The invention relates to communication systems and, more particularly, transmitters and receivers for use in wireless communication systems.
Rapid increase of cellular service subscribers and wireless applications has stimulated research efforts in developing wireless communication systems that support reliable high rate transmissions over wireless channels. A major challenge in designing high-performance, high-rate systems is the mitigation of fading propagation effects within the prescribed bandwidth and power limitations. In order to mitigate deleterious effects fading has on system performance, transmitters and receivers that exploit available diversity have been developed. To this end, multi-input multi-output (MIMO) wireless links are particularly attractive when compared to single-input single-output wireless links. Existing MIMO designs utilizing multiple (Nt) transmit antennas and multiple (Nr) receive antennas aim primarily at achieving either high performance or high rate.
MIMO systems that achieve high performance by utilizing the available space-diversity. Space-time (ST) orthogonal designs (OD), linear constellation preceding (LCP) ST codes, and ST trellis codes are examples of performance driven designs. ST-OD codes can achieve full diversity (FD), i.e. the product of transmit and receive antennas, with linear decoding complexity. ST-OD systems with (Nt, Nr)=(2, 1) antennas can achieve transmission rates up to one symbol per channel use (pcu). However, relative to full rate (FR) MIMO designs capable of Nt symbols pcu, other ST-OD codes incur significant rate loss. For example, ST-OD systems with Nt>2 have transmissions rates less than 0.75 symbols pcu. ST-TC schemes can offer better transmission rates, but are complex to decode and lack closed-form construction while their design complexity increases exponentially with Nt. In addition, high rate high performance ST-TC often require long size block resulting in long decoding delays.
MIMO systems designed to achieve high rate utilize the capacity of MIMO fading channels. Bell Laboratories layered space time architecture (BLAST)-type architectures and linear dispersion (LD) codes are examples of rate driven designs. LD designs offer no diversity guarantees. LD designs including diversity constraints are imposed require a search over a high dimensional space that becomes prohibitively complex as Nt and the constellation size increase. However, layered ST multiplexers have complementary strengths and limitations. For example vertical-BLAST (V-BLAST) offers FR, i.e. Nt symbols pcu, but relies on single-input single-output (SISO) error control coding per layer to offer performance guarantees. On the other hand, Diagonal-BLAST (D-BLAST) systems utilize space diversity but have rate improvements that come at the price of increasing decoding delays. Nevertheless, V-BLAST and D-BLAST can afford reasonable complexity decoding and facilitate SISO codes in MIMO systems. However, the rate efficiency of V-BLAST and D-BLAST schemes is offset by the bandwidth consuming SISO codes required to gain diversity. In other words, both high performance and high rate ST codes do not take full advantage of the diversity and capacity provided by MIMO channels. Furthermore, conventional schemes are not flexible to strike desirable tradeoffs among performance, rate, and complexity.
In general, the invention is directed to techniques that allow full diversity and full rate (FDFR) wireless communication with any number of transmit and receive antennas through flat-fading channels and frequency- or time-selective channels. In particular, techniques are described that utilize layer specific linear complex-field (LCF) coding with a circular form of layered space-time (ST) multiplexing to achieve FDFR wireless communications with any number of transmit and receive antennas through flat-fading channels and frequency- or time-selective channels.
Unlike conventional ST coding techniques that achieve only full rate or full diversity, the techniques described herein utilize a set of layer specific LCF encoders and a ST mapper to generate a ST coded signal by performing layer specific LCF coding concatenated with a circular form of layered ST multiplexing. In some embodiment, the set of LCF encoders includes Nt encoders, each of the layer specific LCF encoders having size Nt. Consequently, the size of the ST mapper is Nt2. Additionally, the described techniques provide flexibility for desirable tradeoffs among performance, rate, and complexity.
More specifically, in accordance with an embodiment of the invention, a set of LCF encoders encode a block of information bearing symbols to form a respective set of layers and a ST mapper generates a ST coded signal by mapping the set of layers in a row circular manner to form an array. The block of information bearing symbols includes Nt2 symbols and comprises Nt sub-blocks, each sub-block including Nt information bearing symbols. Each of the LCF encoders codes the information bearing symbols of a respective sub-block to produce a corresponding symbol layer. Each layer is circularly mapped by the ST mapper such that the encoded information bearing symbols of each layer are orthogonal in space and time. The ST mapper reads the array out in a column-wise manner and a modulator produces a multi-carrier output waveform in accordance with the ST coded signal for transmission through a frequency-selective wireless channel.
In one embodiment, the invention provides a wireless communication device comprising a set of linear complex-field (LCF) encoders, a space-time (ST) mapper, and a modulator. The set of linear complex-field encoders encode a block of information bearing symbols to form a respective set of symbol layers. The ST mapper generates a ST coded signal by mapping the set of symbol layers in a row circular manner to form an array where the encoded information bearing symbols of each layer are orthogonal in space and time. The modulator produces a multi-carrier waveform in accordance with the ST coded signal for transmission through a wireless channel.
In another embodiment, the invention is directed to a method comprising linearly encoding a block of information bearing symbols with a set of a complex-field codes selected from a constellation to produce a respective set of symbol layers and forming an array from the set of symbol layers by mapping the set of symbol layers in a row circular manner such that the encoded information bearing symbols of each of the symbol layers are orthogonal in space and time. The method may further comprise generating a space-time (ST) coded signal from the array of symbol layers, modulating the ST coded signal to produce a multi-carrier waveform, and transmitting the multi-carrier waveform through a wireless channel.
In another embodiment, the invention is directed to a computer-readable medium containing instructions. The instructions cause a programmable processor to linearly encode a block of information bearing symbols with a set of a complex-field codes selected from a constellation to produce a respective set of symbol layers and form an array from the set of symbol layers by mapping the set of symbol layers in a row circular manner so that the encoded information bearing symbols of each layer are orthogonal in space and time. The instruction may further cause the programmable processor to generate a space-time (ST) coded signal by reading out the array in a column-wise manner, modulate the ST coded signal to produce a multi-carrier waveform, and transmit the multi-carrier waveform through a wireless channel.
The invention may be capable of providing one or more advantages. For example, the invention provides techniques for achieving FDFR wireless communication over flat-fading and frequency- or time-selective channels with any number of transmit and receive antennas. Furthermore, unlike conventional ST coding techniques that can also achieve FD but result in considerable mutual information loss especially when Nr>1, the described invention incurs no mutual information loss regardless of the number of receive antennas. In other words, if a perfect code is applied at the transmitter, the capacity of the wireless channel is achieved.
Moreover, in systems with large antennae configurations, the described invention may tradeoff performance gains in order to reduce decoding complexity. When the number of antennas is large, the diversity order, e.g. NtNr, is large. At the same time, high performance and high rate result in high decoding complexity. For example, reducing the size of each of the LCF encoders results in reduced diversity but also reduces decoding block size while still transmitting at full rate. Full rate transmission can also be achieved while combining several layers to form one layer, provided that the constellation size is also increased. In other words, if layers are eliminated, then full diversity is maintained at reduced decoding block length.
The described invention also provides the flexibility to tradeoff rate in order to reduce complexity. For example, the invention may eliminate layers of the LCF encoders and employ maximum likelihood (ML), or near-ML) decoding to collect full diversity with a reduced decoding block length and transmission rate. Additionally, if the maximum affordable decoding block length N<Nt2, then full diversity and full rate cannot be achieved, but a tradeoff between diversity for rate can be achieved by adjusting the size of the LCF encoders.
The described invention may also provide an advantage in wireless communication systems having a large number of transmit antennas. If the number of transmit antennas is large, then the block length, i.e. Nt2, is also large within the described system. As a result, the affordable decoding complexity may not be enough to achieve FDFR, and the described techniques for diversity-rate tradeoffs are well motivated For example, if the maximum affordable decoding block length N<Nt2, the described invention may be used to adjust the size of each of the LCF encoders in order to tradeoff diversity for rate.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Throughout the Detailed Description, upper bold face letters represent matrices, bold face lower letters represent column vectors; (●)T and (●)H represent transpose and Hermitian transpose, respectively; diag(d1, . . . , dP) represents diagonal matrix with diagonal entries d1, . . . , dP; [j] represents the algebraic integer ring with elements p+jq where p, q∈, (j) is the smallest subfield of the set of complex numbers including both and j; and (j)(α) represents the smallest subfield of including both (j) and α, where α is algebraic over (j).
Transmitter 4 includes a set of linear complex-field (LCF) encoders and a ST mapper that may be used to implement the ST coding techniques. In embodiments that include frequency- and/or time-selective channels, transmitter 4 may also include an inverse fast Fourier transform (IFFT) unit coupled to a module that inserts a cyclic prefix (CP) in order to implement orthogonal frequency-division multiplexing (OFDM). In any case, the set of LCF encoders utilize layer specific LCF coding and the ST mapper performs a circular form of layered ST multiplexing to generate a ST coded signal that achieves FDFR over wireless channels 8. In particular, each of the LCF encoders encodes a respective one of the sub-blocks of a block of information bearing symbols to form a corresponding layer. The ST mapper generates the ST coded signal by mapping each of the layers in a row circular manner to form an array. The array is read out in a column-wise manner and transmitted through a corresponding one of the transmit-antennas. The ST coding techniques described herein provide flexibility to select tradeoffs among performance, rate, and complexity. For example, in wireless communication systems with large antennae configurations, the described ST coding techniques may tradeoff performance gains in order to reduce decoding complexity.
Receiver 6 includes a LCF-ST decoder and, in frequency- and/or time-selective embodiments, a CP remover coupled to a fast Fourier transform (FFT) unit to recover the ST coded signal. The LCF-ST decoder may implement any of a plurality of decoding techniques. Maximum likelihood (ML) decoding may be employed to detect the ST coded signal from the received signal regardless of the number of receive antennas Nr. However, ML decoding may have high complexity when the length of number of transmit antennas Nt is high. In general, the decoding complexity depends on Nt2. Receiver 6 may employ sphere decoding (SD) or semi-definite programming algorithms to reduce decoding complexity while achieving performance approximately equal to ML decoding. To further reduce coding, receiver 6 may employ nulling-cancelling based or linear decoding at the expense of substantially lower decoding performance. Additionally, nulling-canceling decoding requires Nr≧Nt.
However, the described ST coding techniques allow desirable tradeoffs among performance, rate and complexity. For example, when the number of antennas is large, the diversity order, e.g. NtNr, is large. At the same time, high performance and high rate result in high decoding complexity. Therefore, system 2 may tradeoff performance gains in order to reduce decoding complexity. Additionally, system 2 may tradeoff rate in order to reduce decoding complexity. Moreover, if the maximum affordable decoding block length is less than Nt2, the block length that achieves FDFR, system 2 may tradeoff diversity for increased rate.
The ST coding techniques described herein apply to uplink and downlink transmissions, i.e., transmissions from a base station to a mobile device and vice versa. Transmitter 4 and receiver 6 may be any device configured to communicate using wireless transmissions including a cellular distribution station, a hub for a wireless local area network, a cellular phone, a laptop or handheld computing device, a personal digital assistant (PDA), a Bluetooth™ enabled device and other such devices.
Receiver 6A includes LCF-ST decoder 26 to recover the ST coded signal received by Nr receive antennas 22A-22N, respectively. For each of the Nr receive antennas 22A-22N receiver 6A includes parallel-to-serial converter 24A-24N, respectively, for parsing the received waveform into vectors that can be decoded using LCF-ST decoder 26. LCF-ST decoder 26 may employ ML decoding or, alternatively, SD or semi-definite programming algorithms to reduce the decoding complexity. In other embodiments, LCF-ST decoder 26 may employ nulling-canceling decoding to further reduce decoding complexity.
MIMO wireless communication system 2 achieves FDFR communications over flat-fading channels 8 for any number of transmit and receive antennas. Additionally, system 2 allows flexibility to select tradeoffs among performance, rate and complexity. When the number of antennas is large, the diversity order NtNr is large. However, high performance and high rate require high decoding complexity. Herein, decoding complexity is quantified by the block length of the ST coded signal that is to be decoded. Therefore, with large antennae configurations, it may be advantageous to tradeoff performance gains in order to reduce decoding complexity.
In general, transmitter 4A transmits the stream of information bearing symbols {s(i).} as an output waveform through channels 8. The information bearing symbols are drawn from a finite alphabet As. Serial-to-parallel (S/P) converter 10 parses the information bearing symbols into blocks of size N×1, s:=[s(1), . . . , s(N)]T, where s(n) represents the nth information bearing symbol. Each block of information bearing symbols s is coded by LCF encoder 14 to form an N×1 vector u. In particular, LCF encoder 14 includes a set of LCF encoders that encode the block of information bearing symbols s to form a respective set of symbol layers u. ST mapper 14 circularly maps the set of layers in a row circular manner to form an array. Each layer is circularly mapped such that the encoded information bearing symbols of each layer are orthogonal in space and time. The array is read out in a column-wise manner to form Nt blocks {cμ}μ=1N
Channels 8 are flat-fading and, thus, remain invariant, e.g. flat, over the observation interval of P time slots. Letting hν,μ(n) represent the channel associated with the μth transmit-antenna and the vth receive-antenna during the nth time slot, hν,μ(n)=hν,μ. Consequently, the nth sample at the output of the P/S converter corresponding to the vth receive-antenna can be expressed according to equation (1) where wv(n) represents the complex additive white Gaussian noise (AWGN) at the vth receive-antenna with mean zero and variance N0/2. The vector-matrix counterpart of equation (1) is given according to equation (2) by stacking the received samples from the Nr receive-antennas 22A-22N.
In equation (2), the (v, μ)th entry of H represents hν,μ and c(n):=[c1(n), . . . , cN
Y=HC+W (3)
For simplicity, it is assumed that the NtNr flat-fading channels 8 are complex Gaussian independent and identically distributed (i.i.d.). Importantly, however, it can be shown that the ST coding techniques described herein achieve FDFR and diversity-based analysis results apply to all practical fading models including correlated and non-Gaussian fading channel models. Using average pairwise error probability analysis, it follows that the maximum diversity order provided by the Nt×Nr MIMO channels 8 is given according to equation (4).
Gdmax=NtNr (4)
The transmission rate is given according to equation (5) since it takes P time slots to transmit N information bearing symbols, i.e. the size of s. However, since it is possible to transmit up to one symbol per antenna per time slot, i.e. symbol period, the maximum possible transmission rate with Nt antennas is given according to equation (6).
Parameters Gdmax and Rmax quantify the full diversity and full rate, respectively. It is important to note that the model given in equation (3) is general in that it subsumes ST orthogonal designs (ST-OD), linear constellation precoding (LCP) ST designs, vertical-Bell Laboratories layered ST architecture (V-BLAST), and diagonal-BLAST (D-BLAST). These ST schemes offer different rates and come with different diversity orders. For example, V-BLAST achieves full rate Rmax but not full diversity while LCP ST codes achieve full diversity Gdmax at rate R=1 symbol pcu for any Nt. The ST coding techniques described herein achieve FDFR for any number of antennas (Nt, Nr). Transmitter 4A and receiver 6A are judiciously designed in the following analysis to achieve FDFR for any number of transmit and receive antennas.
For simplicity, the block length N is selected as N=Nt2 and each block of information bearing symbols s comprises Ng=Nt sub-blocks. Each of the sub-blocks includes Nt information bearing symbols. Consequently, the number of time slots is equal to the number of transmit antennas, i.e. P=Nt. Accordingly, s is divided into {sg}g=1N
ug=Θgsg (7)
LCF encoder 12 enables full diversity and includes a set of LCF encoders Θg. Each of the LCF encoders has entries drawn from and implements layer specific LCF coding. Matrix Θg is given according to equation (8) where Θ is selected from the class of unitary Vandermonde matrices and the scalar β is selected as described in the following analysis.
Θg=βg−1Θ,∀g∈[1,Nt] (8)
ST mapper 14 performs a circular form of layered ST multiplexing to construct an array according to the equation (9) where ug(n) represents the nth element of the gth layer ug. In particular, ST mapper 14 circularly maps each layer such that encoded information bearing symbols of each layer are orthogonal in space and time. The array given in equation (9) is read out in a column-wise manner. Importantly, transmitter 4A transmits an encoded information bearing symbol per time slot and, thus, achieves full rate Rmax=Nt. However, the rate-efficient fading-resilient precoding employed by LCF encoder 12 enables full diversity Gdmax=NtNr for any number of transmit and receive antennas.
The input-output relationship given according to equation (3) can be expressed according to equation (10) with LCF encoder 12 and ST mapper 14 expressed as equations (8) and (9), respectively, after stacking the receive vectors y(n) into one vector. Furthermore, the nth column of ST mapper 12 C can be expressed according to equation (11) where the permutation matrix Pn and the diagonal matrix Dβ are defined, respectively, according to equations (12) and (13) where θnT represents the nth row of Θ.
By defining H:=IN
Maximum likelihood decoding can be employed to detect s from y regardless of Nr, but possibly with high complexity because decoding complexity is dependent on the block length N=Nt2. SD or semi-definite programming algorithms may also be used to achieve near-optimal performance. The SD algorithm is known to have average complexity (N3) irrespective of the alphabet size with Nr≧Nt. When NT is large, the decoding complexity is high even for near-ML decoders. To further reduce decoding complexity, nulling-cancelling based or linear decoding may be used. However, such decoders require Nr≧Nt.
In summary, given a number of transmit and receive antennas Nt, Nr, respectively, a block of information bearing symbols s with length N=Nt2 is encoded to form a vector u. LCF encoder 12 includes a set of LCF encoders that encode a corresponding sub-block sg of s to form respective layers ug of u. ST mapper 14 circularly maps each of the layers to the array given according to equation (9) and each column in (9) is transmitted via Nt antennas through channels 8. Receiver 6A decodes s using y given in equation (10).
In the following analysis transmitter 4A is examined with respect to performance and rate for FDFR transmissions. Let T represent channel coherence time and assume that T≧Nt. In particular, Proposition 1 establishes design criteria that enable FDFR for LCF encoder 12 and ST mapper 14 given in equations (8) and (9), respectively.
Proposition 1 For a block of information bearing symbols s carved from [j], with ST mapper 14 given in equation (9), there exists at least one pair of (Θ, β) in equation (9) that enables full diversity (NtNr) for the ST coded signal given in equation (3) at full rate Nt symbols pcu.
The proof of proposition 1 is given in the following analysis. Since N=Nt2 and P=Nt, it can be verified that the transmission rate is R=N/Nt=Nt symbols pcu, which is the full rate given in equation (6).
To prove the full diversity claim, it suffices to show that ∀s≠s′, there exists at least a pair of (Θ,β) such that det(C−C′)≠0.
For simplicity, define {tilde over (C)}:=C−C′, ŝg:=sg−sg′, and ũg:=ug−ug′. The determinant of {tilde over (C)} can then be expressed according to equation (16) where (i1, . . . , iN
Comparing {tilde over (c)}i
Thus, gn=in−n+1, or, Nt+in−n+1, from which it follows that
m∈[0,Nt−1] where m depends on the sequence (i1, . . . , iN
m∈[0,Nt−1].
Using the structure given in equation (9), it has been shown that the det({tilde over (C)}) is a function of Θ, and at the same time a polynomial in βN
Lemma 1 If the constellation of s is carved from the ring of Gaussian integers [j], then there exists a matrix Θ which guarantees that ũg=Θ{tilde over (s)}g has no zero entry when {tilde over (s)}g≠0.
Based on Lemma 2, there always exists Θ, such that Θ{tilde over (s)}g has no zero entry when {tilde over (s)}g≠0. Now it must be proved that when {tilde over (s)}≠0, det({tilde over (C)}) is not a zero polynomial of βN
Since {tilde over (s)}g≠0, it follows from the design of Θ, that
Hence, det({tilde over (C)}) cannot be a zero polynomial for any error pattern s≠s′. Furthermore, if the generator of Θ is α, then the entries of Θ{tilde over (s)}g∈(j)(ej2π/N
The proof of Proposition 1 reveals that selecting Θ and β is critical in enabling FDFR transmissions in transmitter 4A. Intuitively, Θ enables full diversity per layer while β fully diversifies transmissions across layers.
Relying on the algebraic number theoretic tools used to prove Proposition 1, systematic design methods for selecting (Θ,β) are provided in the following analysis. First, the unitary Vandermonde matrix Θ is given according to equation (19) where is the Nt×Nt fast Fourier transform (FFT) matrix with (m+1, n+1)st entry e−j2πmn/N
Note that Θ in equation (19) is parameterized by the single parameter α. Adding α to the scalar β in equation (8), the ensuing design methods, Design A, Design B, and Design C, aim at selecting (α, β) that lead to Θgs for which C in equation (9) offer FDFR.
Design A selects α such that the minimum polynomial of α over the field [j] has degree greater than or equal to Nt. Given α, select βN
Design B fixes fixes βN
In the following analysis a general code design is described for Design A and Design B. Define [:] as the degree of field extension of to . For example [(j):]=2. For Design A, to enable full diversity, design α=ejπ/K, K∈ such that condition (20) is satisfied.
[(j)(ej2π/N
Because [(α):]=φ(K), where φ(•) is the Euler totient function, K can be selected based on the properties of Euler numbers such that φ(K)≧2Nt. Since (j)(ej2π/N
[(j)(ej2π/N
As a result, equation (20) is satisfied. Based on the selection of α, the second step is to select
M∈, such that equation (22) is satisfied. Similar to the selection of α, βN
Because [(j)(ej2π/N
φ(M)≧2Ntφ(Nt)φ(K) (24)
It is important to note that the selection of α and β is not unique. For example, if K is an integer multiple of Nt, M can be selected such that the inequality given in equation (25) is satisfied.
φ(M)≧2Ntφ(K) (25)
For Design B, fix βN
[(j)(ej2π/N
In a similar manner, K can be selected such that the inequality given in equation (27) is satisfied.
φ(K)≧2Ntφ(K) (27)
Design C selects α such that the minimum polynomial of α in the field (j) has degree greater than or equal to Nt. Based on α, one transcendental number in the field of (j)(ej2π/N
Note that the transcendental number ej/2 has also been used in M. O. Damen et al. “A construction of a space-time code based on number theory,” IEEE Transactions on Information Theory, vol. 48, pp. 753-760, March 2002, which is incorporated by reference herein. According to Lindemann's Theorem given on page 44 of A. O. Gelfond, Transcendental & Algebraic Numbers, Dover Publications, Inc., 1960, which is incorporated herein by reference, transcendental numbers can be designed, e.g. ejk, ∀k∈. All three designs, i.e. Design A, Design B, and Design C, can enable full diversity. However, since the coding gain was not maximized for any of the designs, it may be possible to find other FDFR encoders with improved coding gains. Simulations of the designs are presented to compare their relative performance.
Proposition 2 gives a measure of mutual information for the FDFR ST coding techniques described herein for transmitter 4A.
Proposition 2 If the information symbols s˜CN(0,εs/NtIN) and the average signal-to-noise (SNR) ratio is γ:=εs/(N0Nt), then the mutual information of the FDFR ST coded signal transmitted through channels 8 is given by equation (28).
Cflat=log det(IN
The proof of Proposition 2 is given in the following analysis. Based on equation (15), the mutual information is given according to equation (29) where H(●) represents entropy. Since w is AWGN and matrix Φ are known, the second term on the right hand side of equation (21) can be expressed according to equation (30).
I(y;s|H)=H(s|H)−H(s|H,y) (29)
For a given Rs=E[ssH]=εs/NtIN, H(s|H) is maximized when s is Gaussian. In other words, H(s|H) is given according to equation (31).
Substituting equations (30) and (31) into equation (29), results in equation (32) when s is Gaussian.
Compared with the MIMO channel capacity described in G. J. Foschini and M. J. Gans, “On limits of wireless communication in a fading environment when using multiple antennas,” Wireless Personal Communications, vol. 6, no. 3, pp. 311-335, March 1998, which is incorporated herein by reference, the mutual information given in equation (28) coincides with the instantaneous channel capacity. In other words, the FDFR ST coding techniques applied in transmitter 4A incur no mutual information loss unlike other designs which can also achieve full diversity, e.g. ST-OD and LCP-STC, but result in substantial mutual information loss, particularly when Nr>1.
When the number of antennas is large, the diversity order NtNr is large. At the same time, high performance and high rate come with high decoding complexity. Therefore, with large antennae configurations, it may be desirable to tradeoff performance gains, which may show up for impractically high SNR, in order to reduce decoding complexity. The following two corollaries provide methods that the FDFR ST coding techniques described herein may employ to tradeoff rate and performance with complexity. In particular, Corollary 1 illustrates a method that may be employed to tradeoff performance with complexity while Corollary 2 illustrates a method that may be employed to tradeoff rate with complexity. Again, decoding complexity is quantified based on the block length that is to be decoded.
Corollary 1 Keeping the same information rate, i.e. information bearing symbols pcu, two performance-complexity tradeoffs arise.
i.) (Diversity-Complexity Tradeoff) With samller size LCF encoders Θ, e.g. Nd<Nt, the achieved diversity order reduces to NdNr≦NdNt while the decoding block size reduces to NdNt.
ii.) (Modulation-Complexity Tradeoff) Provided that the constellation size is increased, several layers can be combined to one layer. If (zero) Nz layers, i.e. ug1= . . . =ugN
Alternatively, decoding complexity may be reduced by decreasing the transmission rate. Reducing the transmission rate can be accomplished when min(Nt, Nr) is large because the rate can be reduced in order to reduce decoding complexity. Similar to full diversity, full rate is not always required. For example, instead of having Nt layers in equation (9), ST mapper 14 can be designed with Nt−1 or Nt−2 layers. Corollary 2 quantifies the rate-complexity tradeoff.
Corollary 2 (Rate-Complexity Tradeoff) If, for the set of LCF encoders 12 given in equation (8) and ST mapper 14 given in equation (9), Nz layers are eliminated by letting ug1= . . . =ugN
In other words, Corollary 2 states that when entries of s are selected from a fixed constellation, as the transmission rate increases, i.e. Nz decreases, the decoding complexity increases as well. It is important to note that when the number of “null layers” Nz>0, the condition Nr≧Nt for SD described in B. Hassibi and H. Vikalo, “On the expected complexity of sphere decoding,” Processions of 35th Asilomar Conference on Signals, Systems, and Computers, vol 2, pp. 1051-1055, Pacific Grove, Calif., Nov. 4-7, 2001, which is incorporated herein by reference, or nulling-cancelling algorithms is relaxed to Nr≧Nt−Nz. Importantly, while the tradeoffs described above have been considered when the channel has fixed coherence time, the tradeoffs vary accordingly with the channel coherence time.
When the number of transmit-antennas is large Nt, the block length is also large N=Nt2 and the affordable decoding complexity may not be sufficient to achieve FDFR. In this case, diversity-rate tradeoffs are well motivated. Corollary 3 provides a method that the ST coding techniques may employ to tradeoff rate with diversity when the affordable decoding complexity is not sufficient to achieve FDFR.
Corollary 3 (Diversity-Rate Tradeoff) If the maximum affordable decoding block length N<Nt2, then based on the described FDFR ST coding techniques, full diversity and full rate cannot be achieved simultaneously. By adjusting the size of Θg, diversity can be traded-off for rate.
The rate-diversity tradeoff for block size N=12 and Nt=4 is illustrated in
It is important to note that the described diversity-rate tradeoffs are different from the diversity-multiplexing tradeoffs described in L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple antenna channels,” IEEE Transactions on Information Theory, revised September 2002, which is incorporated by reference herein, where it is stated that “any fixed code has 0 spatial multiplexing gain.” The multiplexing gain in that paper is defined as the limiting transmission rate divided by log2 (SNR) as SNR goes to infinity. For the ST coding techniques described herein, the transmission rate is defined as the number of symbols pcu. In any case, the transmission rate as defined herein does not vary with SNR.
Receiver 6A receives the incoming stream of information bearing symbols (step 72) and perform ML decoding to form estimates ŝ of the block of information bearing symbols s (step 74).
When the maximum delay spread τmax of a channel is greater than the symbol period Ts, the channel may become frequency-selective and cause inter-symbol interference (ISI). Specifically, if the maximum delay spread among NtNr channels is finite, then the channel order is upper-bounded by a finite number L:=└τmax/Ts┘. Channel taps are represented as hν,μ(l) for μ∈[1, Nt], v∈[1, Nr] and l∈[0, L]. OFDM mitigates ISI by converting frequency-selective channels to a set of frequency-flat subchannels.
In the illustrated embodiment, transmitter 4B includes a LCF encoder 82 and a ST mapper 84 to generate a stream of ST coded information bearing symbols. For each of the Nt transmit-antennas 92A-92N, respectively, transmitter 4B includes corresponding P-point inverse fast Fourier transform (IFFT) units 88A-88N followed by respective cyclic prefix (CP) insertion units 89A-89N. Each output of ST mapper 84 cμ is processed by a corresponding one of P-point IFFT units 88A-88N and a respective one of CP insertion units 89A-89N inserts a CP of length L. Modulators 90A-90N transmit the OFDM-ST coded signal through frequency-selective channels 8B. The OFDM-ST coded signal achieves FDFR for any number of transmit and receive antennas over frequency-selective channels 8B.
Receiver 6B includes cyclic prefix removers 97A-97N followed by corresponding fast Fourier transform (FFT) units 98A-98N for each of the receive antennas 94A-94N and decodes the received OFDM-ST coded signal via LCF-ST decoder 99. For each receive antenna 94A-94N, corresponding S/P converters 96A-96N parse the P+L filtered samples of the received waveform into a respective vector {xv}v=1N
Transmitter 4B communicates with receiver 6B to achieves FDFR communications over frequency-selective channels 8B for any number of transmit- and receive antennas. Additionally, transmitter 4B and receiver 6B allow flexibility to select tradeoffs among performance, rate, and complexity. When the number of antennas is large, the diversity order NtNr(L+1) is large. However, high performance and high rate require high decoding complexity. Herein, decoding complexity is quantified by the block length of the ST coded signal that is to be decoded Nt2(L+1). Therefore, with large antennae configurations, it may be advantageous to tradeoff performance gains in order to reduce decoding complexity.
In general, transmitter 4B transmits the stream of information bearing symbols {s(i)} as an output waveform through channels 8B. The information bearing symbols are drawn from a finite alphabet As. S/P converter 80 parses the information bearing symbols into blocks s of size Nt2(L+1). Each block s comprises Nt sub-blocks {sg}g=1N
ST mapper 84 circularly maps each of the LCF encoded symbols ug(n) into the array given according to equation (35). In particular, ST mapper 84 maps each symbol layer in a row circular manner to form the array given in equation (35). Array C given in equation (35) includes L+1 sub-arrays, each having the same structure as the array given in equation (9) for flat-fading channels. In other words, each layer of in a sub-array is mapped such that the encoded symbols of a layer are orthogonal in space and time.
The array given in equation (35) is read out in a column wise manner such that every layer is transmitted over Nt transmit-antennas and through each antenna, each layer is spread over L+1 frequency bins. Intuitively, the structure of C given in equation (35) allows for joint exploitation of space and diversity modes.
When the block size N>Nt2(L+1), i.e. when the number of subcarriers P>NtL+1), the subcarrier grouping approach described in G. B. Giannakis et. al “Wireless multi-carrier communications: where Fourier meets Shannon,” IEEE Signal Processing Magazine, vol. 17, no. 3, pp.29-48, May 2000, G. B. Giannakis et al. “Space-Time-Frequency Coded OFDM over Frequency-Selective Fading Channels,” IEEE Transactions on Signal Processing, pp.2465-2476, October 2002, and G. B. Giannakis et al. “Linear Constellation Precoding for OFDM with Maximum Multipath Diversity and Coding Gains,” IEEE Transactions on Communications, vol. 51, no.3, pp. 416-427, March 2003, each of which is incorporated herein by reference, can be used. In any event, the size of Θg is Nt(L+1). However, if P is a multiple of Nt(L+1), for example P=NgNt(L+1) where Ng is the number of sub-blocks, layers can be interlaced in different groups. As described below,
In equation (33), the multi-channel output output samples are organized according to receive-antenna indices. Alternatively, the multi-channel output samples may be organized according to subcarrier indices. Specifically, if the Nt×Nt channel matrix H(n) with (v, μ)th entry Hν,μ(n) is defined, the input-output relationship given in equation (36) can be obtained.
Comparing equation (36) to equation (2) for flat-fading channels, it can be observed that due to frequency-selectivity, the channel response on different frequency bins may be different. Consequently, if there is no frequency-selectivity, the design described in this analysis reduces to the design previously described for flat-fading channels.
The transmitted vector given in equation (36) can be expressed according to equation (37). Given the channel matrices in equation (35), the matrix Φ given in equation (37) is known. Consequently, ML decoding, near-ML decoding such as SD, or linear decoding may be employed by receiver 6B to recover the information vector s.
Again, similar to flat-fading channels, the decoding complexity of SD depends only on the block length, regardless of the constellation size. However, decoding complexity for frequency-selective channels is higher than that for flat-fading channels because the block length N=Nt2(L+1) is larger. Importantly, when Nt2(L+1) is large the decoding complexity is high even for near-ML decoders. To further reduce decoding complexity, nulling-cancelling based or linear decoding may be used.
Maximum likelihood decoding can be employed to detect s from y regardless of Nr, but possibly with high complexity because decoding complexity is dependent on the block length N=Nt2. SD or semi-definite programming algorithms may also be used to achieve near-optimal performance. The SD algorithm is known to have average complexity (N3) irrespective of the alphabet size with Nr≧Nt. When Nt is large, the decoding complexity is high even for near-ML decoders. To further reduce decoding complexity, nulling-cancelling based or linear decoding may be used. However, such decoders require Nr≧Nt.
The following analysis describes the performance of transmitter 4B for frequency-selective channels. Collecting received blocks from equation (33), the received matrix can be expressed according to equation (37) where Dc(μ):=diag[cμ]=diag[cμ(1) . . . cμ(P)], the (p, v)th entry of the Nt(L+1)×Nr matrix H is hv,┌p/N
Y:=[y1 . . . yN
When viewing transmissions through Nt antennas over frequency-selective channels of order L as transmissions through flat-fading channels with Nt(L+1) virtual transmit-antennas, the full diversity order is expected, at least intuitively, to be NtNr(L+1, provided that the relation matrix of the channel taps has fall rank. However, the maximum transmission rate is still Nt symbols pcu because it is impossible to transmit different symbols through the multiple paths of the same channel. This implies that for each transmit antenna, only one symbol can be transmitted pcu even though the channel has L+1 taps.
In order to enable the full diversity NtNr(L+1) matrix Λ in equation (38) must be designed such that det(Λ-Λ′)≠0, ∀s≠s′. Analogous to Proposition 1, Proposition 3 establishes design criteria that enable FDFR transmissions for LCF encoder 82 and ST mapper 84 that form the array given in equation (35).
Proposition 3 For any constellation of s carved from [j], with the array formed by LCF encoder 82 and ST mapper 84 and given in equation (35), there exists at least one pair of (Θ, β) in equation (9) that enables full diversity (NtNr(L+1)) for the ST coded signal given in equation (38) at transmission rate NtP/(P+L) symbols pcu.
The proof of proposition 3 is given in the following analysis. Similar to the flat-fading case, to prove Proposition 3, it suffices to show that the matrix Λ-Λ′ in equation (38) has full rank ∀s≠s′. Defining {tilde over (Λ)}:=Λ-Λ′, {tilde over (Λ)} is given according to equation (39) where ω:=e−j2π/P.
The determinant of {tilde over (Λ)} is according to equation (4) where τ(n1, . . . , nP) represents the number of inversions of the sequence (n1, . . . , nP).
Furthermore, ST mapper 84 can be described as mapping u to the array given in equation (35) according to equation (41) where gp is given according to equation (42) and equation (43) is satisfied.
Therefore, similar to the flat-fading case, it is determined that det ({tilde over (Λ)}) is a polynomial of α and βN
Given α, det({tilde over (Λ)}) can be viewed a polynomial of βN
There always exists βN
It is important to note that the rate loss L/(P+L) is due to the CP inserted and removed by CP insertion units 89A-89N and CP removers 97A-97N, respectively, to substantially mitigate ISI. Furthermore, the LCF code described for frequency-selective channels 8B is analogous to LCF code described for flat-fading channels 8A apart from the differences in dimensionality. The difference between the LCF code described for frequency-selective channels and the LCF code described for flat-fading channels results from the differences in ST mapper 82 and ST mapper 12. In order to better illustrate the
In order to enable only full diversity, Θ can be constructed to have identical rows, rather than being unitary. Θ having identical rows is given according to equation (45) where 1 represents a vector with all ones and the 1×Nt(L+1) vector θ1T:=[1α . . . αN
Θ=1{circle around (×)}θ1T (45)
Consequently, for each sub-block sg, each layer ug=Θgsg. Clearly, this is why this specific LCF encoding is referred to as LCF repetition coding. From the definitions of Λ in equation (38) and C in equation (35), after re-arranging the rows of Λ,
Assume that the transmitted vector s is erroneously decoded as s′, and let eμ:=θ1Tsμ. From equation (46), equation (48) can be expressed with det(
Guaranteeing that det(
In this example, FDFR transmissions are designed over two-ray channels with (Nt, L)=(2, 1) and P=4. As a result, the matrix Λ is given according to equation (48).
Using the ST mapping to form the array given in equation (35) with LCF encoded blocks u1=Θs1, u2=βΘs2 the determinant of Λ in terms of sg and (Θ, β) is given according to equation (49).
Equation (49) is a polynomial in βN
Given Θ, the det(Λ) can be viewed as a polynomial in βN
Thus, full diversity in frequency-selective channels has higher decoding complexity with respect to flat-fading channels. However, the diversity order in frequency-selective channels is higher with respect to the diversity order of flat-fading channels. Therefore, selecting complexity-performance tradeoffs may be particularly advantageous.
Throughout the analysis of FDFT transmissions of ST coded signals, the channel taps have been assumed to be uncorrelated. When the channel taps are correlated, the maximum achievable diversity of the FDFR design for transmitter 4B and receiver 6B is the rank of the correlation matrix of all channel taps. The rank of the correlation matrix of all channel taps cannot exceed its dimension NtNr(L+1) and can be as low as 1.
In order to complete the analysis of FDFR transmission over frequency-selective channels, Corollary 4 gives a measure of the mutual information for FDFR transmission over frequency-selective channels based on the input-output relationship given in equation (36).
Corollary 4 If the information bearing symbols s˜CN(0,εs/NtIN) and the average signal-to-noise (SNR) ratio is γ:=εs/(N0Nt), then the mutual information of the FDFR transmissions through frequency-selective channels is given according to equation (51).
Based on Corollary 4, the effects of of Nt, Nr, and L on the outage probability Pr( Cfreq<R) are illustrated in
In the following analysis the design of LCF encoders and ST mappers that generate ST coded signals which achieve FDFR transmissions over time-selective channels are described. The previously described ST coded signals assumed the channels were quasi-static. For simplicity, the channels in the following analysis are assumed to be time-selective but frequency-flat.
When channels are changing from symbol to symbol, the system model given in equation (2) can be re-expressed according to equation (52) where the channel matrix H(n) changes along with the time index n.
y(n)=H(n)c(n)+w(n) (52)
The input-output relationship for time-selective channels in equation (52) coincides with the input-output relationship for frequency-selective channels given in equation (36). Therefore, the design for frequency selective-channels can also be utilized for time-selective channels. The diversity order for time-selective channels is quantified before analyzing the performance of the design described herein.
In order to define Doppler diversity, let hν,μ(t) represent the time-varying impulse response of the resulting channel that includes transmit-receive filters as well as the time-selective propagation effects and let Hν,μ(f) represent the Fourier transform (FT) of hν,μ(t). Although the bandwidth of hν,μ(t) over a finite time horizon is theoretically infinite, Hν,μ(f) can be approximated as Hν,μ(f)≈0 for f≠[−fmax,fmax] where fmax is the maximum frequency offset, i.e. Doppler shift, of all the rays. Sampling hν,μ(t) along the time t with period Ts selects the discrete time equivalent channel taps h(p). Per Nyquist's theorem, it has thus been shown that such a channel can be well approximated by the basis expansion model given in equation (53) where ωq:=2Π(q−Q/2)/N, Q:=2ΠfmaxNTs┐, and hv(ν,μ) represent time-invariant channel coefficients.
In order to quantify the Doppler diversity in Lemma 2, the result described in G. B. Giannakis et al. “Maximum-diversity transmissions over time-selective wireless channels,” Proceedings of Wireless Communications and Network Conference, vol. 1, pp.297-501, Orlando, Fla., Mar. 17-21, 2002, which is incorporated herein by reference, is used.
Lemma 2 Given the channel model in equation (53), when the coefficients hq(ν,μ) are complex Gaussian distributed, the maximum diversity provided by the BEM {hν,μ(p)}p=1P is at most Q+1.
It is important to note that the bases ejω
and FP represents the P-point FFT matrix with (m+1, n+1)st entry [FP]m,n:=(1/√{square root over (P)})e−j2πmn/P.
Comparing the right hand side of equation (54) with the previously described OFDM model for frequency-selective channels, it can be determined that, based on equation (53), a time-selective channel with Q+1 bases can be viewed as a frequency-selective channel with Q+1 taps. Relying on this time-frequency duality, the described design for FDFR over time-selective channels can be obtained from the previously described design for frequency-selective channels. The results for time-selective channels are given in Proposition 4.
Proposition 4 For any constellation of s carved from [j], with the array formed by LCF encoder 82 and ST mapper 84 and given in equation (35), there exists at least one pair of (Θ, β) in equation (9) that enables full diversity (NtNr(Q+1)) if each channel provides Doppler diversity (Q+1) for the ST coded signal in equation (52) at full rate Nt symbols pcu.
As the block size P, and thus Q, increases, the Doppler diversity increases. However, as Doppler diversity increases, both decoding delay and complexity increase. As illustrated in the simulations of
Receiver 6B receives the multi-carrier output waveform (step 136). S/P converters 94A-94N parse the received waveform into P+L filtered samples (step 138). CP removers 97A-97N remove the first L samples to substantially reduce ISI from the corresponding previously received block (step 140). The remaining P samples are processed by FFT units 98A-98N (step 142) and decoded by LCF-ST decoder 99 to yield and estimate ŝ of the information block s (step 144).
Clearly, increasing Nt, Nr, or L causes the outage probability to decrease. When the product NtNr(L+1) is fixed, for example NtNr(L+1)=16, the outage probability has the same slope for moderate to high SNR values. However, because L determines the channel variance and Nt controls the power splitting factor, L and Nt have different effects on the outage probability.
All three designs 170, 172, and 174 achieve similar diversity order when SD is performed at the receiver. However, each design 160, 162, and 164 has substantially different coding gains. The difference in coding gains is primarily a result of their respective constellation sizes. The decoding complexity for each of the three design is (163), (83), and (43) for the first 170, second 172, and third 174 design, respectively.
Maintaining the same transmission rate, it can be determined from the decoding complexity for each design that a tradeoff between decoding complexity and performance can be selected. In particular, by increasing decoding complexity to increase results in an increase in performance.
First, second, and third designs 170, 172, and 174, respectively, are compared with the V-BLAST design 176 and the D-BLAST design 178 described in G. J. Foshini et al. “Layered space-time architecture for wireless communication in fading environments when using multiple antennas,” Bell Labs Technical Journal, vol. 2, Autumn 1996, which is incorporate by reference herein. For the D-BLAST design 178, the ST matrix is given according to equation (58).
In order to maintain the same transmission rate while ensuring affordable decoding complexity, three layers are used in D-BLAST design 178 and QPSK modulation is selected to maintain the same rate. Both performance and decoding complexity of the D-BLAST design 178 in equation (58) lie between the performance and decoding complexity for the first and second designs 170 and 172, while the D-BLAST design 178 has longer decoding delay. The V-BLAST design 176 enables a compromise between complexity and performance in comparison to the other illustrated designs. In this example, the V-BLAST design 176 has higher performance that the third design 174 at large SNR.
The modified designs 180, 182, and 184 are also compared with the LD codes 186 described in R. W. Health et al. “Linear dispersion codes for MIMO systems based on frame theory,” IEEE Transactions on Signal Processing, vol. 50, no. 10, pp. 2429-2441, Oct. 2002, which is incorporated herein by reference, with BPSK at transmission rate 2 bits pcu. The complexity for decoding the LD code 186 with SD is the same as the second modified design 182. Clearly, the second modified design 182 has higher performance than the LD code 186.
The block size P is selected as P=Nt(L+1)=4. QPSK is employed for the described FDFR design 190 and V-BLAST-OFDM 192 while 16 QAM is employed for the GSTF design 194 in order to fix the rate at R=8/3 bits pcu. At the receiver, SD is employed for each of the designs 190, 192, and 194. From the slopes of the BER curves, the described FDFR design 190 and GSTF 194 achieve full diversity while V-BLAST-OFDM 192 only achieves diversity order Nr. The described FDFR design 190 has higher performance that the GSTF design 194 because a smaller constellation size is used for the FDFR design 190. The decoding complexity of the FDFR design 190 is ((Nt2(L+1))3) while the V-BLAST-OFDM design 192 has (Nr3) and the GSTF design 194 has ((L+1)3).
The described ST coding techniques can be embodied in a variety of transmitters and receivers including base stations, cell phones, laptop computers, handheld computing devices, personal digital assistants (PDA's), and the like. The devices may include a digital signal processor (DSP), field programmable gate array (FPGA), application specific integrated circuit (ASIC) or similar hardware, firmware and/or software for implementing the techniques. If implemented in software, a computer readable medium may store computer readable instructions, i.e., program code, that can be executed by a processor or DSP to carry out one of more of the techniques described above. For example, the computer readable medium may comprise random access memory (RAM), read-only memory (ROM), non-volatile random access memory (NVRAM), electrically erasable programmable read-only memory (EEPROM), flash memory, or the like. The computer readable medium may comprise computer readable instructions that when executed in a wireless communication device, cause the wireless communication device to carry out one or more of the techniques described herein. These and other embodiments are within the scope of the following claims.
This application claims priority from U.S. Provisional Application Ser. No. 60/507,829, filed Oct. 1, 2003, the entire content of which is incorporated herein by reference.
This invention was made with Government support under University Account Number 522-6484, awarded by the Army Research Lab (ARL/CTA), and Contract No. DAAD19-01-2-011. The Government may have certain rights in this invention.
Number | Name | Date | Kind |
---|---|---|---|
6088408 | Calderbank et al. | Jul 2000 | A |
6351499 | Paulraj et al. | Feb 2002 | B1 |
6442214 | Boleskei et al. | Aug 2002 | B1 |
6452981 | Raleigh et al. | Sep 2002 | B1 |
6614861 | Terry et al. | Sep 2003 | B1 |
6865237 | Boariu et al. | Mar 2005 | B1 |
6898248 | Elgamal et al. | May 2005 | B1 |
6956815 | Chiodini | Oct 2005 | B2 |
20020122502 | El-Gamal et al. | Sep 2002 | A1 |
20020136327 | El-Gamal et al. | Sep 2002 | A1 |
20020163892 | Hassibi et al. | Nov 2002 | A1 |
20050058217 | Sandhu et al. | Mar 2005 | A1 |
20050128936 | Shao | Jun 2005 | A1 |
Number | Date | Country |
---|---|---|
2001080446 | Oct 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20050105631 A1 | May 2005 | US |
Number | Date | Country | |
---|---|---|---|
60507829 | Oct 2003 | US |