The present disclosure generally relates to a rearview device system, and more particularly, to a full display rearview device having a partially reflective, partially transmissive element and a display behind the reflective element.
One aspect of the disclosure includes a display mirror assembly having a mount operably coupled to a vehicle interior. The mount includes one of a ball and a socket extending forwardly therefrom. An engagement plate is pivotally coupled with the mount via the other of a ball and a socket extending rearwardly from the engagement plate. The engagement plate includes a first support member and a second support member pivotally coupled to the first support member. A carrier plate is operably coupled with the engagement plate. The carrier plate supports a rear housing on a rear portion thereof. A glass element is operably coupled with the carrier plate. A display module is configured to be turned to an on state and an off state. An actuator device is disposed on a bottom surface of the housing and is operably coupled with the glass element. The actuator device is adjustable to tilt the glass element in one direction, thereby moving the glass element to an off-axis position which approximately simultaneously changes the on/off state of the display module, and wherein the actuator device is also adjustable to tilt the glass element in another direction, thereby moving the glass element to an on-axis position which approximately simultaneously changes the on/off state of the display module.
Another aspect of the disclosure includes a display mirror assembly having a mount operably coupled to a vehicle interior. The mount includes one of a ball and a socket extending forwardly therefrom. A carrier plate is operably coupled with an engagement plate. The carrier plate supports a rear housing on a rear portion thereof. A glass element is operably coupled with the carrier plate. An optic stack is disposed behind the glass element. A glare sensor is operably coupled with the glass element and is in optical communication with a light pipe that is exposed to an exterior of the display mirror assembly. A display module is configured to be turned to an on state and an off state. An actuator device is disposed on a bottom surface of the housing and is operably coupled with the glass element. The actuator device is adjustable to tilt the glass element in one direction, thereby moving the glass element to an off-axis position which approximately simultaneously changes the on/off state of the display module, and wherein the actuator device is also adjustable to tilt the glass element in another direction, thereby moving the glass element to an on-axis position which approximately simultaneously changes the on/off state of the display module.
Still another aspect of the disclosure includes a display mirror assembly having a mount operably coupled to a vehicle interior. The mount includes one of a ball and a socket extending forwardly therefrom. A carrier plate is operably coupled with an engagement plate. The carrier plate supports a rear housing on a rear portion thereof. A glass element is operably coupled with the carrier plate. A glare sensor is operably coupled with the carrier plate and is in optical communication with a light pipe that is exposed to an exterior of the display mirror assembly. A display module is configured to be turned to an on state and an off state. An actuator device is disposed on a bottom surface of the housing and is operably coupled with the glass element. The actuator device is adjustable to tilt the glass element in one direction, thereby moving the glass element to an off-axis position which approximately simultaneously changes the on/off state of the display module, and wherein the actuator device is also adjustable to tilt the glass element in another direction, thereby moving the glass element to an on-axis position which approximately simultaneously changes the on/off state of the display module.
Yet another aspect of the disclosure includes a display mirror assembly that is configured to provide an image via a liquid crystal display (LCD) of a scene rearward of a vehicle. During certain instances, as determined by a driver, the LCD can be deactivated by toggling an actuator device between forward and rearward positions. Even after the deactivation of the LCD, a rearward view of a vehicle can be seen by reflective member disposed inside the display mirror assembly. The display mirror assembly, as set forth herein, provides a multi-functional device that can be adjusted based on user preferences, which is easy to manufacture, and which is very robust.
These and other features, advantages, and objects of the present disclosure will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.
The present illustrated embodiments reside primarily in combinations of method steps and apparatus components related to a display mirror. Accordingly, the apparatus components and method steps have been represented, where appropriate, by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present disclosure so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein. Further, like numerals in the description and drawings represent like elements.
For purposes of description herein, the terms “upper,” “lower,” “right,” “left,” “rear,” “front,” “vertical,” “horizontal,” and derivatives thereof shall relate to the disclosure as oriented in
The terms “including,” “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises a . . . ” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
Referring now to
As referenced above, the reference numeral 10 generally designates a rearview device in the form of a display mirror assembly for a vehicle. The display mirror assembly 10 includes the partially reflective, partially transmissive element 30 (also referred to as a “glass element” herein). The display module 32 is viewable through the partially reflective, partially transmissive element 30. The display mirror assembly 10 further includes a front shield 40 and a carrier plate 24, which shield and support the partially reflective, partially transmissive element 30 and the display module 32. The display module 32 generally includes several components, including a display 44, an optic stack 46, an optic tray 48, a main printed circuit board (PCB) 50, and a heat sink 52. The rear housing 26 at least partially receives the front shield 40, the display module 32, and the carrier plate 24. The rear housing 26 covers a rear portion of the carrier plate 24, but does not structurally support the display mirror assembly 10. The carrier plate 24, however, supports the entire rearview device 10 via a mounting member 17 extending rearwardly therefrom. The mounting member 17 is adapted for connection with the mount 12 coupled to a windshield of a vehicle.
Referring generally to
Referring to
The display mirror assembly 10 will hereafter be described in greater detail, beginning with the elements closest to the intended viewer, and extending rearwardly away from the viewer.
As shown in
The glass element 30 may be an electro-optic element or an element such as a prism. One non-limiting example of an electro-optic element is an electrochromic medium, which includes at least one solvent, at least one anodic material, and at least one cathodic material. Typically, both of the anodic and cathodic materials are electroactive and at least one of them is electrochromic. It will be understood that regardless of its ordinary meaning, the term “electroactive” will be defined herein as a material that undergoes a modification in its oxidation state upon exposure to a particular electrical potential difference. Additionally, it will be understood that the term “electrochromic” will be defined herein, regardless of its ordinary meaning, as a material that exhibits a change in its extinction coefficient at one or more wavelengths upon exposure to a particular electrical potential difference. Electrochromic components, as described herein, include materials whose color or opacity are affected by electric current, such that when an electrical current is applied to the material, the color or opacity change from a first phase to a second phase. The electrochromic component may be a single-layer, single-phase component, multi-layer component, or multi-phase component, as described in U.S. Pat. No. 5,928,572 entitled “Electrochromic Layer And Devices Comprising Same,” U.S. Pat. No. 5,998,617 entitled “Electrochromic Compounds,” U.S. Pat. No. 6,020,987 entitled “Electrochromic Medium Capable Of Producing A Pre-selected Color,” U.S. Pat. No. 6,037,471 entitled “Electrochromic Compounds,” U.S. Pat. No. 6,141,137 entitled “Electrochromic Media For Producing A Pre-selected Color,” U.S. Pat. No. 6,241,916 entitled “Electrochromic System,” U.S. Pat. No. 6,193,912 entitled “Near Infrared-Absorbing Electrochromic Compounds And Devices Comprising Same,” U.S. Pat. No. 6,249,369 entitled “Coupled Electrochromic Compounds With Photostable Dication Oxidation States,” and U.S. Pat. No. 6,137,620 entitled “Electrochromic Media With Concentration Enhanced Stability, Process For The Preparation Thereof and Use In Electrochromic Devices”; U.S. Pat. No. 6,519,072, entitled “Electrochromic Device”; and International Patent Application Serial Nos. PCT/US98/05570 entitled “Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices,” PCT/EP98/03862 entitled “Electrochromic Polymer System,” and PCT/US98/05570 entitled “Electrochromic Polymeric Solid Films, Manufacturing Electrochromic Devices Using Such Solid Films, And Processes For Making Such Solid Films And Devices,” which are herein incorporated by reference in their entirety. The glass element may also be any other element having partially reflective, partially transmissive properties. To provide electric current to the glass element 30, electrical elements are provided on opposing sides of the element, to generate an electrical potential therebetween. Element clips 89, such as J-clips, are electrically engaged with each electrical element, and element wires extend from the J-clips to the main PCB.
Now referring to
Referring again to
As best shown in
The display 44 is generally planar, with an outer edge 100 defining a front surface 102. The front surface 102 of the display 44 can be shaped to correspond to and fit within the shape of the viewing area 60 of the display mirror assembly 10. Alternatively, the display 44 may have a front surface 102 which fits within, but is not complementary to the viewing area 60, for example, where the front surface 102 of the display 44 is generally rectangular and the front surface 62 of the glass element 30 has a contoured outer perimeter. The distance between the outer edge 100 of the display 44 and the outer perimeter 80 of the glass element 30 is about 9 mm or less along at least a portion of the outer edge 100. In one embodiment, the display 44 has a viewable front surface area which is about 56% to about 70% of the viewing area 60 of the glass element 30. The display 44 includes tabs 103 that engage the carrier plate 24.
The display 44 may be a liquid crystal display (LCD), a light-emitting diode (LED), an organic light-emitting diode (OLED), plasma, digital light processing (DLP), or other display technology. The display 44 is operably coupled with a secondary PCB 110, which is operably mechanically and electrically connected with the main PCB 50 via a flexible electrical connector. The flexible electrical connector has a length sufficient to extend over the components of the display module 32 between the display 44 and the main PCB 50, and at least a portion of the heat sink 52. The secondary PCB 110 also has a width which extends substantially along a top edge of the display 44. The secondary PCB 110, when operably coupled to the main PCB 50, aids in securing the components along a top edge of the display module 32.
As shown in
As shown in
As shown in
The main PCB 50 operates to provide electrical power and control for the components of the display module 32 and for the glass element 30. As shown in
The carrier plate 24 functions to support the display mirror assembly 10 and to shield the display module 32 from RF radiation. Referring again to
The carrier plate 24 includes a rear wall 160 having an outer perimeter, and a peripheral wall 162 extending forwardly from the rear wall 160 about at least a portion of the outer perimeter 80. The peripheral wall 162 has slots 164 therein, which correspond to the upstanding tabs 103 along the top edge of the display 44. The carrier plate 24 further includes at least one mechanical fastener aperture therethrough to accommodate at least one mechanical fastener 166 that extends through the carrier plate 24 and into the components of the display module 32 to secure the carrier plate 24 to the display module 32.
The rear housing 26 includes a forwardly directed cavity 170, into which all or a portion of the front shield 40, the carrier plate 24, and the display module 32 supported therebetween are inserted. The rear housing 26 includes mechanically engaging features that couple with corresponding engagement features located on the carrier plate 24. The rear housing 26 and the rear coverplates 70 are generally decorative in nature and do not provide any load bearing support. A button assembly 180 is positioned in the rear housing 26.
With respect to the following description, the display mirror assembly 10 is considered “on-axis” when a line perpendicular to the plane of the glass element 30 extends toward the eyes of a viewer. Due to the display 44 being viewed through the glass element 30, any glare on the glass element 30 may interfere with the visibility of the display 44. When the display mirror assembly 10 is on-axis and is being used during night time driving conditions, headlights from a trailing vehicle (i.e., a vehicle driving behind the vehicle with the display mirror assembly 10) can cause a glare which is visible to the driver. According to one embodiment of the present disclosure, the actuator device 34, as shown in
Additionally, to provide information to the viewer of the display mirror assembly 10, the display mirror assembly 10 may include information regarding the field of view, such as a partially transmissive graphic overlay or an image on the display visible on the viewing area when the display mirror assembly 10 is in use.
With reference to
The display mirror assembly is constructed generally in the following manner. The glass element is ground, such that the glass element includes a ground edge with a 0.7 mm offset. The glass element is then adhered to the front shield with either a foam adhesive or a liquid adhesive. The display, the optic stack, and the optic tray are attached to the front shield. The main PCB is attached to the optic tray and flex connections of the display are connected. The secondary PCB (or LED PCB) is then attached to the heat sink with a thermally conductive adhesive. The secondary PCB and heat sink subassembly is then attached to the optic tray with mechanical fasteners, heat stakes, or other mechanical attachment methods. An electro-optic connection is then made between the glass element and the main PCB through a flex cable, a small wire, or other electrically conductive method. A socket plate is then mechanically attached to a rear carrier plate and the carrier plate is mechanically attached to the front shield by low-profile mechanical fasteners, louvered snaps, or other low-profile attachment methods. The rear housing is attached to a rear portion of the carrier plate and attached via mechanical fasteners. A vehicle wire harness and camera jumper harness are attached to the main PCB and the glare sensor is snapped into the rear housing. A button subassembly is snapped into the rear housing or the carrier plate, and the rear coverplates are placed on the back of the rear housing to cover any mechanical fasteners, as well as vehicle and/or camera connectors. The resulting display mirror assembly has improved displays with a small distance from the active area to the edge of the display mirror assembly, and also from the active area to the edge of the glass element.
The resulting construction provides an electro-optic connection with a low profile. Additionally, the carrier plate is designated as a main structural member of the display mirror assembly. The rear carrier plate and the front shield are mechanically attached together to provide a load path from the glass element to the mount and to improve electrical emissions performance. The socket plate is mechanically attached to the rear carrier plate. Consequently, the need for the rear housing to be a structural member is eliminated. As a result, the snaps and retention ribs that otherwise may have been present in the rear housing can also be eliminated. Because of the socket plate construction, blind connection of the wires is eliminated, and the unit can be tested in production for activation forces before the glass element is assembled. The rear housing multi-piece design acts as a decorative cover, but does not provide a structural function, other than to cover the rear portion of the carrier plate. In addition, the glare sensor construction generally directs light via a light pipe to an internal glare sensor. This entire construction results in a reduced adhesion area from the glass element to the front shield, thus lowering costs and improving manufacturing time.
The present disclosure may be used with a rearview assembly such as that described in U.S. Pat. Nos. 9,838,653; 9,174,577; 8,925,891; 8,814,373; 8,201,800; and 8,210,695; and U.S. Provisional Patent Application Nos. 61/709,716; 61/707,676; and 61/704,869, which are hereby incorporated herein by reference in their entirety. Further, the present disclosure may be used with a rearview packaging assembly such as that described in U.S. Pat. Nos. 8,885,240; 8,814,373; 8,646,924; 8,643,931; and 8,264,761; and U.S. Provisional Patent Application Nos. 61/707,625; and 61/590,259, which are hereby incorporated herein by reference in their entirety. Additionally, it is contemplated that the present disclosure can include a bezel such as that described in U.S. Pat. Nos. 8,827,517; 8,210,695; and 8,201,800, which are hereby incorporated herein by reference in their entirety.
It will be appreciated that embodiments of the disclosure described herein may be comprised of one or more conventional processors and unique stored program instructions that control one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of a display mirror assembly 10, as described herein. The non-processor circuits may include, but are not limited to signal drivers, clock circuits, power source circuits, and/or user input devices. As such, these functions may be interpreted as steps of a method used in using or constructing a classification system. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used. Thus, the methods and means for these functions have been described herein. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
It will be understood by one having ordinary skill in the art that construction of the described disclosure and other components is not limited to any specific material. Other exemplary embodiments of the disclosure disclosed herein may be formed from a wide variety of materials, unless described otherwise herein.
For purposes of this disclosure, the term “coupled” (in all of its form, couple, coupling, coupled, etc.) generally means the joining of two components (electrical or mechanical) directly or indirectly to one another. Such joining may be stationary in nature or movable in nature. Such joining may be achieved with the two components (electrical or mechanical) and any additional intermediate members being integrally formed as a single unitary body with one another or with the two components. Such joining may be permanent in nature or may be removable or releasable in nature unless otherwise stated.
It is also important to note that the construction and arrangement of the elements of the disclosure as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present innovations have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements shown as multiple parts may be integrally formed, the operation of the interfaces may be reversed or otherwise varied, the length or width of the structures and/or members or connector or other elements of the system may be varied, the nature or number of adjustment positions provided between the elements may be varied. It should be noted that the elements and/or assemblies of the system may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present innovations. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the desired and other exemplary embodiments without departing from the spirit of the present innovations.
It will be understood that any described processes or steps within described processes may be combined with other disclosed processes or steps to form structures within the scope of the present disclosure. The exemplary structures and processes disclosed herein are for illustrative purposes and are not to be construed as limiting.
It is also to be understood that variations and modifications can be made on the aforementioned structures and methods without departing from the concepts of the present disclosure, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
This application is a continuation of and claims priority to U.S. patent application Ser. No. 15/157,056, filed on May 17, 2016, entitled “FULL DISPLAY REARVIEW DEVICE,” (now U.S. Pat. No. 10,112,540) and the benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/163,226, filed on May 18, 2015, entitled “REARVIEW DEVICE,” the disclosures of which are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2131888 | Harris | Oct 1938 | A |
2632040 | Rabinow | Mar 1953 | A |
2827594 | Rabinow | Mar 1958 | A |
3179845 | Kulwiec | Apr 1965 | A |
3581276 | Newman | May 1971 | A |
3663819 | Hicks et al. | May 1972 | A |
3837129 | Losell | Sep 1974 | A |
4109235 | Bouthors | Aug 1978 | A |
4139801 | Linares | Feb 1979 | A |
4151526 | Hinachi et al. | Apr 1979 | A |
4214266 | Myers | Jul 1980 | A |
4236099 | Rosenblum | Nov 1980 | A |
4257703 | Goodrich | Mar 1981 | A |
4258979 | Mahin | Mar 1981 | A |
4277804 | Robison | Jul 1981 | A |
4286308 | Wolff | Aug 1981 | A |
4310851 | Pierrat | Jan 1982 | A |
4357558 | Massoni et al. | Nov 1982 | A |
4376909 | Tagami et al. | Mar 1983 | A |
4479173 | Rumpakis | Oct 1984 | A |
4499451 | Suzuki et al. | Feb 1985 | A |
D283998 | Tanaka | May 1986 | S |
4599544 | Martin | Jul 1986 | A |
4630904 | Pastore | Dec 1986 | A |
4638287 | Umebayashi et al. | Jan 1987 | A |
4645975 | Meitzler et al. | Feb 1987 | A |
4665321 | Chang et al. | May 1987 | A |
4665430 | Hiroyasu | May 1987 | A |
4692798 | Seko et al. | Sep 1987 | A |
4716298 | Etoh | Dec 1987 | A |
4727290 | Smith et al. | Feb 1988 | A |
4740838 | Mase et al. | Apr 1988 | A |
4768135 | Kretschmer et al. | Aug 1988 | A |
4862037 | Farber et al. | Aug 1989 | A |
4891559 | Matsumoto et al. | Jan 1990 | A |
4902108 | Byker | Feb 1990 | A |
4910591 | Petrossian et al. | Mar 1990 | A |
4930742 | Schofield et al. | Jun 1990 | A |
4934273 | Endriz | Jun 1990 | A |
4967319 | Seko | Oct 1990 | A |
5005213 | Hanson et al. | Apr 1991 | A |
5008946 | Ando | Apr 1991 | A |
5027200 | Petrossian et al. | Jun 1991 | A |
5036437 | Macks | Jul 1991 | A |
5052163 | Czekala | Oct 1991 | A |
5066112 | Lynam et al. | Nov 1991 | A |
5069535 | Baucke et al. | Dec 1991 | A |
5072154 | Chen | Dec 1991 | A |
5073012 | Lynam | Dec 1991 | A |
5076673 | Lynam et al. | Dec 1991 | A |
5086253 | Lawler | Feb 1992 | A |
5096287 | Kakinami et al. | Mar 1992 | A |
5115346 | Lynam | May 1992 | A |
5121200 | Choi et al. | Jun 1992 | A |
5124549 | Michaels et al. | Jun 1992 | A |
5128799 | Byker | Jul 1992 | A |
5151824 | O'Farrell | Sep 1992 | A |
5158638 | Osanami et al. | Oct 1992 | A |
5166681 | Bottesch et al. | Nov 1992 | A |
5182502 | Slotkowski et al. | Jan 1993 | A |
5187383 | Taccetta et al. | Feb 1993 | A |
5197562 | Kakinami et al. | Mar 1993 | A |
5207492 | Roberts | May 1993 | A |
5230400 | Kakinami et al. | Jul 1993 | A |
5235178 | Hegyi | Aug 1993 | A |
5243417 | Pollard | Sep 1993 | A |
5253109 | O'Farrell et al. | Oct 1993 | A |
5278693 | Theiste | Jan 1994 | A |
5280380 | Byker | Jan 1994 | A |
5282077 | Byker | Jan 1994 | A |
5289321 | Secor | Feb 1994 | A |
5294376 | Byker | Mar 1994 | A |
5296924 | Blancard et al. | Mar 1994 | A |
D346356 | Leu | Apr 1994 | S |
5304980 | Maekawa | Apr 1994 | A |
5329206 | Slotkowski et al. | Jul 1994 | A |
5336448 | Byker | Aug 1994 | A |
5347261 | Adell | Sep 1994 | A |
5347459 | Greenspan et al. | Sep 1994 | A |
5355146 | Chiu et al. | Oct 1994 | A |
5379104 | Takao | Jan 1995 | A |
5379146 | Defendini | Jan 1995 | A |
5381309 | Borchardt | Jan 1995 | A |
5386285 | Asayama | Jan 1995 | A |
5396054 | Krichever et al. | Mar 1995 | A |
5402170 | Parulski et al. | Mar 1995 | A |
5408357 | Beukema | Apr 1995 | A |
5414461 | Kishi et al. | May 1995 | A |
5416318 | Hegyi | May 1995 | A |
5418610 | Fischer | May 1995 | A |
5421940 | Cornils et al. | Jun 1995 | A |
5424952 | Asayama | Jun 1995 | A |
5426294 | Kobayashi et al. | Jun 1995 | A |
5428464 | Silverbrook | Jun 1995 | A |
5430450 | Holmes | Jul 1995 | A |
5434407 | Bauer et al. | Jul 1995 | A |
5448397 | Tonar | Sep 1995 | A |
5451822 | Bechtel et al. | Sep 1995 | A |
5452004 | Roberts | Sep 1995 | A |
5469298 | Suman et al. | Nov 1995 | A |
5471515 | Fossum et al. | Nov 1995 | A |
5475441 | Parulski et al. | Dec 1995 | A |
5475494 | Nishida et al. | Dec 1995 | A |
5481268 | Higgins | Jan 1996 | A |
5483346 | Butzer | Jan 1996 | A |
5483453 | Uemura et al. | Jan 1996 | A |
5485155 | Hibino | Jan 1996 | A |
5485378 | Franke et al. | Jan 1996 | A |
5488496 | Pine | Jan 1996 | A |
5508592 | Lapatovich et al. | Apr 1996 | A |
5515448 | Nishitani | May 1996 | A |
5523811 | Wada et al. | Jun 1996 | A |
5530421 | Marshall et al. | Jun 1996 | A |
5535144 | Kise | Jul 1996 | A |
5537003 | Bechtel et al. | Jul 1996 | A |
5541590 | Nishio | Jul 1996 | A |
5541724 | Hoashi | Jul 1996 | A |
5550677 | Schofield et al. | Aug 1996 | A |
5554912 | Thayer et al. | Sep 1996 | A |
3280701 | Donnelly et al. | Oct 1996 | A |
5574443 | Hsieh | Nov 1996 | A |
5574463 | Shirai et al. | Nov 1996 | A |
5576975 | Sasaki et al. | Nov 1996 | A |
5587929 | League et al. | Dec 1996 | A |
5592146 | Kover, Jr. et al. | Jan 1997 | A |
5602542 | Windmann et al. | Feb 1997 | A |
5614788 | Mullins et al. | Mar 1997 | A |
5615023 | Yang | Mar 1997 | A |
5617085 | Tsutsumi et al. | Apr 1997 | A |
5621460 | Hatlestad et al. | Apr 1997 | A |
5634709 | Iwama | Jun 1997 | A |
5642238 | Sala | Jun 1997 | A |
5646614 | Abersfelder et al. | Jul 1997 | A |
5649756 | Adams et al. | Jul 1997 | A |
5650765 | Park | Jul 1997 | A |
5660454 | Mori et al. | Aug 1997 | A |
5666028 | Bechtel et al. | Sep 1997 | A |
5670935 | Schofield et al. | Sep 1997 | A |
5679283 | Tonar | Oct 1997 | A |
5680123 | Lee | Oct 1997 | A |
5682267 | Tonar | Oct 1997 | A |
5684473 | Hibino et al. | Nov 1997 | A |
5689370 | Tonar | Nov 1997 | A |
5707129 | Kobayashi | Jan 1998 | A |
5708410 | Blank et al. | Jan 1998 | A |
5708857 | Ishibashi | Jan 1998 | A |
5710565 | Shirai et al. | Jan 1998 | A |
5714751 | Chen | Feb 1998 | A |
5715093 | Schierbeek et al. | Feb 1998 | A |
5729194 | Spears et al. | Mar 1998 | A |
5736816 | Strenke et al. | Apr 1998 | A |
5742026 | Dickinson | Apr 1998 | A |
5745050 | Nakagawa | Apr 1998 | A |
5751211 | Shirai et al. | May 1998 | A |
5751832 | Panter et al. | May 1998 | A |
5754099 | Nishimura et al. | May 1998 | A |
5760828 | Cortes | Jun 1998 | A |
5764139 | Nojima et al. | Jun 1998 | A |
5767793 | Agravante et al. | Jun 1998 | A |
5781105 | Bitar et al. | Jul 1998 | A |
5786787 | Eriksson et al. | Jul 1998 | A |
5790298 | Tonar | Aug 1998 | A |
5793308 | Rosinski et al. | Aug 1998 | A |
5793420 | Schmidt et al. | Aug 1998 | A |
5796094 | Schofield et al. | Aug 1998 | A |
5798727 | Shirai et al. | Aug 1998 | A |
5803579 | Turnbull | Sep 1998 | A |
5808778 | Bauer et al. | Sep 1998 | A |
5811888 | Hsieh | Sep 1998 | A |
5812321 | Schierbeek et al. | Sep 1998 | A |
5818625 | Forgette et al. | Oct 1998 | A |
5825527 | Forgette et al. | Oct 1998 | A |
D400481 | Stephens et al. | Nov 1998 | S |
D401200 | Huang | Nov 1998 | S |
5837994 | Stam et al. | Nov 1998 | A |
5841126 | Fossum et al. | Nov 1998 | A |
5844505 | Van Ryzin | Dec 1998 | A |
5845000 | Breed et al. | Dec 1998 | A |
5850146 | Kinoshita et al. | Dec 1998 | A |
5867214 | Anderson et al. | Feb 1999 | A |
5877897 | Schofield et al. | Mar 1999 | A |
5883739 | Ashihara et al. | Mar 1999 | A |
5888431 | Tonar et al. | Mar 1999 | A |
5896119 | Evanicky et al. | Apr 1999 | A |
5904729 | Ruzicka | May 1999 | A |
5905457 | Rashid | May 1999 | A |
D410607 | Carter | Jun 1999 | S |
5912534 | Benedict | Jun 1999 | A |
5923027 | Stam et al. | Jul 1999 | A |
5923457 | Byker et al. | Jul 1999 | A |
5928572 | Tonar et al. | Jul 1999 | A |
5935613 | Benham et al. | Aug 1999 | A |
5940011 | Agravante et al. | Aug 1999 | A |
5940201 | Ash et al. | Aug 1999 | A |
5942853 | Piscart | Aug 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
5956012 | Turnbull et al. | Sep 1999 | A |
5956079 | Ridgley | Sep 1999 | A |
5956181 | Lin | Sep 1999 | A |
5959555 | Furuta | Sep 1999 | A |
5990469 | Bechtel et al. | Nov 1999 | A |
5998617 | Srinvasa | Dec 1999 | A |
6002511 | Varaprasad | Dec 1999 | A |
6008486 | Stam et al. | Dec 1999 | A |
6009359 | El-Hakim et al. | Dec 1999 | A |
6018308 | Shirai | Jan 2000 | A |
6020987 | Baumann | Feb 2000 | A |
6023040 | Zahavi | Feb 2000 | A |
6023229 | Bugno et al. | Feb 2000 | A |
6025872 | Ozaki et al. | Feb 2000 | A |
6037471 | Srinvasa | Mar 2000 | A |
6043452 | Bestenlehrer | Mar 2000 | A |
6046766 | Sakata | Apr 2000 | A |
6049171 | Stam et al. | Apr 2000 | A |
6051956 | Nakashimo | Apr 2000 | A |
6060989 | Gehlot | May 2000 | A |
6061002 | Weber et al. | May 2000 | A |
6062920 | Jordan | May 2000 | A |
6064508 | Forgette et al. | May 2000 | A |
6064509 | Tonar et al. | May 2000 | A |
6067111 | Hahn et al. | May 2000 | A |
6068380 | Lynn et al. | May 2000 | A |
6072391 | Suzuki et al. | Jun 2000 | A |
6078355 | Zengel | Jun 2000 | A |
6084700 | Knapp | Jul 2000 | A |
6097023 | Schofield et al. | Aug 2000 | A |
6102546 | Carter | Aug 2000 | A |
6106121 | Buckley et al. | Aug 2000 | A |
6111498 | Jobes et al. | Aug 2000 | A |
6111683 | Cammenga | Aug 2000 | A |
6111684 | Forgette | Aug 2000 | A |
6115651 | Cruz | Sep 2000 | A |
6122597 | Saneyoshi et al. | Sep 2000 | A |
6128576 | Nishimoto et al. | Oct 2000 | A |
6130421 | Bechtel et al. | Oct 2000 | A |
6130448 | Bauer et al. | Oct 2000 | A |
6132072 | Turnbull | Oct 2000 | A |
6140933 | Bugno et al. | Oct 2000 | A |
6144158 | Beam | Nov 2000 | A |
6151065 | Steed et al. | Nov 2000 | A |
6151539 | Bergholz et al. | Nov 2000 | A |
6154149 | Tychkowski et al. | Nov 2000 | A |
6157294 | Urai et al. | Dec 2000 | A |
6166629 | Andreas | Dec 2000 | A |
6166698 | Turnbull et al. | Dec 2000 | A |
6166848 | Cammenga et al. | Dec 2000 | A |
6167755 | Damson et al. | Jan 2001 | B1 |
6170956 | Rumsey et al. | Jan 2001 | B1 |
6172600 | Kakinami et al. | Jan 2001 | B1 |
6172601 | Wada et al. | Jan 2001 | B1 |
6175300 | Kendrick | Jan 2001 | B1 |
6181242 | Nguyen | Jan 2001 | B1 |
6184781 | Ramakesavan | Feb 2001 | B1 |
6185492 | Kagawa et al. | Feb 2001 | B1 |
6188505 | Lomprey | Feb 2001 | B1 |
6191704 | Takenaga et al. | Feb 2001 | B1 |
6193378 | Tonar et al. | Feb 2001 | B1 |
6193912 | Theiste | Feb 2001 | B1 |
6195194 | Roberts et al. | Feb 2001 | B1 |
6200010 | Anders | Mar 2001 | B1 |
6218934 | Regan | Apr 2001 | B1 |
6222177 | Bechtel | Apr 2001 | B1 |
6222447 | Schofield et al. | Apr 2001 | B1 |
6224716 | Yoder | May 2001 | B1 |
6229435 | Knapp | May 2001 | B1 |
6239898 | Byker | May 2001 | B1 |
6239899 | Devries et al. | May 2001 | B1 |
6244716 | Steenwyk | Jun 2001 | B1 |
6246507 | Bauer | Jun 2001 | B1 |
6247819 | Turnbull | Jun 2001 | B1 |
6249214 | Kashiwazaki | Jun 2001 | B1 |
6249369 | Theiste et al. | Jun 2001 | B1 |
6250766 | Strumolo et al. | Jun 2001 | B1 |
6255639 | Stam et al. | Jul 2001 | B1 |
6259475 | Ramachandran et al. | Jul 2001 | B1 |
6262831 | Bauer | Jul 2001 | B1 |
6262832 | Lomprey | Jul 2001 | B1 |
6265968 | Betzitza et al. | Jul 2001 | B1 |
6268803 | Gunderson et al. | Jul 2001 | B1 |
6268950 | Ash | Jul 2001 | B1 |
6269308 | Kodaka et al. | Jul 2001 | B1 |
6281632 | Stam et al. | Aug 2001 | B1 |
6281804 | Haller et al. | Aug 2001 | B1 |
6289332 | Menig et al. | Sep 2001 | B2 |
6291812 | Bechtel | Sep 2001 | B1 |
6300879 | Regan et al. | Oct 2001 | B1 |
6304173 | Pala et al. | Oct 2001 | B2 |
6313457 | Bauer | Nov 2001 | B1 |
6313892 | Gleckman | Nov 2001 | B2 |
6317057 | Lee | Nov 2001 | B1 |
6317248 | Agrawal et al. | Nov 2001 | B1 |
6320612 | Young | Nov 2001 | B1 |
6324295 | Avionique et al. | Nov 2001 | B1 |
D451869 | Knapp et al. | Dec 2001 | S |
6329925 | Skiver et al. | Dec 2001 | B1 |
6330511 | Ogura et al. | Dec 2001 | B2 |
6335548 | Roberts | Jan 2002 | B1 |
6335680 | Matsuoka | Jan 2002 | B1 |
6344805 | Yasui et al. | Feb 2002 | B1 |
6348858 | Weis et al. | Feb 2002 | B2 |
6349782 | Sekiya et al. | Feb 2002 | B1 |
6356206 | Takenaga et al. | Mar 2002 | B1 |
6356376 | Tonar et al. | Mar 2002 | B1 |
6357883 | Strumolo et al. | Mar 2002 | B1 |
6359274 | Nixon | Mar 2002 | B1 |
6363326 | Scully | Mar 2002 | B1 |
6369701 | Yoshida et al. | Apr 2002 | B1 |
6379013 | Bechtel et al. | Apr 2002 | B1 |
6392783 | Lomprey | May 2002 | B1 |
6396040 | Hill | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6402328 | Bechtel | Jun 2002 | B1 |
6403942 | Stam | Jun 2002 | B1 |
6407468 | LeVesque et al. | Jun 2002 | B1 |
6407847 | Poll et al. | Jun 2002 | B1 |
6408247 | Ichikawa et al. | Jun 2002 | B1 |
6412959 | Tseng | Jul 2002 | B1 |
6415230 | Maruko et al. | Jul 2002 | B1 |
6420800 | Levesque | Jul 2002 | B1 |
6421081 | Markus | Jul 2002 | B1 |
6424272 | Gutta et al. | Jul 2002 | B1 |
6424273 | Gutta et al. | Jul 2002 | B1 |
6424892 | Matsuoka | Jul 2002 | B1 |
6426485 | Buliajewski | Jul 2002 | B1 |
6428172 | Hutzel et al. | Aug 2002 | B1 |
6429594 | Stam | Aug 2002 | B1 |
6433680 | Ho | Aug 2002 | B1 |
6437688 | Kobayashi | Aug 2002 | B1 |
6438491 | Farmer | Aug 2002 | B1 |
6441872 | Ho | Aug 2002 | B1 |
6441943 | Roberts | Aug 2002 | B1 |
6442465 | Breed et al. | Aug 2002 | B2 |
6443585 | Saccomanno | Sep 2002 | B1 |
6443602 | Tanabe et al. | Sep 2002 | B1 |
6447128 | Lang et al. | Sep 2002 | B1 |
6447130 | Chu | Sep 2002 | B2 |
6452533 | Yamabuchi et al. | Sep 2002 | B1 |
6463369 | Sadano et al. | Oct 2002 | B2 |
6465962 | Fu et al. | Oct 2002 | B1 |
6465963 | Turnbull | Oct 2002 | B1 |
6466701 | Ejiri et al. | Oct 2002 | B1 |
6469739 | Bechtel et al. | Oct 2002 | B1 |
6471362 | Carter | Oct 2002 | B1 |
6472977 | Pochmuller | Oct 2002 | B1 |
6473001 | Blum | Oct 2002 | B1 |
6476731 | Miki et al. | Nov 2002 | B1 |
6476855 | Yamamoto | Nov 2002 | B1 |
6483429 | Yasui et al. | Nov 2002 | B1 |
6483438 | DeLine et al. | Nov 2002 | B2 |
6487500 | Lemelson et al. | Nov 2002 | B2 |
6491416 | Strazzanti | Dec 2002 | B1 |
6498620 | Schofield et al. | Dec 2002 | B2 |
6501387 | Skiver et al. | Dec 2002 | B2 |
6504142 | Nixon | Jan 2003 | B2 |
6507779 | Breed et al. | Jan 2003 | B2 |
6512624 | Tonar | Jan 2003 | B2 |
6515581 | Ho | Feb 2003 | B1 |
6515597 | Wada et al. | Feb 2003 | B1 |
6520667 | Mousseau | Feb 2003 | B1 |
6521916 | Roberts | Feb 2003 | B2 |
6522969 | Kannonji | Feb 2003 | B2 |
6523976 | Turnbull | Feb 2003 | B1 |
D471847 | Rumsey et al. | Mar 2003 | S |
6535126 | Lin et al. | Mar 2003 | B2 |
6542085 | Yang | Apr 2003 | B1 |
6542182 | Chutorash | Apr 2003 | B1 |
6545598 | de Villeroche | Apr 2003 | B1 |
6545794 | Ash | Apr 2003 | B2 |
6550943 | Strazzanti | Apr 2003 | B2 |
6553130 | Lemelson et al. | Apr 2003 | B1 |
6558026 | Strazzanti | May 2003 | B2 |
6559761 | Miller et al. | May 2003 | B1 |
6572233 | Northman et al. | Jun 2003 | B1 |
6580373 | Ohashi | Jun 2003 | B1 |
6581007 | Hasegawa et al. | Jun 2003 | B2 |
6583730 | Lang et al. | Jun 2003 | B2 |
6575643 | Takashashi | Jul 2003 | B2 |
6587573 | Stam et al. | Jul 2003 | B1 |
6591192 | Okamura et al. | Jul 2003 | B2 |
6594583 | Ogura et al. | Jul 2003 | B2 |
6594614 | Studt et al. | Jul 2003 | B2 |
6606183 | Ikai et al. | Aug 2003 | B2 |
6611202 | Schofield et al. | Aug 2003 | B2 |
6611227 | Nebiyeloul-Kifle | Aug 2003 | B1 |
6611610 | Stam et al. | Aug 2003 | B1 |
6611759 | Brosche | Aug 2003 | B2 |
6612708 | Chu | Sep 2003 | B2 |
6614387 | Deadman | Sep 2003 | B1 |
6614579 | Roberts et al. | Sep 2003 | B2 |
6616764 | Kramer et al. | Sep 2003 | B2 |
6617564 | Ockerse et al. | Sep 2003 | B2 |
6618672 | Sasaki et al. | Sep 2003 | B2 |
6630888 | Lang et al. | Oct 2003 | B2 |
6631316 | Stam et al. | Oct 2003 | B2 |
6635194 | Kloeppner | Oct 2003 | B2 |
6636258 | Strumolo | Oct 2003 | B2 |
6642840 | Lang et al. | Nov 2003 | B2 |
6642851 | DeLine et al. | Nov 2003 | B2 |
6648477 | Hutzel et al. | Nov 2003 | B2 |
6650457 | Busscher et al. | Nov 2003 | B2 |
6657767 | Bonardi | Dec 2003 | B2 |
6665592 | Kodama | Dec 2003 | B2 |
6670207 | Roberts | Dec 2003 | B1 |
6670910 | Delcheccolo et al. | Dec 2003 | B2 |
6674370 | Rodewald et al. | Jan 2004 | B2 |
6675075 | Engelsberg et al. | Jan 2004 | B1 |
6677986 | Pöchmüller | Jan 2004 | B1 |
6683539 | Trajkovic et al. | Jan 2004 | B2 |
6683969 | Nishigaki et al. | Jan 2004 | B1 |
6690268 | Schofield et al. | Feb 2004 | B2 |
6690413 | Moore | Feb 2004 | B1 |
6693517 | McCarty et al. | Feb 2004 | B2 |
6693518 | Kumata | Feb 2004 | B2 |
6693519 | Keirstead | Feb 2004 | B2 |
6693524 | Payne | Feb 2004 | B1 |
6700692 | Tonar | Mar 2004 | B2 |
6717610 | Bos et al. | Apr 2004 | B1 |
6727808 | Uselmann et al. | Apr 2004 | B1 |
6727844 | Zimmermann et al. | Apr 2004 | B1 |
6731332 | Yasui et al. | May 2004 | B1 |
6734807 | King | May 2004 | B2 |
6737964 | Samman et al. | May 2004 | B2 |
6738088 | Uskolovsky et al. | May 2004 | B1 |
6744353 | Sjonell | Jun 2004 | B2 |
6746122 | Knox | Jun 2004 | B2 |
D493131 | Lawlor et al. | Jul 2004 | S |
D493394 | Lawlor et al. | Jul 2004 | S |
6768566 | Walker | Jul 2004 | B2 |
6772057 | Breed et al. | Aug 2004 | B2 |
6774988 | Stam et al. | Aug 2004 | B2 |
6781738 | Kikuchi et al. | Aug 2004 | B2 |
6816145 | Evanicky | Nov 2004 | B1 |
6816297 | Tonar | Nov 2004 | B1 |
D499678 | Bradley | Dec 2004 | S |
6846098 | Bourdelais et al. | Jan 2005 | B2 |
6847487 | Burgner | Jan 2005 | B2 |
6853413 | Larson | Feb 2005 | B2 |
6861809 | Stam | Mar 2005 | B2 |
6870656 | Tonar et al. | Mar 2005 | B2 |
6902284 | Hutzel et al. | Jun 2005 | B2 |
6902307 | Strazzanti | Jun 2005 | B2 |
6912001 | Okamoto et al. | Jun 2005 | B2 |
6913375 | Strazzanti | Jul 2005 | B2 |
6923080 | Dobler et al. | Aug 2005 | B1 |
6930737 | Weindorf et al. | Aug 2005 | B2 |
6934080 | Saccomanno et al. | Aug 2005 | B2 |
6946978 | Schofield | Sep 2005 | B2 |
6958495 | Nishijima et al. | Oct 2005 | B2 |
6968273 | Ockerse | Nov 2005 | B2 |
7012543 | DeLine et al. | Mar 2006 | B2 |
7038577 | Pawlicki et al. | May 2006 | B2 |
7042616 | Tonar et al. | May 2006 | B2 |
7046448 | Burgner | May 2006 | B2 |
7064882 | Tonar | Jun 2006 | B2 |
7175291 | Li | Feb 2007 | B1 |
7255465 | DeLine et al. | Aug 2007 | B2 |
7262406 | Heslin et al. | Aug 2007 | B2 |
7265342 | Heslin et al. | Sep 2007 | B2 |
D553061 | Schmidt et al. | Oct 2007 | S |
7285903 | Cull et al. | Oct 2007 | B2 |
7287868 | Carter | Oct 2007 | B2 |
7292208 | Park et al. | Nov 2007 | B1 |
7311428 | DeLine et al. | Dec 2007 | B2 |
7321112 | Stem et al. | Jan 2008 | B2 |
7324261 | Tonar et al. | Jan 2008 | B2 |
7342707 | Roberts | Mar 2008 | B2 |
7349143 | Tonar et al. | Mar 2008 | B2 |
7360932 | Uken et al. | Apr 2008 | B2 |
7362237 | Lawlor | Apr 2008 | B2 |
7417221 | Creswick et al. | Aug 2008 | B2 |
7417717 | Pack | Aug 2008 | B2 |
7446650 | Schofield et al. | Nov 2008 | B2 |
7467883 | DeLine et al. | Dec 2008 | B2 |
7468651 | DeLine et al. | Dec 2008 | B2 |
7505047 | Yoshimura | Mar 2009 | B2 |
7533998 | Schofield et al. | May 2009 | B2 |
7548291 | Lee et al. | Jun 2009 | B2 |
7565006 | Stam et al. | Jul 2009 | B2 |
7567291 | Bechtel et al. | Jul 2009 | B2 |
7579940 | Schofield et al. | Aug 2009 | B2 |
7592563 | Wissenbach | Sep 2009 | B2 |
7619508 | Lynam et al. | Nov 2009 | B2 |
7626749 | Baur et al. | Dec 2009 | B2 |
7653215 | Stam | Jan 2010 | B2 |
7658521 | DeLine et al. | Feb 2010 | B2 |
7663798 | Tonar | Feb 2010 | B2 |
7683326 | Stam et al. | Mar 2010 | B2 |
7688495 | Tonar et al. | Mar 2010 | B2 |
7706046 | Bauer et al. | Apr 2010 | B2 |
7711479 | Taylor et al. | May 2010 | B2 |
7719408 | Deward et al. | May 2010 | B2 |
7720580 | Higgins-Luthman | May 2010 | B2 |
7746534 | Tonar et al. | Jun 2010 | B2 |
7815326 | Blank et al. | Oct 2010 | B2 |
7817020 | Turnbull et al. | Oct 2010 | B2 |
7821696 | Tonar et al. | Oct 2010 | B2 |
7830583 | Neuman et al. | Nov 2010 | B2 |
7864399 | McCabe et al. | Jan 2011 | B2 |
7877175 | Higgins-Luthman | Jan 2011 | B2 |
7881496 | Camilleri et al. | Feb 2011 | B2 |
7881839 | Stem et al. | Feb 2011 | B2 |
7888629 | Heslin et al. | Feb 2011 | B2 |
7914188 | DeLine et al. | Mar 2011 | B2 |
7972045 | Schofield | Jul 2011 | B2 |
7978393 | Tonar et al. | Jul 2011 | B2 |
7994471 | Heslin et al. | Aug 2011 | B2 |
8031225 | Watanabe et al. | Oct 2011 | B2 |
8035881 | Luten et al. | Oct 2011 | B2 |
8045760 | Stam et al. | Oct 2011 | B2 |
8059235 | Utsumi et al. | Nov 2011 | B2 |
8063753 | DeLine et al. | Nov 2011 | B2 |
8090153 | Schofield et al. | Jan 2012 | B2 |
8095310 | Taylor et al. | Jan 2012 | B2 |
8100568 | DeLine et al. | Jan 2012 | B2 |
8116929 | Higgins-Luthman | Feb 2012 | B2 |
8120652 | Bechtel et al. | Feb 2012 | B2 |
8142059 | Higgins-Luthman et al. | Mar 2012 | B2 |
8162518 | Schofield | Apr 2012 | B2 |
8194133 | DeWind et al. | Jun 2012 | B2 |
8201800 | Filipiak | Jun 2012 | B2 |
8203433 | Deuber et al. | Jun 2012 | B2 |
8217830 | Lynam | Jul 2012 | B2 |
8222588 | Schofield et al. | Jul 2012 | B2 |
8237909 | Ostreko et al. | Aug 2012 | B2 |
8258433 | Byers et al. | Sep 2012 | B2 |
8282226 | Blank et al. | Oct 2012 | B2 |
8325028 | Schofield et al. | Dec 2012 | B2 |
8339526 | Minikey, Jr. et al. | Dec 2012 | B2 |
8475018 | Belcher et al. | Jul 2013 | B2 |
8482683 | Hwang et al. | Jul 2013 | B2 |
8520069 | Haler | Aug 2013 | B2 |
8559092 | Bugno et al. | Oct 2013 | B2 |
8564662 | Busch et al. | Oct 2013 | B2 |
8779910 | DeLine et al. | Jul 2014 | B2 |
D729714 | Roth | May 2015 | S |
9134585 | Tonar et al. | Sep 2015 | B2 |
D746744 | Sloterbeek et al. | Jan 2016 | S |
9319639 | Englander et al. | Apr 2016 | B1 |
D755097 | Lin | May 2016 | S |
10071689 | VanderPloeg et al. | Sep 2018 | B2 |
20010019356 | Takeda et al. | Sep 2001 | A1 |
20010022616 | Rademacher et al. | Sep 2001 | A1 |
20010026316 | Senatore | Oct 2001 | A1 |
20010045981 | Gloger et al. | Nov 2001 | A1 |
20020040962 | Schofield et al. | Apr 2002 | A1 |
20020044065 | Quist et al. | Apr 2002 | A1 |
20020080021 | Skiver et al. | Jun 2002 | A1 |
20020191127 | Roberts et al. | Dec 2002 | A1 |
20030002165 | Mathias et al. | Jan 2003 | A1 |
20030007261 | Hutzel et al. | Jan 2003 | A1 |
20030016125 | Lang et al. | Jan 2003 | A1 |
20030016287 | Nakayama et al. | Jan 2003 | A1 |
20030025596 | Lang et al. | Feb 2003 | A1 |
20030025597 | Schofield | Feb 2003 | A1 |
20030030546 | Tseng | Feb 2003 | A1 |
20030030551 | Ho | Feb 2003 | A1 |
20030030724 | Okamoto | Feb 2003 | A1 |
20030035050 | Mizusawa | Feb 2003 | A1 |
20030043269 | Park | Mar 2003 | A1 |
20030052969 | Satoh et al. | Mar 2003 | A1 |
20030058338 | Kawauchi et al. | Mar 2003 | A1 |
20030067383 | Yang | Apr 2003 | A1 |
20030076415 | Strumolo | Apr 2003 | A1 |
20030080877 | Takagi et al. | May 2003 | A1 |
20030085806 | Samman et al. | May 2003 | A1 |
20030088361 | Sekiguchi | May 2003 | A1 |
20030090568 | Pico | May 2003 | A1 |
20030090569 | Poechmueller | May 2003 | A1 |
20030090570 | Takagi et al. | May 2003 | A1 |
20030098908 | Misaiji et al. | May 2003 | A1 |
20030103141 | Bechtel et al. | Jun 2003 | A1 |
20030103142 | Hitomi et al. | Jun 2003 | A1 |
20030117522 | Okada | Jun 2003 | A1 |
20030122929 | Minaudo et al. | Jul 2003 | A1 |
20030122930 | Schofield et al. | Jul 2003 | A1 |
20030133014 | Mendoza | Jul 2003 | A1 |
20030137586 | Lewellen | Jul 2003 | A1 |
20030141965 | Gunderson et al. | Jul 2003 | A1 |
20030146831 | Berberich et al. | Aug 2003 | A1 |
20030169158 | Paul, Jr. | Sep 2003 | A1 |
20030179293 | Oizumi | Sep 2003 | A1 |
20030202096 | Kim | Oct 2003 | A1 |
20030202357 | Strazzanti | Oct 2003 | A1 |
20030214576 | Koga | Nov 2003 | A1 |
20030214584 | Ross, Jr. | Nov 2003 | A1 |
20030214733 | Fujikawa et al. | Nov 2003 | A1 |
20030222793 | Tanaka et al. | Dec 2003 | A1 |
20030222983 | Nobori et al. | Dec 2003 | A1 |
20030227546 | Hilborn et al. | Dec 2003 | A1 |
20040004541 | Hong | Jan 2004 | A1 |
20040027695 | Lin | Jan 2004 | A1 |
20040032321 | McMahon et al. | Feb 2004 | A1 |
20040036768 | Green | Feb 2004 | A1 |
20040075603 | Kodama | Feb 2004 | A1 |
20040051634 | Schofield et al. | Mar 2004 | A1 |
20040056955 | Berberich et al. | Mar 2004 | A1 |
20040057131 | Hutzel et al. | Mar 2004 | A1 |
20040064241 | Sekiguchi | Apr 2004 | A1 |
20040066285 | Sekiguchi | Apr 2004 | A1 |
20040080404 | White | Apr 2004 | A1 |
20040080431 | White | Apr 2004 | A1 |
20040085196 | Miller et al. | May 2004 | A1 |
20040090314 | Iwamoto | May 2004 | A1 |
20040090317 | Rothkop | May 2004 | A1 |
20040096082 | Nakai et al. | May 2004 | A1 |
20040098196 | Sekiguchi | May 2004 | A1 |
20040107030 | Nishira et al. | Jun 2004 | A1 |
20040107617 | Shoen et al. | Jun 2004 | A1 |
20040109060 | Ishii | Jun 2004 | A1 |
20040114039 | Ishikura | Jun 2004 | A1 |
20040119668 | Homma et al. | Jun 2004 | A1 |
20040125905 | Vlasenko et al. | Jul 2004 | A1 |
20040196577 | Carter et al. | Oct 2004 | A1 |
20040202001 | Roberts et al. | Oct 2004 | A1 |
20050099693 | Schofield et al. | May 2005 | A1 |
20050140855 | Utsumi | Jun 2005 | A1 |
20050237440 | Sugimura et al. | Oct 2005 | A1 |
20060007550 | Tonar et al. | Jan 2006 | A1 |
20060115759 | Kim et al. | Jun 2006 | A1 |
20060139953 | Chou et al. | Jun 2006 | A1 |
20060158899 | Ayabe et al. | Jul 2006 | A1 |
20070146481 | Chen et al. | Jun 2007 | A1 |
20070171037 | Schofield et al. | Jul 2007 | A1 |
20080030836 | Tonar et al. | Feb 2008 | A1 |
20080068520 | Minikey, Jr. et al. | Mar 2008 | A1 |
20080192132 | Bechtel et al. | Aug 2008 | A1 |
20080247192 | Hoshi et al. | Oct 2008 | A1 |
20080294315 | Breed | Nov 2008 | A1 |
20080302657 | Luten et al. | Dec 2008 | A1 |
20090015736 | Weller et al. | Jan 2009 | A1 |
20090141516 | Wu et al. | Jun 2009 | A1 |
20090296190 | Anderson et al. | Dec 2009 | A1 |
20100110553 | Anderson et al. | May 2010 | A1 |
20100194890 | Weller et al. | Aug 2010 | A1 |
20100201896 | Ostreko et al. | Aug 2010 | A1 |
20100277786 | Anderson et al. | Nov 2010 | A1 |
20100289995 | Hwang et al. | Nov 2010 | A1 |
20100328463 | Haler | Dec 2010 | A1 |
20110168687 | Door | Jul 2011 | A1 |
20110176323 | Skiver et al. | Jul 2011 | A1 |
20110181727 | Weller et al. | Jul 2011 | A1 |
20110242667 | Kulas et al. | Oct 2011 | A1 |
20110255297 | Belcher et al. | Oct 2011 | A1 |
20110317015 | Seto et al. | Dec 2011 | A1 |
20120038964 | De Wind et al. | Feb 2012 | A1 |
20120069444 | Campbell et al. | Mar 2012 | A1 |
20120182242 | Lindahl et al. | Jul 2012 | A1 |
20120229882 | Fish, Jr. et al. | Sep 2012 | A1 |
20120236388 | De Wind et al. | Sep 2012 | A1 |
20130028473 | Hilldore et al. | Jan 2013 | A1 |
20130170013 | Tonar et al. | Jul 2013 | A1 |
20130279014 | Fish, Jr. et al. | Oct 2013 | A1 |
20140022390 | Blank et al. | Jan 2014 | A1 |
20140043479 | Busch et al. | Feb 2014 | A1 |
20140192431 | Sloterbeek et al. | Jul 2014 | A1 |
20140347488 | Tazaki et al. | Nov 2014 | A1 |
20150085337 | Lee et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
1397452 | Feb 2003 | CN |
102010064082 | Jun 2012 | DE |
0513476 | Nov 1992 | EP |
434453 | Apr 1997 | EP |
0899157 | Oct 2004 | EP |
2393691 | May 2014 | EP |
2789505 | Oct 2014 | EP |
2845921 | Mar 2015 | EP |
2338363 | Dec 1999 | GB |
H07242147 | Sep 1995 | JP |
H07267002 | Oct 1995 | JP |
H1178693 | Mar 1999 | JP |
2002096685 | Apr 2002 | JP |
2002120649 | Apr 2002 | JP |
2002200936 | Jul 2002 | JP |
2005102206 | Apr 2005 | JP |
2005148119 | Jun 2005 | JP |
2005327600 | Nov 2005 | JP |
2008139819 | Jun 2008 | JP |
2009158451 | Jul 2009 | JP |
2009542505 | Dec 2009 | JP |
2010173460 | Aug 2010 | JP |
2011037436 | Feb 2011 | JP |
2011076834 | Apr 2011 | JP |
2013037334 | Feb 2013 | JP |
2013244753 | Dec 2013 | JP |
2013246324 | Dec 2013 | JP |
0138008 | Apr 1999 | KR |
20100123433 | Nov 2010 | KR |
9621581 | Jul 1996 | WO |
2007006104 | Jan 2007 | WO |
2007103573 | Sep 2007 | WO |
2010090964 | Aug 2010 | WO |
2011044312 | Apr 2011 | WO |
2013084622 | Jun 2013 | WO |
2013162985 | Oct 2013 | WO |
Entry |
---|
Palalau et al., “FPD Evaluation for Automotive Application,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 97-103, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Adler, “A New Automotive AMLCD Module,” Proceedings of the Vehicle Display Symposium, Nov. 2, 1995, pp. 67-71, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Sayer, et al., “In-Vehicle Displays for Crash Avoidance and Navigation Systems,” Proceedings of the Vehicle Display Symposium, Sep. 18, 1996, pp. 39-42, Society for Information Display, Detroit Chapter, Santa Ana, CA. |
Knoll, et al., “Application of Graphic Displays in Automobiles,” SID 87 Digest, 1987, pp. 41-44, 5A.2. |
Terada, et al., “Development of Central Information Display of Automotive Application,” SID 89 Digest, 1989, pp. 192-195, Society for Information Display, Detroit Center, Santa Ana, CA. |
Thomsen, et al., “AMLCD Design Considerations for Avionics and Vetronics Applications,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 139-145, Society for Information Display, Metropolitan Detroit Chapter, CA. |
Knoll, et al., “Conception of an Integrated Driver Information System,” SID International Symposium Digest of Technical Papers, 1990, pp. 126-129, Society for Information Display, Detroit Center, Santa Ana, CA. |
Vincen, “An Analysis of Direct-View FPDs for Automotive Multi-Media Applications,” Proceedings of the 6th Annual Strategic and Technical Symposium “Vehicular Applications of Displays and Microsensors,” Sep. 22-23, 1999, pp. 39-46, Society for Information Display, Metropolitan Detroit Chapter, San Jose, CA. |
Zuk, et al., “Flat Panel Display Applications in Agriculture Equipment,” Proceedings of the 5th Annual Flat Panel Display Strategic and Technical Symposium, Sep. 9-10, 1998, pp. 125-130, Society for Information Display, Metropolitan Detroit Chapter, CA. |
Vijan, et al., “A 1.7-Mpixel Full-Color Diode Driven AM-LCD,” SID International Symposium, 1990, pp. 530-533, Society for Information Display, Playa del Rey, CA. |
Vincen, “The Automotive Challenge to Active Matrix LCD Technology,” Proceedings of the Vehicle Display Symposium, 1996, pp. 17-21, Society for Information Display, Detroit Center, Santa Ana, CA. |
Corsi, et al., “Reconfigurable Displays Used as Primary Automotive Instrumentation,” SAE Technical Paper Series, 1989, pp. 13-18, Society of Automotive Engineers, Inc., Warrendale, PA. |
Schumacher, “Automotive Display Trends,” SID 96 Digest, 1997, pp. 1-6, Delco Electronics Corp., Kokomo, IN. |
Knoll, “The Use of Displays in Automotive Applications,” Journal of the SID 5/3 1997, pp. 165-172, 315-316, Stuttgart, Germany. |
Donofrio, “Looking Beyond the Dashboard,” SID 2002, pp. 30-34, Ann Arbor, MI. |
Stone, “Automotive Display Specification,” Proceedings of the Vehicle Display Symposium, 1995, pp. 93-96, Society for Information Display, Detroit Center, Santa Ana, CA. |
Korean Intellectual Property Office, “Notice to File a Response,” dated Feb. 20, 2019 (14 pages). |
Chinese National Intellectual Property Administration, “First Office Action,” dated Sep. 27, 2019 (34 pages). |
Chinese National Intellectual Property Administration, “Search Report,” dated Sep. 19, 2019 (2 pages). |
Japanese Patent Office, Notification of Ground(s) for Rejection, dated Dec. 3, 2018 (7 pages). |
Number | Date | Country | |
---|---|---|---|
20190023185 A1 | Jan 2019 | US |
Number | Date | Country | |
---|---|---|---|
62163226 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15157056 | May 2016 | US |
Child | 16143083 | US |