 2000 A
6020987 Baumann Feb 2000 A
6020989 Watanabe Feb 2000 A
6023040 Zahavi Feb 2000 A
6023229 Bugno et al. Feb 2000 A
6025872 Ozaki et al. Feb 2000 A
6037471 Srinivasa Mar 2000 A
6043452 Bestenlehrer Mar 2000 A
6045724 Varaprasad et al. Apr 2000 A
6046766 Sakata Apr 2000 A
6049171 Stam et al. Apr 2000 A
6051956 Nakashimo Apr 2000 A
6055089 Schulz et al. Apr 2000 A
6056410 Hoekstra et al. May 2000 A
6060989 Gehlot May 2000 A
6061002 Weber et al. May 2000 A
6062920 Jordan May 2000 A
6064508 Forgette et al. May 2000 A
6064509 Tonar et al. May 2000 A
6067111 Hahn et al. May 2000 A
6068380 Lynn et al. May 2000 A
6072391 Suzuki et al. Jun 2000 A
6078355 Zengel Jun 2000 A
6084700 Knapp Jul 2000 A
6084702 Byker et al. Jul 2000 A
6097023 Schofield et al. Aug 2000 A
6102546 Carter Aug 2000 A
6106121 Buckley et al. Aug 2000 A
6111498 Jobes et al. Aug 2000 A
6111683 Cammenga Aug 2000 A
6111684 Forgette Aug 2000 A
6115651 Cruz Sep 2000 A
6122597 Saneyoshi et al. Sep 2000 A
6128576 Nishimoto et al. Oct 2000 A
6130421 Bechtel et al. Oct 2000 A
6130448 Bauer et al. Oct 2000 A
6132072 Turnbull Oct 2000 A
6140933 Bugno et al. Oct 2000 A
6144158 Beam Nov 2000 A
6151065 Steed et al. Nov 2000 A
6151539 Bergholz et al. Nov 2000 A
6154149 Tychkowski et al. Nov 2000 A
6157294 Urai et al. Dec 2000 A
6166496 Lys et al. Dec 2000 A
6166628 Andreas Dec 2000 A
6166698 Turnbull et al. Dec 2000 A
6166848 Cammenga et al. Dec 2000 A
6167755 Damson et al. Jan 2001 B1
6170956 Rumsey et al. Jan 2001 B1
6172600 Kakinami et al. Jan 2001 B1
6172601 Wada et al. Jan 2001 B1
6175300 Kendrick Jan 2001 B1
6184781 Ramakesavan Feb 2001 B1
6185492 Kagawa et al. Feb 2001 B1
6188505 Lomprey Feb 2001 B1
6191704 Takenaga et al. Feb 2001 B1
6193378 Tonar et al. Feb 2001 B1
6193912 Thieste Feb 2001 B1
6195194 Roberts et al. Feb 2001 B1
6200010 Anders Mar 2001 B1
6207083 Varaprasad et al. Mar 2001 B1
6210008 Hoekstra et al. Apr 2001 B1
6218934 Regan Apr 2001 B1
6222177 Bechtel Apr 2001 B1
6222447 Schofield et al. Apr 2001 B1
6224716 Yoder May 2001 B1
6229435 Knapp May 2001 B1
6239898 Byker May 2001 B1
6239899 DeVries et al. May 2001 B1
6244716 Steenwyk Jun 2001 B1
6245262 Varaprasad et al. Jun 2001 B1
6246507 Bauer Jun 2001 B1
6247819 Turnbull Jun 2001 B1
6249214 Kashiwazaki Jun 2001 B1
6249369 Theiste et al. Jun 2001 B1
6250766 Strumolo et al. Jun 2001 B1
6254003 Pettinelli et al. Jul 2001 B1
6255639 Stam et al. Jul 2001 B1
6259475 Ramachandran et al. Jul 2001 B1
6262831 Bauer Jul 2001 B1
6262832 Lomprey Jul 2001 B1
6265968 Betzitza et al. Jul 2001 B1
6268803 Gunderson et al. Jul 2001 B1
6268950 Ash Jul 2001 B1
6269308 Kodaka et al. Jul 2001 B1
6281632 Stam et al. Aug 2001 B1
6281804 Haller et al. Aug 2001 B1
6289332 Menig et al. Sep 2001 B2
6291812 Bechtel Sep 2001 B1
6300879 Regan et al. Oct 2001 B1
6304173 Pala et al. Oct 2001 B2
6313457 Bauer Nov 2001 B1
6313892 Gleckman Nov 2001 B2
6317057 Lee Nov 2001 B1
6317248 Agrawal et al. Nov 2001 B1
6320612 Young Nov 2001 B1
6321159 Nohtomi Nov 2001 B1
6324295 Valery et al. Nov 2001 B1
D451869 Knapp et al. Dec 2001 S
6329925 Skiver et al. Dec 2001 B1
6330511 Ogura et al. Dec 2001 B2
6335548 Roberts Jan 2002 B1
6335680 Matsuoka Jan 2002 B1
6344805 Yasui et al. Feb 2002 B1
6348858 Weis et al. Feb 2002 B2
6349450 Koops Feb 2002 B1
6349782 Sekiya et al. Feb 2002 B1
6356206 Takenaga et al. Mar 2002 B1
6356376 Tonar et al. Mar 2002 B1
6357883 Strumolo et al. Mar 2002 B1
6359274 Nixon Mar 2002 B1
6363326 Scully Mar 2002 B1
6369701 Yoshida et al. Apr 2002 B1
6379013 Bechtel et al. Apr 2002 B1
6392783 Lomprey May 2002 B1
6396040 Hill May 2002 B1
6396397 Bos et al. May 2002 B1
6402328 Bechtel Jun 2002 B1
6403942 Stam Jun 2002 B1
6407468 LeVesque et al. Jun 2002 B1
6407847 Poll et al. Jun 2002 B1
6408247 Ichikawa et al. Jun 2002 B1
6412959 Tseng Jul 2002 B1
6415230 Maruko et al. Jul 2002 B1
6420800 LeVesque Jul 2002 B1
6421081 Markus Jul 2002 B1
6424272 Gutta et al. Jul 2002 B1
6424273 Gutta et al. Jul 2002 B1
6424892 Matsuoka Jul 2002 B1
6426485 Bulgajewski Jul 2002 B1
6428172 Hutzel et al. Aug 2002 B1
6429594 Stam Aug 2002 B1
6433680 Ho Aug 2002 B1
6437688 Kobayashi Aug 2002 B1
6438491 Farmer Aug 2002 B1
6441872 Ho Aug 2002 B1
6441943 Roberts Aug 2002 B1
6442465 Breed et al. Aug 2002 B2
6443585 Saccomanno Sep 2002 B1
6443602 Tanabe et al. Sep 2002 B1
6447128 Lang et al. Sep 2002 B1
6452533 Yamabuchi et al. Sep 2002 B1
6463369 Sadano et al. Oct 2002 B2
6465962 Fu et al. Oct 2002 B1
6465963 Turnbull Oct 2002 B1
6466701 Ejiri et al. Oct 2002 B1
6469739 Bechtel et al. Oct 2002 B1
6471360 Rukavina et al. Oct 2002 B2
6471362 Carter Oct 2002 B1
6472977 Pochmuller Oct 2002 B1
6473001 Blum Oct 2002 B1
6476731 Miki et al. Nov 2002 B1
6476855 Yamamoto Nov 2002 B1
6483429 Yasui et al. Nov 2002 B1
6483438 DeLine et al. Nov 2002 B2
6487500 Lemelson et al. Nov 2002 B2
6491416 Strazzanti Dec 2002 B1
6498620 Schofield et al. Dec 2002 B2
6501387 Skiver et al. Dec 2002 B2
6504142 Nixon Jan 2003 B2
6507779 Breed et al. Jan 2003 B2
6512624 Tonar Jan 2003 B2
6515581 Ho Feb 2003 B1
6515597 Wada et al. Feb 2003 B1
6520667 Mousseau Feb 2003 B1
6521916 Roberts Feb 2003 B2
6522969 Kannonji Feb 2003 B2
6523976 Turnbull Feb 2003 B1
D471847 Rumsey et al. Mar 2003 S
6535126 Lin et al. Mar 2003 B2
6542085 Yang Apr 2003 B1
6542182 Chutorash Apr 2003 B1
6545598 de Villeroche Apr 2003 B1
6545794 Ash Apr 2003 B2
6550943 Strazzanti Apr 2003 B2
6553130 Lemelson et al. Apr 2003 B1
6558026 Strazzanti May 2003 B2
6559761 Miller et al. May 2003 B1
6567708 Bechtel et al. May 2003 B1
6572233 Northman et al. Jun 2003 B1
6575643 Takahashi Jun 2003 B2
6580373 Ohashi Jun 2003 B1
6581007 Hasegawa et al. Jun 2003 B2
6583730 Lang et al. Jun 2003 B2
6587573 Stam et al. Jul 2003 B1
6591192 Okamura et al. Jul 2003 B2
6594583 Ogura et al. Jul 2003 B2
6594614 Studt et al. Jul 2003 B2
6606183 Ikai et al. Aug 2003 B2
6611202 Schofield et al. Aug 2003 B2
6611227 Nebiyeloul-Kifle Aug 2003 B1
6611610 Stam et al. Aug 2003 B1
6611759 Brosche Aug 2003 B2
6614387 Deadman Sep 2003 B1
6614579 Roberts et al. Sep 2003 B2
6616764 Kramer et al. Sep 2003 B2
6617564 Ockerse et al. Sep 2003 B2
6618672 Sasaki et al. Sep 2003 B2
6630888 Lang et al. Oct 2003 B2
6631316 Stam et al. Oct 2003 B2
6635194 Kloeppner Oct 2003 B2
6636258 Strumolo Oct 2003 B2
6642840 Lang et al. Nov 2003 B2
6642851 Deline et al. Nov 2003 B2
6648477 Hutzel et al. Nov 2003 B2
6650457 Busscher et al. Nov 2003 B2
6657767 Bonardi Dec 2003 B2
6665592 Kodama Dec 2003 B2
6670207 Roberts Dec 2003 B1
6670910 Delcheccolo et al. Dec 2003 B2
6674370 Rodewald et al. Jan 2004 B2
6675075 Engelsberg et al. Jan 2004 B1
6677986 Pöchmüller Jan 2004 B1
6683539 Trajkovic et al. Jan 2004 B2
6683969 Nishigaki et al. Jan 2004 B1
6690268 Schofield et al. Feb 2004 B2
6690413 Moore Feb 2004 B1
6693517 McCarty et al. Feb 2004 B2
6693518 Kumata Feb 2004 B2
6693519 Keirstead Feb 2004 B2
6693524 Payne Feb 2004 B1
6700692 Tonar Mar 2004 B2
6717610 Bos et al. Apr 2004 B1
6727808 Uselmann et al. Apr 2004 B1
6727844 Zimmermann et al. Apr 2004 B1
6731332 Yasui et al. May 2004 B1
6734807 King May 2004 B2
6737964 Samman et al. May 2004 B2
6738088 Uskolovsky et al. May 2004 B1
6744353 Sjonell Jun 2004 B2
6746122 Knox Jun 2004 B2
D493131 Lawlor et al. Jul 2004 S
D493394 Lawlor et al. Jul 2004 S
6768566 Walker Jul 2004 B2
6772057 Breed et al. Aug 2004 B2
6774988 Stam et al. Aug 2004 B2
6781738 Kikuchi et al. Aug 2004 B2
6816145 Evanicky Nov 2004 B1
6816297 Tonar Nov 2004 B1
D499678 Bradley Dec 2004 S
6846098 Bourdelais et al. Jan 2005 B2
6847487 Burgner Jan 2005 B2
6853413 Larson Feb 2005 B2
6861809 Stam Mar 2005 B2
6870656 Tonar et al. Mar 2005 B2
6902284 Hutzel et al. Jun 2005 B2
6902307 Strazzanti Jun 2005 B2
6906632 DeLine et al. Jun 2005 B2
6912001 Okamoto et al. Jun 2005 B2
6913375 Strazzanti Jul 2005 B2
6923080 Dobler et al. Aug 2005 B1
6924919 Hunia et al. Aug 2005 B2
6930737 Weindorf et al. Aug 2005 B2
6934080 Saccomanno et al. Aug 2005 B2
6946978 Schofield Sep 2005 B2
6968273 Ockerse Nov 2005 B2
7012543 DeLine et al. Mar 2006 B2
7038577 Pawlicki et al. May 2006 B2
7042616 Tonar et al. May 2006 B2
7046448 Burgner May 2006 B2
7064882 Tonar Jun 2006 B2
7130101 Rukavina et al. Oct 2006 B2
7175291 Li Feb 2007 B1
7249860 Kulas et al. Jul 2007 B2
7255465 DeLine et al. Aug 2007 B2
7262406 Heslin et al. Aug 2007 B2
7265342 Heslin et al. Sep 2007 B2
D553061 Schmidt et al. Oct 2007 S
7285903 Cull et al. Oct 2007 B2
7287868 Carter Oct 2007 B2
7292208 Park et al. Nov 2007 B1
7311428 DeLine et al. Dec 2007 B2
7321112 Stam et al. Jan 2008 B2
7324261 Tonar et al. Jan 2008 B2
7329013 Blank Feb 2008 B2
7342707 Roberts Mar 2008 B2
7360932 Uken et al. Apr 2008 B2
7417221 Creswick et al. Aug 2008 B2
7417717 Pack Aug 2008 B2
7446650 Scholfield et al. Nov 2008 B2
7467883 DeLine et al. Dec 2008 B2
7468651 DeLine et al. Dec 2008 B2
7505047 Yoshimura Mar 2009 B2
7510287 Hook Mar 2009 B2
7533998 Schofield et al. May 2009 B2
7548291 Lee et al. Jun 2009 B2
7565006 Stam et al. Jul 2009 B2
7567291 Bechtel et al. Jul 2009 B2
7579940 Schofield et al. Aug 2009 B2
7592563 Wissenbach Sep 2009 B2
7619508 Lynam et al. Nov 2009 B2
7653215 Stam Jan 2010 B2
7658521 DeLine et al. Feb 2010 B2
7663798 Tonar Feb 2010 B2
7683326 Stam et al. Mar 2010 B2
7688495 Tonar et al. Mar 2010 B2
7706046 Bauer et al. Apr 2010 B2
7711479 Taylor et al. May 2010 B2
7719408 DeWard et al. May 2010 B2
7720580 Higgins-Luthman May 2010 B2
7746534 Tonar et al. Jun 2010 B2
7815326 Blank et al. Oct 2010 B2
7817020 Turnbull et al. Oct 2010 B2
7821696 Tonar et al. Oct 2010 B2
7830583 Neuman et al. Nov 2010 B2
7864399 McCabe et al. Jan 2011 B2
7877175 Higgins-Luthman Jan 2011 B2
7881496 Camilleri et al. Feb 2011 B2
7881839 Stam et al. Feb 2011 B2
7888629 Heslin Feb 2011 B2
7914188 DeLine et al. Mar 2011 B2
7916009 Schofield Mar 2011 B2
7972045 Schofield Jul 2011 B2
7978393 Tonar et al. Jul 2011 B2
7994471 Heslin et al. Aug 2011 B2
8031225 Watanabe et al. Oct 2011 B2
8035881 Luten et al. Oct 2011 B2
8045760 Stam et al. Oct 2011 B2
8059235 Utsumi et al. Nov 2011 B2
8063753 Deline et al. Nov 2011 B2
8090153 Schofield et al. Jan 2012 B2
8095310 Taylor et al. Jan 2012 B2
8100568 Deline et al. Jan 2012 B2
8116929 Higgins-Luthman Feb 2012 B2
8120652 Bechtel et al. Feb 2012 B2
8142059 Higgins-Luthman et al. Mar 2012 B2
8162518 Schofield Apr 2012 B2
8194133 DeWind et al. Jun 2012 B2
8201800 Filipiak Jun 2012 B2
8203433 Deuber et al. Jun 2012 B2
8217830 Lynam Jul 2012 B2
8222588 Schofield et al. Jul 2012 B2
8237909 Ostreko et al. Aug 2012 B2
8258433 Byers et al. Sep 2012 B2
8282226 Blank et al. Oct 2012 B2
8325028 Schofield et al. Dec 2012 B2
8351454 Jain Jan 2013 B2
8482683 Hwang et al. Jul 2013 B2
8520069 Haler Aug 2013 B2
8564662 Busch et al. Oct 2013 B2
8658283 Shimatani Feb 2014 B2
8779910 DeLine et al. Jul 2014 B2
9041806 Baur May 2015 B2
9057875 Fish, Jr. et al. Jun 2015 B2
9475431 Brummel Oct 2016 B2
20010019356 Takeda et al. Sep 2001 A1
20010022616 Rademacher et al. Sep 2001 A1
20010026316 Senatore Oct 2001 A1
20010045981 Gloger et al. Nov 2001 A1
20020040962 Schofield et al. Apr 2002 A1
20020044065 Quist et al. Apr 2002 A1
20020047378 Bingle Apr 2002 A1
20020159171 Schnell Oct 2002 A1
20020191127 Roberts et al. Dec 2002 A1
20030002165 Mathias et al. Jan 2003 A1
20030007261 Hutzel et al. Jan 2003 A1
20030016125 Lang et al. Jan 2003 A1
20030016287 Nakayama et al. Jan 2003 A1
20030025596 Lang et al. Feb 2003 A1
20030025597 Schofield Feb 2003 A1
20030030546 Tseng Feb 2003 A1
20030030551 Ho Feb 2003 A1
20030030724 Okamoto Feb 2003 A1
20030035050 Mizusawa Feb 2003 A1
20030043269 Park Mar 2003 A1
20030052969 Satoh et al. Mar 2003 A1
20030058338 Kawauchi et al. Mar 2003 A1
20030067383 Yang Apr 2003 A1
20030076415 Strumolo Apr 2003 A1
20030080877 Takagi et al. May 2003 A1
20030085806 Samman et al. May 2003 A1
20030088361 Sekiguchi May 2003 A1
20030090568 Pico May 2003 A1
20030090569 Poechmueller May 2003 A1
20030090570 Takagi et al. May 2003 A1
20030098908 Misaiji et al. May 2003 A1
20030103141 Bechtel et al. Jun 2003 A1
20030103142 Hitomi et al. Jun 2003 A1
20030117522 Okada Jun 2003 A1
20030122929 Minaudo et al. Jul 2003 A1
20030122930 Schofield et al. Jul 2003 A1
20030133014 Mendoza Jul 2003 A1
20030137586 Lewellen Jul 2003 A1
20030141965 Gunderson et al. Jul 2003 A1
20030146831 Berberich et al. Aug 2003 A1
20030169158 Paul, Jr. Sep 2003 A1
20030179293 Oizumi Sep 2003 A1
20030202096 Kim Oct 2003 A1
20030202357 Strazzanti Oct 2003 A1
20030214576 Koga Nov 2003 A1
20030214584 Ross, Jr. Nov 2003 A1
20030214733 Fujikawa et al. Nov 2003 A1
20030222793 Tanaka et al. Dec 2003 A1
20030222983 Nobori et al. Dec 2003 A1
20030227546 Hilborn et al. Dec 2003 A1
20040004541 Hong Jan 2004 A1
20040027695 Lin Feb 2004 A1
20040032321 McMahon et al. Feb 2004 A1
20040036768 Green Feb 2004 A1
20040051634 Schofield et al. Mar 2004 A1
20040056955 Berberich et al. Mar 2004 A1
20040057131 Hutzel et al. Mar 2004 A1
20040064241 Sekiguchi Apr 2004 A1
20040066285 Sekiguchi Apr 2004 A1
20040075603 Kodama Apr 2004 A1
20040080404 White Apr 2004 A1
20040080431 White Apr 2004 A1
20040085196 Milelr et al. May 2004 A1
20040090314 Iwamoto May 2004 A1
20040090317 Rothkop May 2004 A1
20040096082 Nakai et al. May 2004 A1
20040098196 Sekiguchi May 2004 A1
20040107030 Nishira et al. Jun 2004 A1
20040107617 Shoen et al. Jun 2004 A1
20040109060 Ishii Jun 2004 A1
20040114039 Ishikura Jun 2004 A1
20040119668 Homma et al. Jun 2004 A1
20040125905 Vlasenko et al. Jul 2004 A1
20040148102 McCarthy Jul 2004 A1
20040160660 Malvino Aug 2004 A1
20040202001 Roberts et al. Oct 2004 A1
20040263988 Lin Dec 2004 A1
20050063036 Bechtel et al. Mar 2005 A1
20050140855 Utsumi Jun 2005 A1
20050156753 DeLine et al. Jul 2005 A1
20050200935 Liu et al. Sep 2005 A1
20050237440 Sugimura et al. Oct 2005 A1
20060007550 Tonar et al. Jan 2006 A1
20060050018 Hutzel Mar 2006 A1
20060115759 Kim et al. Jun 2006 A1
20060139953 Chou et al. Jun 2006 A1
20060158899 Ayabe et al. Jul 2006 A1
20070146481 Chen et al. Jun 2007 A1
20070171037 Schofield et al. Jul 2007 A1
20070279756 Rosario Dec 2007 A1
20080055757 Uken Mar 2008 A1
20080068520 Minikey, Jr. et al. Mar 2008 A1
20080077882 Kramer Mar 2008 A1
20080192132 Bechtel et al. Aug 2008 A1
20080225538 Lynam Sep 2008 A1
20080247192 Hoshi et al. Oct 2008 A1
20080294315 Breed Nov 2008 A1
20080302657 Luten et al. Dec 2008 A1
20090015736 Weller et al. Jan 2009 A1
20090040306 Foote Feb 2009 A1
20090141516 Wu et al. Jun 2009 A1
20090296190 Anderson et al. Dec 2009 A1
20100046104 Rimac Feb 2010 A1
20100110553 Anderson et al. May 2010 A1
20100201816 Lee et al. Aug 2010 A1
20100201896 Ostreko et al. Aug 2010 A1
20100277786 Anderson et al. Nov 2010 A1
20110168687 Door Jul 2011 A1
20110176323 Skiver et al. Jul 2011 A1
20110181727 Weller et al. Jul 2011 A1
20110188122 Habibi Aug 2011 A1
20110299170 Harlow et al. Dec 2011 A1
20120038964 De Wind et al. Feb 2012 A1
20120069444 Campbell et al. Mar 2012 A1
20120229882 Fish, Jr. et al. Sep 2012 A1
20120236388 De Wind et al. Sep 2012 A1
20130028473 Hilldore et al. Jan 2013 A1
20130279014 Fish, Jr. et al. Oct 2013 A1
20140022390 Blank et al. Jan 2014 A1
20140043479 Busch et al. Feb 2014 A1
20140192431 Sloterbeek et al. Jul 2014 A1
20140347488 Tazaki et al. Nov 2014 A1
20150098121 Turnbull et al. Apr 2015 A1
20150103389 Klawuhn et al. Apr 2015 A1
20150309383 Taya et al. Oct 2015 A1
Foreign Referenced Citations (22)
Number Date Country
102010064082 Jun 2012 DE
0513476 Nov 1992 EP
0684155 Jul 1997 EP
WO 9857228 Dec 1998 EP
0899157 Mar 1999 EP
0947874 Oct 1999 EP
0947875 Oct 1999 EP
0947876 Oct 1999 EP
0975488 Oct 2002 EP
0899157 Oct 2004 EP
2338363 Dec 1999 GB
1178693 Mar 1999 JP
2002096685 Apr 2002 JP
2002200936 Jul 2002 JP
2005148119 Jun 2005 JP
2005327600 Nov 2005 JP
2008139819 Jun 2008 JP
2009542505 Dec 2009 JP
2013244753 Dec 2013 JP
9621581 Jul 1996 WO
2007103573 Sep 2007 WO
2010090964 Aug 2010 WO
Non-Patent Literature Citations (21)
Entry
Palalau et al., “FPD Evaluation for Automotive Application,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 97-103, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Adler, “A New Automotive AMLCD Module,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 67-71, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Sayer, et al., “In-Vehicle Displays for Crash Avoidance and Navigation Systems,” Proceedings of the Vehicle Display Symposium, Sep. 18, 1996, pp. 39-42, Society for Information Display, Detroit Chapter, Santa Ana, CA.
Knoll, et al., “Application of Graphic Displays in Automobiles,” SID 87 Digest, 1987, pp. 41-44, 5A.2.
Terada, et al., “Development of Central Information Display of Automotive Application,” SID 89 Digest, 1989, pp. 192-195, Society for Information Display, Detroit Center, Santa Ana, CA.
Thomsen, et al., “AMLCD Design Considerations for Avionics and Vetronics Applications,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 139-145, Society for Information Display, Metropolitan Detroit Chapter, CA.
Knoll, et al., “Conception of an Integrated Driver Information System,” SID International Symposium Digest of Technical Papers, 1990, pp. 126-129, Society for Information Display, Detroit Center, Santa Ana, CA.
Vincen, “An Analysis of Direct-View FPDs for Automotive Multi-Media Applications,” Proceedings of the 6th Annual Strategic and Technical Symposium “Vehicular Applications of Displays and Microsensors,” Sep. 22-23, 1999, pp. 39-46, Society for Information Display, Metropolitan Detroit Chapter, San Jose, CA.
Zuk, et al., “Flat Panel Display Applications in Agriculture Equipment,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 125-130, Society for Information Display, Metropolitan Detroit Chapter, CA.
Vijan, et al., “A 1.7-Mpixel Full-Color Diode Driven AM-LCD,” SID International Symposium, 1990, pp. 530-533, Society for Information Display, Playa del Rey, CA.
Vincen, “The Automotive Challenge to Active Matrix LCD Technology,” Proceedings of the Vehicle Display Symposium, 1996, pp. 17-21, Society for Information Display, Detroit Center, Santa Ana, CA.
Corsi, et al., “Reconfigurable Displays Used as Primary Automotive Instrumentation,” SAE Technical Paper Series, 1989, pp. 13-18, Society of Automotive Engineers, Inc., Warrendale, PA.
Schumacher, “Automotive Display Trends,” SID 96 Digest, 1997, pp. 1-6, Delco Electronics Corp., Kokomo, IN.
Knoll, “The Use of Displays in Automotive Applications,” Journal of the SID 5/3 1997, pp. 165-172, 315-316, Stuttgart, Germany.
Donofrio, “Looking Beyond the Dashboard,” SID 2002, pp. 30-34, Ann Arbor, MI.
Stone, “Automotive Display Specification,” Proceedings of the Vehicle Display Symposium, 1995, pp. 93-96, Society for Information Display, Detroit Center, Santa Ana, CA.
R. Sullivan et al., “Effect of Switching Control Strategies on the Energy Performance of Electrochromic Windows,” SPIE, vol. 2255, 14 pages, (Feb. 1994).
A.W. Czanderna et al., “Durability Issues and Service Lifetime Prediction of Electrochromic Windows for Buildings Applications,” Solar Energy Materials & Solar Cells, 56 (1999), 18 pages.
Patent Cooperation Treaty Communication, mailed Dec. 21, 2007, 13 pages.
Communication from the European Patent Office, Supplementary European Search Report, Mailed Aug. 8, 2010, (9 pages).
International Search Report and Written Opinion of the International Searching Authority, or the Declaration dated Feb. 4, 2016 for International Application No. PCT/US2015059461, 8 pages.
Related Publications (1)
Number Date Country
20160129842 A1 May 2016 US
Provisional Applications (1)
Number Date Country
62076542 Nov 2014 US