This disclosure relates to communication networks. This disclosure also relates to transceiver hybrid adaptations in the communication networks to reduce hybrid leakage.
High speed data networks form part of the backbone of what has become worldwide data connectivity. Within the data networks, network devices such as switching devices direct data packets from links connected through hubs, helping to eventually guide the data packets from a source to a destination.
The innovation may be better understood with reference to the following drawings and description. In the figures, like reference numerals designate corresponding parts throughout the different views.
An adaptation loop, e.g., for gigabit Ethernet switches and hubs, can handle driver termination calibration, output transmit amplitude regulation against load variations, and transceiver hybrid leakage in the analog domain, in addition to a digital echo canceller handling the leakage. The methods and systems can take advantage of a full-duplex driver architecture to minimize the hybrid leakage and provide improvement in system signal-to-noise ratio (SNR) for full-duplex communications applications such as gigabit Ethernet without increasing the resolution of the receiver analog-to-digital converter (ADC). The systems and methods can also be used with simplex communications systems for active impedance matching and transmit amplitude regulation against load variations.
Ethernet switch 110 can connect a network of computers 132, 134, 136 to the Internet. Additionally or alternatively, gigabit Ethernet switch 112 can connect to the Internet 120 via computer 140. The gigabit Ethernet switch 112 can connect with a game console 150 connected with television or monitor 152, desktop computer 160 connected with printer 162 and gigabit Ethernet switch 114. Additionally or alternatively, gigabit Ethernet switch 114 can create a network of other connected devices including a printer 170, a laptop computer 180 and/or a set-top box 190 to receive cable or satellite signals connected with television or monitor 192.
The full-duplex driver 220 can perform simultaneous functions, including sending a transmit signal vtx to the line 125 and extracting a receive signal vrx from the line 125 using a built-in hybrid. The design parameter of the full-duplex driver 220, e.g., a transconductance Gm of a closed-loop transconductor, can be tuned to maintain a constant voltage gain A against the variation of the load RL, while simultaneously the hybrid leakage from vtx is also minimized and the output impedance Ro is matched to the load RL.
The HA element 310 can tune Gm to zero out the near-end echo that dominates the hybrid leakage ve. By cancelling or reducing the hybrid leakage ve in the analog domain instead of the digital domain, a dynamic range of the ADC 222 can be increased. Additionally or alternatively, when the transconductance of the driver Gm is tuned to reduce hybrid leakage ve, Gain A is about −2, therefore a transmit amplitude is independent of the load. Additionally or alternatively, an output impedance Ro of the full-duplex driver 220 can match the load impedance RL since the output impedance Ro is 2/Gm, to provide minimized reflection. Therefore, the HA element 310 can simultaneously regulate the voltage gain and match the output impedance Ro to the load impedance RL.
The outputs of the comparator 422 and the comparator 424 connect with a correlator, e.g., an exclusive-or (XOR) gate 426. Other types of gates can be used depending on the implemented logic of the circuit. An output of the XOR gate 426 can be zero when the polarity of vtx matches the polarity of vh and can be one when the polarity of vtx does not match vh, or vice versa. The XOR gate accomplishes a correlation function between vtx and vh which is proportional to the leakage signal ve and includes the same polarity as the leakage signal ve on average. The correlation is fed to an up/down counter 428. If the up/down counter 428 keeps counting up or down the leakage ve is non-zero and is driven to zero. Starting from a nominal mid-point, the counter value counts up if the XOR output value is one and counts down if the XOR output value is zero while the hybrid leakage ve is in the opposite polarity to vtx or the same polarity as vtx, respectively. When the up/down counter 428 stops counting, e.g., the most significant bits (MSB) are not changing, the hybrid leakage ve is minimized, e.g., about zero hybrid leakage ve.
The bits of the up/down counter 428, e.g., the MSB, are outputted to the driver Gm 320. The MSB are used to digitally tune driver Gm 320 to drive the hybrid leakage voltage ve to about zero. This analog domain hybrid adaptation is a simpler implementation than handling the hybrid leakage in the digital domain, e.g., by a digital echo canceller.
The adaptation can either run continuously in the background or be turned off after convergence for a determined load. The analog adaption can lower the requirements on digital echo cancellation dynamic range and complexity and provide extra improvement in the system SNR on top of digital echo cancellation. Product advantages can include less bit error rate (BER) sensitivity to impedance variation of the cable, e.g., line 125, and link partner in the short cable cases. The driver output impedance can automatically track and adapt to the cable impedance and the transmit amplitude can remain constant.
The methods, devices, and logic described above may be implemented in many different ways in many different combinations of hardware, software or both hardware and software. For example, all or parts of the system may include circuitry in a controller, a microprocessor, or an application specific integrated circuit (ASIC), or may be implemented with discrete logic or components, or a combination of other types of analog or digital circuitry, combined on a single integrated circuit or distributed among multiple integrated circuits. All or part of the logic described above may be implemented as instructions for execution by a processor, controller, or other processing device and may be stored in a tangible or non-transitory machine-readable or computer-readable medium such as flash memory, random access memory (RAM) or read only memory (ROM), erasable programmable read only memory (EPROM) or other machine-readable medium such as a compact disc read only memory (CDROM), or magnetic or optical disk. Thus, a product, such as a computer program product, may include a storage medium and computer readable instructions stored on the medium, which when executed in an endpoint, computer system, or other device, cause the device to perform operations according to any of the description above.
The logic described above may be distributed among multiple system components, such as among multiple processors and memories, optionally including multiple distributed processing systems. Parameters, databases, and other data structures may be separately stored and managed, may be incorporated into a single memory or database, may be logically and physically organized in many different ways, and may implemented in many ways, including data structures such as linked lists, hash tables, or implicit storage mechanisms. Programs may be parts (e.g., subroutines) of a single program, separate programs, distributed across several memories and processors, or implemented in many different ways, such as in a library, such as a shared library (e.g., a dynamic link library (DLL)). The DLL, for example, may store code that performs any of the system processing described above.
While various embodiments of the systems and methods have been described, many more embodiments and implementations are possible within the scope of the systems and methods. Accordingly, the systems and methods are not to be restricted except in light of the attached claims and their equivalents.
This application claims priority to U.S. Provisional Application Ser. No. 61/874,816, filed Sep. 6, 2013, titled “Transceiver with Hybrid Adaptation,” which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6373908 | Chan | Apr 2002 | B2 |
6388605 | Petz | May 2002 | B1 |
6877043 | Mallory | Apr 2005 | B2 |
7180951 | Chan | Feb 2007 | B2 |
7672447 | Lindqvist | Mar 2010 | B1 |
7778333 | Chan | Aug 2010 | B2 |
8717213 | Wong | May 2014 | B1 |
8942658 | Banwell | Jan 2015 | B2 |
20020101982 | Elabd | Aug 2002 | A1 |
20030142688 | Chou | Jul 2003 | A1 |
20040096005 | Zabroda | May 2004 | A1 |
20050179473 | Nagahori | Aug 2005 | A1 |
20060018388 | Chan | Jan 2006 | A1 |
20090028355 | Ishiguro | Jan 2009 | A1 |
20100142699 | Qin | Jun 2010 | A1 |
20120001660 | Gupta | Jan 2012 | A1 |
20130028409 | Li | Jan 2013 | A1 |
20130294294 | Pan | Nov 2013 | A1 |
20150311913 | Pan | Oct 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20150071136 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61874816 | Sep 2013 | US |