Full duplex wideband communications system for a local coaxial network

Information

  • Patent Grant
  • 7916709
  • Patent Number
    7,916,709
  • Date Filed
    Monday, August 23, 2004
    20 years ago
  • Date Issued
    Tuesday, March 29, 2011
    13 years ago
  • US Classifications
    Field of Search
    • US
    • 370 343000
    • 370 295000
    • 370 330000
    • 370 276000
    • 370 278000
    • 370 281000
    • 370 282000
    • 370 277000
    • 370 329000
    • 725 118000
    • 725 111000
    • 725 126000
    • 455 450000
  • International Classifications
    • H04J1/00
    • H04W4/00
    • Disclaimer
      This patent is subject to a terminal disclaimer.
      Term Extension
      792
Abstract
Systems and methods are disclosed for a full duplex wideband communications system for a local (e.g. in-home) coaxial network. The system employs a Frequency-division duplex (FDD) scheme that allows identical wideband modems to communicate with each other. To achieve this, the wideband modems contain a duplexer and a switch that allows reversing the connection of the wideband transmitter and receiver to the duplexer. Each wideband modem includes a control modem that is used to control access to the wideband channels. A wideband transmitter, which may be included in a modem associated with a server set-top terminal (STT), transmits a video presentation to a wideband receiver, which may be included in a modem associated with a client STT.
Description
FIELD OF THE INVENTION

This invention relates in general to broadband communications systems, and more particularly, to the field of a full duplex wideband communications system operating within a local coaxial network.


DESCRIPTION OF THE RELATED ART

Subscriber premises receiving cable television or satellite service typically have a coaxial network for providing received signals to various rooms in the premises. The coaxial network typically connects set-top terminals (STT) for decoding the signals (e.g., cable or satellite television (CATV) signals) to a communications system. It will be appreciated that other equipment, such as cable modems and video recorders, to name a couple, can also be connected to the coaxial network. The transmitted signals may be, therefore, video/audio signal, telephony signals, or data signals.


Traditionally, an individual STT could not communicate with the other networked STTs; they were receiving devices that may have had the capability to transmit data to a headend facility in the system. As technology progressed, a server STT could communicate with a plurality of remote STTs in a network. This communication is desirable in that the server STT could share files or programs with the remote STTs upon command from the remote STT. By way of example, the server STT may contain storage media, such as hard disk drives, to store video programs. Accordingly, the networked remote STTs may want to view those stored programs. In this manner, upon request, the server STT can transmit a program to the requesting remote STT for viewing at that STT. Further information regarding a networked multimedia system that includes a server and remote STTs can be found in copending U.S. patent application Ser. No. 10/342,670 filed Jan. 15, 2003, the disclosure and teachings of which are hereby incorporated by reference.


A need exists, however, for systems and methods that improve upon communications among networked equipment in a subscriber premises.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily drawn to scale, emphasis instead being placed upon clearly illustrating the principles of the invention. In the drawings, like reference numerals designate corresponding parts throughout the several views.



FIG. 1 illustrates a block diagram of a coaxial network 100 that includes a plurality of STTs for receiving and decoding CATV signals.



FIG. 2 illustrates a block diagram of two networked modems and a frequency range plan that are suitable for employing the full duplex wideband communications in accordance with the present invention.



FIG. 3 illustrates a simplified block diagram of the RF portion of a set-top terminal.



FIG. 4 illustrates a simplified STT including a wideband modem in accordance with the present invention.



FIG. 5 is a graph illustrating a frequency response of a wideband modem in a coaxial network having a multipath environment.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred embodiments of the invention can be understood in the context of a broadband communications system and a local network. Note, however, that the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. For example, transmitted broadband signals include at least one of video/audio, telephony, data, or Internet Protocol (IP) signals, to name but a few. Devices included in the broadband communications system for receiving the transmitted broadband signals may include a set-top terminal (STT), a television, a consumer electronics device such as a DVD player/recorder, a computer, a personal digital assistant (PDA), or other type of electronics device. Furthermore, in accordance with the present invention all of these receiving devices may include a modem or be connected to a stand-alone modem for receiving high speed data. All examples given herein, therefore, are intended to be non-limiting and are provided in order to help clarify the description of the invention.


The present invention is directed towards a full duplex wideband communications device and system that are suitable for use in a coaxial network. The coaxial network is typically confined to a subscriber premises. It will be appreciated, however, that the network can also be used in a multi-unit dwelling, business, school, hotel, or hospital, among others. Advantageously, the present invention allows for full duplex wideband communications among STTs or modems that are connected in the coaxial network. The communications between any pair of STTs (e.g., a server STT and a remote STT or two remote STTs) are at data rates suitable for high definition video transmissions. The present invention also allows multiple STTs to share the network without interference with each other. Additionally, a STT, for example, the server STT, is capable of providing different content to different remote STTs concurrently. Furthermore, the communication between STTs and the reception of conventional CATV signals occur simultaneously without interference to the received CATV signals. As mentioned, the modem can be a standalone device that is connected to an STT and still utilize the full duplex wideband communications in accordance with the present invention.



FIG. 1 illustrates a block diagram of a coaxial network 100 that includes coaxial cables 105 and power splitters 106. The coaxial network 100 is designed to connect set-top terminals (STTs) 110a-n within the premises to the CATV communications system. In the coaxial network, the STTs 110a-n (or other devices connected to the network 100) should preferably be able to communicate with each other. However, there is high loss between the STTs 110a-n due to port-port isolation of the splitters 106. To reduce the loss between the STTs 110a-n, a reflector 120 is inserted between the coaxial network 100 and the CATV communications system. The reflector 120 contains one or more band-reject filters that are centered on frequencies used to communicate between the STTs 110a-n. The filters reflect signals at these frequencies with low loss, so that the loss between STTs is minimized. Additionally, the band reject filters prevent the in-home signals from entering the CATV communications system. It will be appreciated that the block diagram of FIG. 1 can be reconfigured into several different configurations. For example, the splitters 106 can be incorporated into the reflector 120. Additionally, the reflector 120 shown operates using reflection of the signals, but other techniques could be used to reduce loss in the desired frequency bands. For example, it is possible to design a splitter that has reduced isolation in particular frequency bands, particularly in the modem's low band and high band. If this method were used, it would still be desirable to keep the coaxial network signals from leaking into the communications system. To reduce this leakage, an amplifier having sufficient reverse isolation could be placed in line with the cable from the communications system to the coaxial network. Further information regarding the reflector 120 can be found in copending U.S. patent application Ser. No. 10/342,670 filed Jan. 15, 2003, the disclosure and teachings of which are hereby incorporated by reference.



FIG. 2 illustrates a block diagram of two networked modems 205, 210 and a frequency range plan 215 that are suitable for employing the full duplex wideband communications in accordance with the present invention. Two modems 205, 210 are shown connected to the coaxial network 100. Specifically, the modems 205, 210 communicate with each other, or other modems. In accordance with the present invention, the modems 205, 210 communicate in full duplex wideband mode. That is to say that modem A 205 may transmit signals in a low band 216 and modem B 210 may transmit in a high band 217 with each other. As will be discussed further below, the channel allocated to the modems 205, 210 may change. Only two modems 205, 210 are shown in this illustration; however, since several modems may be operating simultaneously in the coaxial network 100, there are preferably multiple wideband channels in bands 216 and 217 in the frequency range 215 to avoid conflict. Other signals transmitted in the frequency range 215 comprise a reverse band 218 from, for example, 5 MHz to 40 MHz that the STTs 110 use to communicate back to the headend facility in the system. Additionally, a forward band 219, ranging from 50 MHz to 870 MHz, carries several channels of downstream programs that are broadcasted from the headend facility to the STTs 110 throughout the system.


The modems 205, 210 each include a wideband modem 220, 222 comprising transmitters 225, 226 and receivers 227, 228 for high data rate communications, such as transmitting and receiving stored video presentations, within the coaxial network 100. The preferred modulation method for the wideband data communications is QAM (quadrature amplitude modulation), and typically the frequencies are above the forward band 219. The wideband modems 220, 222 also include a band-select switch 230, 232 and a duplexer 234, 236 for routing the wideband signals.


A medium access method is similar to frequency division multiple access with frequency division duplex (FDMA/FDD). FDMA/FDD is appropriate for systems having a base station and multiple users, such as cellular telephone. In the FDMA/FDD system, the base station transmits in a downlink band, and the users transmit in an uplink band. The receiver is isolated from the transmitter by a duplexer. In accordance with the present invention, however, coupled modems 205, 210, or STTs that include modems 205, 210, communicate directly with each other (e.g., from STT 110a to STT n) rather than the conventional method. In other words, there is no base station in the coaxial network 100. To allow any two wideband modems 205, 210 to communicate in this manner, however, the FDD scheme is no longer sufficient.


To allow the wideband modems 205, 210 to communicate in accordance with the present invention, the modems 205, 210 can transmit and receive in either of two bands (e.g., low band 216 and high band 217). The electronically-controlled band select switch 230, 232 allows reversing the connection of the transmitter 225, 226 and receiver 227, 228 to the duplexer 234, 236. As shown in FIG. 2, modem A 205 is set to transmit in the low band 216 and receive in the high band 217, and modem B 210 is set to transmit in the high band 217 and receive in the low band 216. Transmitting and receiving in a frequency included in either the high band or the low band can be optimized and is discussed further below. For either setting of the band select switch 230, 232, the duplexer 234, 236 attenuates the transmit signal so that the receiver sensitivity is not degraded by the transmitter (i.e., modem A's transmitter 225 does not affect modem A's receiver 227). Each band 216, 217 may contain multiple signals to allow multiple pairs of modems to communicate simultaneously. The transmitters 225, 226 and receivers 227, 228 need to be able to function over a frequency range that includes both the high and low bands. The switch 230, 232 should preferably be a monolithic double-pole double-throw type. The duplexer 234, 236 should preferably use dielectric resonator technology, while the control channel diplexer 255, 257 is preferably an LC filter.


The modems 205, 210 also include a control modem 237, 238 comprising transmitters 240, 242 and receivers 245, 247 used for control communications among the modems 205, 210 within the coaxial network 100. More specifically, the control transmitter 240, 242 provides control information, such as an optimized transmitting frequency of the wideband modem, or requests, such as a request for a stored video presentation, to at least one control receiver 245, 247. The control receiver 245, 247 then receives the information or request and acts accordingly.


In contrast to the full duplex wideband modems 220, 222, the control modems 237, 238 operate on a single frequency and in half duplex mode. Additionally, the single frequency is separate from bands 216, 217 used by the wideband modems 220, 222. The control frequency 250 used by the control modem 237, 238 is typically below the reverse band 218, for example, at 4.5 MHz. The control signals and the wideband data communications signals are routed to the coaxial network 100 using the control channel diplexer 255, 257.


The control modems 237, 238 send and receive data packets as burst packages using a modulation scheme such as FSK (frequency shift keying). Each packet includes an error-detection code and a destination address. The control modems 237, 238 use a random access protocol similar to ALOHA in a known manner. A protocol for control communications from, for example, modem A 237 to modem B 238 may be summarized as follows:


Modem A 237 sends a packet to modem B 238 and then waits for acknowledgement;


assuming modem B 238 receives the packet with no errors and the address is that of modem B 238, modem B 238 sends a short acknowledgement;


if the acknowledgement signal is received by modem A 237, then modem A 237 sends the next packet. If the acknowledgement signal is not received within a specified time, modem A 237 waits a random time and resends the initial packet.



FIG. 3 illustrates a simplified block diagram of a radio frequency (RF) portion of a set-top terminal (STT). STT 300 includes diplexer 305, which isolates tuners 310, 320, 330 from a reverse transmitter 308. The reverse transmitter 308 transmits signals to the headend facility in the communications system. Tuners 310, 320, 330 can be used to receive live television signals (CATV signals), record to a hard drive, or receive cable modem signals. The tuners 310, 320, 330 are capable of receiving QAM signals. Advantageously, a wideband modem 220, 222 that uses some of these existing STT functions can be added to the STT 300.



FIG. 4 illustrates a simplified STT including a wideband modem in accordance with the present invention. CATV signals are received from the communications system at diplexer 305. Diplexer 405 provides the CATV signals and any modem RF signals to the intended destination depending upon the received signal frequency. In accordance with the present invention, tuner 410 can be configured to act as the wideband receiver 227 shown in FIG. 2, and switch 415 is added to select the appropriate signal path depending upon the type of received signals. Accordingly, switch 415 connects the tuner 410 to receive wideband communications signals from another modem 210. In the event that the STT 400 requires a third tuner to receive CATV signals, the switch 415 connects the tuner 410 to the communications system. The STT's reverse transmitter 420 may be shared between the CATV reverse band 218 and the control channel signals 250. The reverse transmitter 420 may be configured as an FSK transmitter.


Returning to FIG. 2, a communications protocol needs to be established between two modems. A simplified example of a protocol used by the initiating modem 205 and the receiving modem 210 follows assuming knowledge of unused frequencies and that it is arbitrarily chosen that modem A 205 transmits in the low band.


Modem A 205 sets the band switch to Tx/Rx=low/high;


modem A 205 chooses from the unused frequencies low and high band frequencies (fL and fH);


modem A 205 uses the control transmitter 240 to send the chosen frequency information to modem B 210;


modem B 210 sends an acknowledgement using control transmitter 242 and, based on the frequency chosen by modem A 205, sets the band switch 232 to Tx/Rx=high/low and tunes the wideband receiver 228 to the frequency in the low band (fL);


modem A 205 then tunes its wideband receiver 227 to the frequency in the high band (fH) and begins transmitting data at fL;


modem B 210 begins transmitting at fH; and


modem A 205 uses control transmitter 240 to send a message to any other modems on the network indicating that the two chosen frequencies (fL and fH)are currently in use.


Another embodiment of a full duplex communications modem for the coaxial network 100 is a client modem. A client modem includes a wideband receiver and a control transmitter. The client modem does not include a wideband transmitter or control receiver. In this manner, the client modem uses the control transmitter to request a wideband transmission from a server wideband modem and then receives the wideband transmission using its wideband receiver. A typical application for the client modem is to request and receive video programs stored in an STT that is connected to or containing the wideband communications modem 205.


As previously discussed, the modem signals are reflected and contained within the coaxial network 100 by filters within the reflector 120 (FIG. 1). In this manner, the loss between modems is minimized. However, referring to FIG. 1, the signal between modems may take several paths other than the path to and from the reflector 120. For example, there is a path between modems included in STT 110a and STT 110b across the splitter 130. The multiple signal paths (i.e., multipath environment) cause distortions to the frequency response of the coaxial network 100, which may include deep nulls 505 (FIG. 5).



FIG. 5 is a graph illustrating a frequency response 500 of a coaxial network 100 having a multipath environment. The frequency response 500 is within the full duplex wideband communications signal band. The control modem signal is not very susceptible to multipath distortion since its bandwidth is small and the modulation method is usually simple (e.g., FSK).


The present invention includes methods to optimize communication between wideband modems in a multipath environment. The methods involve optimizing the QAM signal parameters based on RF center frequency; bandwidth; and QAM constellation. The last two parameters affect the maximum data rate of the channel. When two modems 205, 210 connect for the first time, a search algorithm can be used to determine the best signal parameters for each direction of communication. For example, using an FSK signal in the control channel, modem A 205 can request modem B 210 to transmit at a given frequency. Modem A 205 can then measure the signal quality at that frequency. This is repeated at several frequencies until the optimal frequency is found. An example of a possible search sequence is shown in Table 1. Once the optimal signal parameters are found, those parameters are stored by both modems 205, 210 so that the search algorithm need not be repeated. Signal quality is determined from measurements made by the receiving modem, including one or more of the following: signal amplitude, constellation SNR (signal to noise ratio); tap values of the adaptive equalizer, and bit error rate.









TABLE 1







Example of Search Sequence for Optimal Transmit Signal Parameters












Center
Bandwidth




Parameter Set
Frequency
(MHz)
Constellation
Data Rate














1
873
6
256
Highest


2
874
6
256
Highest


3
875
6
256
Highest


4
876
6
256
Highest


5
877
6
256
Highest


6
878
6
256
Highest


7
879
6
256
Highest


8
873
6
64


9
874
6
64


10
876
6
64


11
877
6
64


12
878
6
64


13
879
6
64


14
879
6
64


15
873
3
256


16
874
3
256


17
875
3
256


18
876
3
256


19
877
3
256


20
878
3
256


21
879
3
256


22
873
3
64
Lowest


23
874
3
64
Lowest


24
875
3
64
Lowest


25
876
3
64
Lowest


26
877
3
64
Lowest


27
878
3
64
Lowest


28
879
3
64
Lowest









If there are several modems connected to the coaxial network 100, for example, one server modem and several client modems, the server modem may have to transmit to two or more client modems simultaneously. Considering a two-client example, it may happen that, due to multipath distortion, the frequency responses from server modem 110a to client modems 110b and 110d are not similar. In this case, the optimization of the signal parameters should take both frequency responses into account. On initial connection, each client modem performs the search algorithm described hereinabove. An integer quality score based on signal measurements is assigned to each parameter set of Table 1, with 7 equal to the highest quality. Any score above 0 indicates an acceptable quality. The signal parameter table for client modems 110b and 110d is stored in the server modem 110a. Therefore, the server modem 110a can sort the tables to find the highest scores for each client modem 110b-n. By way of example, the overall score could be calculated as: overall score=min(client 110b score, client 110d score). The result might appear as shown in Table 2. For this example, parameter set i is optimal.









TABLE 2







Example of Sorted Signal Quality Scores










Score













Client Modem
Client Modem
Overall



Parameter Set
110b
110d
Score
Data Rate





i
4
3
3
Medium


j
6
3
3
Lowest


k
5
2
2
Medium


m
0
2
0
Highest


n
2
0
0
Highest


Etc.
Etc.
Etc.
Etc.
Etc.









It should be emphasized that the above-described embodiments of the invention are merely possible examples, among others, of the implementations, setting forth a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiments of the invention without departing substantially from the principles of the invention. All such modifications and variations are intended to be included herein within the scope of the disclosure and invention and protected by the following claims. In addition, the scope of the invention includes embodying the functionality of the preferred embodiments of the invention in logic embodied in hardware and/or software-configured mediums.

Claims
  • 1. A full duplex wideband modem, comprising: a wideband transmitter for transmitting high data rate communications;a wideband receiver for receiving high data rate communications;a band select switch coupled to the transmitter and receiver for selecting one of a high band or a low band in accordance with a first unused frequency associated with transmitted high data rate communications and selecting a second unused frequency in the unselected high band or low band associated with received high data rate communications,wherein the band select switch passes both the transmitted high data rate communications and the received high data rate communications,a duplexer for isolating the wideband receiver from the wideband transmitter, wherein the band select switch reverses the connection of the wideband transmitter and the wideband receiver to a high-pass and a low-pass port of the duplexer,wherein the duplexer attenuates the transmitted high data rate communications, andwherein the full duplex wideband modem communicates with a second full duplex wideband modem when the band select switch of each full duplex wideband modem is set in opposite positions.
  • 2. The full duplex wideband modem of claim 1, further comprising: a control transmitter for sending control information to at least one coupled full duplex wideband modem, wherein the control information includes the first unused frequency and the second unused frequency of at least one connected full duplex wideband modem, wherein the control information instructs one of the at least one coupled full duplex wideband modem to receive the high data rate communications in the first unused frequency and transmit the high data rate communications in the second unused frequency and informs the remaining coupled full duplex wideband modems that the first and second unused frequencies are no longer unused; anda control receiver for receiving control information from the at least one coupled full duplex wideband modem.
  • 3. The full duplex wideband modem of claim 2, wherein a high frequency band includes a plurality of frequencies in which to transmit and receive the high data rate communications, and wherein a low frequency band includes a plurality of frequencies in which to transmit and receive the high data rate communications, wherein the used frequencies are currently in use by other coupled full duplex wideband modems.
  • 4. The full duplex wideband modem of claim 1, wherein the high data rate communications is a video presentation.
  • 5. A coaxial network for communicating high data rate signals, the coaxial network comprising a plurality of wideband modems for transmitting and receiving high data rate communications between two or more of the plurality of modems in the coaxial network, a wideband modem comprising: a transmitter for transmitting the high data rate communications;a receiver for receiving the high data rate communications; anda band select switch coupled to the transmitter and receiver for selecting one of a high band or a low band in accordance with a first unused frequency associated with transmitted high data rate communications and a second unused frequency associated with received high data rate communications,wherein the band select switch passes both the transmitted high data rate communications and the received high data rate communications,a duplexer for isolating the wideband receiver from the wideband transmitter, wherein the band select switch reverses the connection of the wideband transmitter and the wideband receiver to a high-pass and a low-pass port of the duplexer,wherein the duplexer attenuates the transmitted high data rate communications, andwherein the band select switch of one of the plurality of wideband modems and a band select switch of a second of the plurality of wideband modems communicate with each other when the band select switches are set in opposite positions.
  • 6. The coaxial network of claim 5, wherein the high data rate communications include a video presentation.
  • 7. The coaxial network of claim 5, wherein the duplexer is coupled to the band select switch for receiving and providing the transmitted high data rate communications to the coaxial network, and for receiving and providing the received high data rate communications to the band select switch, wherein the high data rate communications are isolated from other signals by a high pass filter.
  • 8. The coaxial network of claim 7, the wideband modem further comprising a control modem for providing information regarding the first unused frequency associated with the transmitted high data rate communications and the second unused frequency associated with the received high data rate communications.
  • 9. The coaxial network of claim 8, wherein the control modem comprises: a control transmitter for providing the information to the plurality of wideband modems; anda control receiver for receiving information from the plurality of wideband modems.
  • 10. The coaxial network of claim 9, wherein a high frequency band includes a plurality of frequencies in which to transmit and receive the high data rate communications, and wherein a low frequency band includes a plurality of frequencies in which to transmit and receive the high data rate communications, wherein the selected first and second unused frequencies become used frequencies to the other plurality of wideband modems for selection.
  • 11. The coaxial network of claim 5, wherein the wideband modem determines the first and second unused frequencies by requesting at least one other communicating modem to transmit a return signal at a particular unused frequency and analyzing the quality of the return signal.
  • 12. The coaxial network of claim 11, wherein the quality of the return signal from the at least one other communicating modem is determined by at least one of an amplitude, signal to noise ratio, and bit error rate of the return signal.
  • 13. The coaxial network of claim 11, wherein the wideband modem requests the return signal from the at least one other communicating modem using FSK communications.
  • 14. The coaxial network of claim 11, wherein the wideband modem continues to request the at least one other communicating modem to transmit a return signal at numerous unused frequencies until an optimized first and second available frequency is determined.
RELATED APPLICATIONS

This patent application is a continuation-in-part of copending U.S. patent application Ser. No. 10/342,670 filed Jan. 15, 2003.

US Referenced Citations (456)
Number Name Date Kind
4215366 Davidson Jul 1980 A
4290081 Foerster Sep 1981 A
4439784 Furukawa et al. Mar 1984 A
4535355 Arn et al. Aug 1985 A
4540958 Neyens et al. Sep 1985 A
4578533 Pierce Mar 1986 A
4644526 Wu Feb 1987 A
4686564 Masuko et al. Aug 1987 A
4706121 Young Nov 1987 A
4751578 Reiter et al. Jun 1988 A
4885803 Hermann et al. Dec 1989 A
4908713 Levine Mar 1990 A
4916532 Streck et al. Apr 1990 A
4963994 Levine Oct 1990 A
4963995 Lang Oct 1990 A
5010299 Nishizawa et al. Apr 1991 A
5010399 Goodman et al. Apr 1991 A
5038211 Hallenbeck Aug 1991 A
5048054 Eyuboglu et al. Sep 1991 A
5155591 Wachob Oct 1992 A
5168372 Sweetser Dec 1992 A
5251074 Hamma et al. Oct 1993 A
5253066 Vogel Oct 1993 A
5293357 Hallenbeck Mar 1994 A
5294981 Yazolino et al. Mar 1994 A
5381449 Jasper et al. Jan 1995 A
5406626 Ryan Apr 1995 A
5412416 Nemirofsky May 1995 A
5479268 Young et al. Dec 1995 A
5481542 Logston et al. Jan 1996 A
5508815 Levine Apr 1996 A
5515377 Home et al. May 1996 A
5524051 Ryan Jun 1996 A
5553211 Uotani Sep 1996 A
5568272 Levine Oct 1996 A
5574964 Hamlin Nov 1996 A
5579308 Humpleman Nov 1996 A
5590195 Ryan Dec 1996 A
5600364 Hendricks et al. Feb 1997 A
5600573 Hendricks et al. Feb 1997 A
5600707 Miller, II Feb 1997 A
5621793 Bednarek et al. Apr 1997 A
5636247 Kamerman et al. Jun 1997 A
5638423 Grube et al. Jun 1997 A
5642384 Ramesh Jun 1997 A
5652772 Isaksson et al. Jul 1997 A
5657072 Aristides et al. Aug 1997 A
5666151 Kondo et al. Sep 1997 A
5682206 Wehmeyer et al. Oct 1997 A
5699105 Chen et al. Dec 1997 A
5701383 Russo et al. Dec 1997 A
5708961 Hylton et al. Jan 1998 A
5714945 Sakuma et al. Feb 1998 A
5715020 Kuroiwa et al. Feb 1998 A
5715277 Goodson et al. Feb 1998 A
5732359 Baranowsky et al. Mar 1998 A
5734437 Back Mar 1998 A
5751806 Ryan May 1998 A
5758257 Herz et al. May 1998 A
5760822 Coutinho Jun 1998 A
5774527 Handelman et al. Jun 1998 A
5778181 Hidary et al. Jul 1998 A
5787472 Dan et al. Jul 1998 A
5793413 Hylton et al. Aug 1998 A
5793414 Shaffer Aug 1998 A
5796442 Gove et al. Aug 1998 A
5801787 Schein et al. Sep 1998 A
5805763 Lawler et al. Sep 1998 A
5808659 Coutinho et al. Sep 1998 A
5809204 Young et al. Sep 1998 A
5815794 Williams Sep 1998 A
5828403 DeRodeff et al. Oct 1998 A
5835128 MacDonald et al. Nov 1998 A
5835602 Lang Nov 1998 A
5838873 Blatter et al. Nov 1998 A
5850218 LaJoie et al. Dec 1998 A
5850340 York Dec 1998 A
5851149 Xidos et al. Dec 1998 A
5867485 Chambers et al. Feb 1999 A
5872644 Yamazaki et al. Feb 1999 A
5883677 Hofmann Mar 1999 A
5886732 Humpleman Mar 1999 A
5886753 Shinyagaito et al. Mar 1999 A
5915068 Levine Jun 1999 A
5920801 Thomas et al. Jul 1999 A
5930247 Miller, II et al. Jul 1999 A
5936660 Gurantz Aug 1999 A
5940073 Klosterman et al. Aug 1999 A
5940387 Humpleman Aug 1999 A
5970053 Schick et al. Oct 1999 A
5970386 Williams Oct 1999 A
5983068 Tomich et al. Nov 1999 A
5990927 Hendricks et al. Nov 1999 A
5995258 Weber et al. Nov 1999 A
5999622 Yasukawa et al. Dec 1999 A
6005861 Humpleman Dec 1999 A
6005876 Cimini, Jr. et al. Dec 1999 A
6006257 Slezak Dec 1999 A
6014546 Georges et al. Jan 2000 A
6018768 Ullman et al. Jan 2000 A
6023603 Matsubara Feb 2000 A
6026150 Frank Feb 2000 A
6037998 Usui et al. Mar 2000 A
6052556 Sampsell Apr 2000 A
6055355 Lee Apr 2000 A
6061449 Candelore et al. May 2000 A
6069621 Schupak May 2000 A
6073122 Wool Jun 2000 A
6091320 Odinak Jul 2000 A
6091767 Westerman Jul 2000 A
6100883 Hoarty Aug 2000 A
6100936 Jordan et al. Aug 2000 A
6115456 Nolde Sep 2000 A
6118873 Lotspiech et al. Sep 2000 A
6119154 Weaver et al. Sep 2000 A
6122482 Green, Sr. et al. Sep 2000 A
6125103 Bauml et al. Sep 2000 A
6133912 Montero Oct 2000 A
6151493 Sasakura et al. Nov 2000 A
6166744 Jaszlics et al. Dec 2000 A
6169543 Wehmeyer Jan 2001 B1
6172712 Beard Jan 2001 B1
6175343 Mitchell et al. Jan 2001 B1
6175551 Awater et al. Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6177963 Foye et al. Jan 2001 B1
6181784 Duran et al. Jan 2001 B1
6182287 Schneidewend et al. Jan 2001 B1
6188700 Kato et al. Feb 2001 B1
6202211 Williams, Jr. Mar 2001 B1
6208669 Cimini, Jr. et al. Mar 2001 B1
6215526 Barton et al. Apr 2001 B1
6219839 Sampsell Apr 2001 B1
6229895 Son et al. May 2001 B1
6230162 Kumar et al. May 2001 B1
6233389 Barton et al. May 2001 B1
6236653 Dalton et al. May 2001 B1
6240555 Daniel et al. May 2001 B1
6299895 Son et al. May 2001 B1
6243142 Mugura et al. Jun 2001 B1
6263503 Margulis Jul 2001 B1
6285746 Duran et al. Sep 2001 B1
6286140 Ivanyi Sep 2001 B1
6286142 Ehreth Sep 2001 B1
6305017 Satterfield Oct 2001 B1
6310886 Barton Oct 2001 B1
6314146 Tellado et al. Nov 2001 B1
6317884 Eames et al. Nov 2001 B1
6324338 Wood et al. Nov 2001 B1
6327418 Barton Dec 2001 B1
6330334 Ryan Dec 2001 B1
6333937 Ryan Dec 2001 B1
6353929 Houston Mar 2002 B1
6356309 Masaki et al. Mar 2002 B1
6377782 Bishop et al. Apr 2002 B1
6378130 Adams Apr 2002 B1
6411820 Margarit et al. Jun 2002 B1
6415031 Colligan et al. Jul 2002 B1
6418558 Roberts et al. Jul 2002 B1
6421706 McNeill et al. Jul 2002 B1
6424947 Tsuria et al. Jul 2002 B1
6438165 Normile Aug 2002 B2
6441832 Tao et al. Aug 2002 B1
6442755 Lemmons et al. Aug 2002 B1
6452923 Gerszberg et al. Sep 2002 B1
6459427 Mao et al. Oct 2002 B1
6473559 Knudson et al. Oct 2002 B1
6481013 Dinwiddie et al. Nov 2002 B1
6483548 Allport Nov 2002 B1
6493875 Eames et al. Dec 2002 B1
6496980 Tillman et al. Dec 2002 B1
6505348 Knowles et al. Jan 2003 B1
6516029 Wang Feb 2003 B1
6526581 Edson Feb 2003 B1
6530085 Perlman Mar 2003 B1
6535717 Matsushima et al. Mar 2003 B1
6536041 Knudson et al. Mar 2003 B1
6542610 Traw et al. Apr 2003 B2
6556557 Cimini, Jr. et al. Apr 2003 B1
6567981 Jeffrey May 2003 B1
6578070 Weaver et al. Jun 2003 B1
6588017 Calderone Jul 2003 B1
6594798 Chou et al. Jul 2003 B1
6614936 Wu et al. Sep 2003 B1
6622304 Carhart Sep 2003 B1
6622307 Ho Sep 2003 B1
6631522 Erdelyi Oct 2003 B1
6637031 Chou Oct 2003 B1
6675385 Wang Jan 2004 B1
6681326 Son et al. Jan 2004 B2
6697426 Van Der Schaar et al. Feb 2004 B1
6697489 Candelore Feb 2004 B1
6704028 Wugofski Mar 2004 B2
6711132 Lazarus Mar 2004 B2
6735221 Cherubini May 2004 B1
6735312 Abdalla et al. May 2004 B1
6754905 Gordon et al. Jun 2004 B2
6757906 Look et al. Jun 2004 B1
6766526 Ellis Jul 2004 B1
6769127 Bonomi et al. Jul 2004 B1
6771908 Eijk et al. Aug 2004 B2
6785258 Garcia, Jr. et al. Aug 2004 B1
6785901 Horowitz et al. Aug 2004 B1
6788740 van der Schaar et al. Sep 2004 B1
6789106 Eyer et al. Sep 2004 B2
6791995 Azenkot et al. Sep 2004 B1
6795205 Gacek Sep 2004 B1
6798838 Ngo Sep 2004 B1
6804357 Ikonen et al. Oct 2004 B1
6816194 Zhang et al. Nov 2004 B2
6816904 Ludwig et al. Nov 2004 B1
6845486 Yamada et al. Jan 2005 B2
6864778 Musschebroeck et al. Mar 2005 B2
6868292 Ficco et al. Mar 2005 B2
6870570 Bowser Mar 2005 B1
6889385 Rakib et al. May 2005 B1
6904522 Benardeau et al. Jun 2005 B1
6915529 Suematsu et al. Jul 2005 B1
6922843 Herrington et al. Jul 2005 B1
6930788 Iwamoto et al. Aug 2005 B1
6941515 Wilkins Sep 2005 B1
6954897 Noguchi et al. Oct 2005 B1
6957344 Goldshlag et al. Oct 2005 B1
6978474 Sheppard et al. Dec 2005 B1
6996623 Kawano et al. Feb 2006 B1
6996837 Miura et al. Feb 2006 B1
7020890 Suematsu et al. Mar 2006 B1
7020892 Levesque et al. Mar 2006 B2
6950517 Candelore May 2006 B2
7039169 Jones May 2006 B2
7039245 Hamery May 2006 B1
7042526 Borseth May 2006 B1
7047305 Brooks et al. May 2006 B1
7054289 Foster et al. May 2006 B1
7065781 Entwistle Jun 2006 B1
7093295 Saito Aug 2006 B1
7114174 Brooks et al. Sep 2006 B1
7116894 Chatterton Oct 2006 B1
7127734 Amit Oct 2006 B1
7130576 Gurantz et al. Oct 2006 B1
7139398 Candelore et al. Nov 2006 B2
7140033 Durden et al. Nov 2006 B1
7143296 Hirata Nov 2006 B2
7146628 Gordon et al. Dec 2006 B1
7155012 Candelore et al. Dec 2006 B2
7184550 Graunke Feb 2007 B2
7185095 Kawamoto et al. Feb 2007 B2
7185355 Ellis et al. Feb 2007 B1
7190901 Farmer et al. Mar 2007 B2
7194558 Kawamoto et al. Mar 2007 B2
7209667 Lindblad Apr 2007 B2
7218738 Pedlow et al. May 2007 B2
7222358 Levinson et al. May 2007 B2
7231516 Sparrell et al. Jun 2007 B1
7233669 Candelore Jun 2007 B2
7234155 Kay et al. Jun 2007 B1
7260829 Hendricks et al. Aug 2007 B1
7278154 Harrison et al. Oct 2007 B2
7305700 Boynton et al. Dec 2007 B2
7310355 Krein et al. Dec 2007 B1
7313811 Sheppard et al. Dec 2007 B1
7336787 Unger et al. Feb 2008 B2
7346120 McCorkle Mar 2008 B2
7346134 Smith Mar 2008 B2
7350225 Ovadia Mar 2008 B2
7360233 Russ et al. Apr 2008 B2
7360235 Davies et al. Apr 2008 B2
7366914 Graunke Apr 2008 B2
7392389 Kori Jun 2008 B2
7434246 Florence Oct 2008 B2
7487532 Robertson et al. Feb 2009 B2
7516470 Russ et al. Apr 2009 B2
7545935 Claussen et al. Jun 2009 B2
7603684 Ellis Oct 2009 B1
7849486 Russ et al. Dec 2010 B2
7861272 Russ et al. Dec 2010 B2
7870584 Russ et al. Jan 2011 B2
7876998 Wall et al. Jan 2011 B2
20010005906 Humpleman Jun 2001 A1
20010011373 Inoue Aug 2001 A1
20010017920 Son et al. Aug 2001 A1
20010030664 Shulman et al. Oct 2001 A1
20010039660 Vasilevsky et al. Nov 2001 A1
20020002707 Ekel et al. Jan 2002 A1
20020007485 Rodriguez et al. Jan 2002 A1
20020007493 Butler et al. Jan 2002 A1
20020010936 Adam Jan 2002 A1
20020019984 Rakib Feb 2002 A1
20020035726 Corl Mar 2002 A1
20020035729 Diep Mar 2002 A1
20020040475 Yap et al. Apr 2002 A1
20020044762 Wood et al. Apr 2002 A1
20020051200 Chang et al. May 2002 A1
20020051581 Takeuchi et al. May 2002 A1
20020056112 Dureau et al. May 2002 A1
20020059615 Okawara et al. May 2002 A1
20020059617 Terakado et al. May 2002 A1
20020059623 Rodriguez et al. May 2002 A1
20020059637 Rakib May 2002 A1
20020066101 Gordon et al. May 2002 A1
20020067437 Tsubouchi et al. Jun 2002 A1
20020069417 Kliger et al. Jun 2002 A1
20020083438 So et al. Jun 2002 A1
20020087996 Bi et al. Jul 2002 A1
20020090198 Rosenberg et al. Jul 2002 A1
20020095673 Leung et al. Jul 2002 A1
20020095689 Novak Jul 2002 A1
20020100041 Rosenberg et al. Jul 2002 A1
20020104001 Lotspiech et al. Aug 2002 A1
20020108109 Harris et al. Aug 2002 A1
20020108121 Alao et al. Aug 2002 A1
20020116626 Wood Aug 2002 A1
20020122045 Woodson et al. Sep 2002 A1
20020133558 Fenno et al. Sep 2002 A1
20020137517 Williams et al. Sep 2002 A1
20020138830 Nagaoka et al. Sep 2002 A1
20020141582 Kocher et al. Oct 2002 A1
20020144262 Plotnick et al. Oct 2002 A1
20020146237 Safadi Oct 2002 A1
20020154892 Hoshen et al. Oct 2002 A1
20020157112 Kuhn Oct 2002 A1
20020166124 Gurantz Nov 2002 A1
20020174430 Ellis et al. Nov 2002 A1
20020174433 Baumgartner et al. Nov 2002 A1
20020174444 Gatto et al. Nov 2002 A1
20020178445 Eldering Nov 2002 A1
20020187779 Freeny Dec 2002 A1
20020194596 Srivastava Dec 2002 A1
20020196941 Isaacson et al. Dec 2002 A1
20020198762 Donato Dec 2002 A1
20030005300 Noble et al. Jan 2003 A1
20030005452 Rodriguez Jan 2003 A1
20030009763 Crinon et al. Jan 2003 A1
20030014750 Kamen Jan 2003 A1
20030026423 Unger et al. Feb 2003 A1
20030028886 Wang et al. Feb 2003 A1
20030028890 Swart et al. Feb 2003 A1
20030044165 Wood et al. Mar 2003 A1
20030063003 Bero et al. Apr 2003 A1
20030063814 Herley Apr 2003 A1
20030069964 Shteyn et al. Apr 2003 A1
20030074565 Wasilewski et al. Apr 2003 A1
20030093812 Chang et al. May 2003 A1
20030097563 Moroney et al. May 2003 A1
20030097655 Novak May 2003 A1
20030097662 Russ et al. May 2003 A1
20030108199 Pinder et al. Jun 2003 A1
20030108336 Schramel Jun 2003 A1
20030135859 Putterman et al. Jul 2003 A1
20030142664 Gerszberg et al. Jul 2003 A1
20030145336 Matsuzaki et al. Jul 2003 A1
20030149986 Mayfield et al. Aug 2003 A1
20030149991 Reidhead et al. Aug 2003 A1
20030154477 Hassell et al. Aug 2003 A1
20030159140 Candelore Aug 2003 A1
20030159157 Chan Aug 2003 A1
20030177495 Needham et al. Sep 2003 A1
20030181160 Hirsch Sep 2003 A1
20030192047 Gaul et al. Oct 2003 A1
20030192061 Hwangbo et al. Oct 2003 A1
20030202772 Dow et al. Oct 2003 A1
20030204856 Buxton Oct 2003 A1
20030207672 Dang et al. Nov 2003 A1
20030233667 Umipig et al. Dec 2003 A1
20030235308 Boynton et al. Dec 2003 A1
20030237093 Marsh Dec 2003 A1
20040003393 Gutta et al. Jan 2004 A1
20040003398 Donian et al. Jan 2004 A1
20040012217 Robertson et al. Jan 2004 A1
20040017913 Hawkes et al. Jan 2004 A1
20040025179 Russ et al. Feb 2004 A1
20040028216 Freyman Feb 2004 A1
20040032902 Koifman et al. Feb 2004 A1
20040032950 Graunke Feb 2004 A1
20040034874 Hord et al. Feb 2004 A1
20040040035 Carlucci et al. Feb 2004 A1
20040049793 Chou Mar 2004 A1
20040051638 Green Mar 2004 A1
20040054771 Roe et al. Mar 2004 A1
20040060072 Klein Mar 2004 A1
20040064714 Carr Apr 2004 A1
20040068739 Russ Apr 2004 A1
20040068744 Claussen et al. Apr 2004 A1
20040068747 Robertson Apr 2004 A1
20040068752 Parker Apr 2004 A1
20040068753 Robertson et al. Apr 2004 A1
20040068754 Russ Apr 2004 A1
20040078825 Murphy Apr 2004 A1
20040090971 Anderson May 2004 A1
20040100897 Shattil May 2004 A1
20040104926 Murray et al. Jun 2004 A1
20040107445 Amit Jun 2004 A1
20040109497 Koval Jun 2004 A1
20040117483 Singer et al. Jun 2004 A1
20040117831 Ellis et al. Jun 2004 A1
20040128681 Hancock Jul 2004 A1
20040128682 Liga Jul 2004 A1
20040133911 Russ et al. Jul 2004 A1
20040163130 Gray et al. Aug 2004 A1
20040172658 Rakib et al. Sep 2004 A1
20040177369 Akins, III Sep 2004 A1
20040177381 Kliger et al. Sep 2004 A1
20040220791 Lamkin et al. Nov 2004 A1
20040221304 Sparrel Nov 2004 A1
20040221308 Cuttner et al. Nov 2004 A1
20040250272 Durden et al. Dec 2004 A1
20040250273 Swix et al. Dec 2004 A1
20040255326 Hicks et al. Dec 2004 A1
20040257976 Alsobrook et al. Dec 2004 A1
20040261100 Huber et al. Dec 2004 A1
20040261126 Addington et al. Dec 2004 A1
20050004873 Pou et al. Jan 2005 A1
20050005287 Claussen Jan 2005 A1
20050022248 Robertson et al. Jan 2005 A1
20050028190 Rodriguez et al. Feb 2005 A1
20050028208 Ellis et al. Feb 2005 A1
20050030910 Robertson et al. Feb 2005 A1
20050042999 Rappaport Feb 2005 A1
20050050557 Gabry Mar 2005 A1
20050063422 Lazar et al. Mar 2005 A1
20050065780 Wiser et al. Mar 2005 A1
20050073945 Garcia, Jr. et al. Apr 2005 A1
20050076357 Fenne Apr 2005 A1
20050155052 Ostrowska Jul 2005 A1
20050234992 Haberman Oct 2005 A1
20050235323 Ellis et al. Oct 2005 A1
20050251824 Thomas et al. Nov 2005 A1
20050251827 Ellis et al. Nov 2005 A1
20050262542 DeWeese et al. Nov 2005 A1
20060010481 Wall et al. Jan 2006 A1
20060069645 Chen et al. Mar 2006 A1
20060080360 Young et al. Apr 2006 A1
20060095939 Jutzi May 2006 A1
20060117354 Schutte et al. Jun 2006 A1
20060150225 Hegg et al. Jul 2006 A1
20060184967 Maynard et al. Aug 2006 A1
20060218581 Ostrowska et al. Sep 2006 A1
20060218591 Billmaier et al. Sep 2006 A1
20060259584 Watson et al. Nov 2006 A1
20070022307 Ferrari Jan 2007 A1
20070077038 Wall Apr 2007 A1
20070079341 Russ et al. Apr 2007 A1
20070094698 Bountour et al. Apr 2007 A1
20070143776 Russ et al. Jun 2007 A1
20070300258 O'Connor et al. Dec 2007 A1
20080066085 Davies et al. Mar 2008 A1
20080072272 Robertson et al. Mar 2008 A1
20080148325 Robertson et al. Jun 2008 A1
20080201758 Davies et al. Aug 2008 A1
20080271094 Kliger et al. Oct 2008 A1
20080301738 Davies et al. Dec 2008 A1
20090077586 Wall et al. Mar 2009 A1
20090083819 Robertson et al. Mar 2009 A1
20090150922 Russ et al. Jun 2009 A1
20090193452 Russ et al. Jul 2009 A1
20100175093 Arnold et al. Jul 2010 A1
Foreign Referenced Citations (48)
Number Date Country
2501107 Jan 2011 CA
0912054 Apr 1999 EP
0989557 Mar 2000 EP
1028551 Aug 2000 EP
107600 Jun 2001 EP
1 117 214 Jul 2001 EP
1117214 Jul 2001 EP
1175087 Jul 2001 EP
1145244 Oct 2001 EP
1213919 Jun 2002 EP
1443766 Aug 2004 EP
1463324 Sep 2004 EP
1543680 Feb 2010 EP
WO 9525402 Sep 1995 WO
WO 9619079 Jun 1996 WO
WO 9826584 Jun 1998 WO
WO 9837648 Aug 1998 WO
WO 9901984 Jan 1999 WO
WO 9935844 Jul 1999 WO
WO 9965244 Dec 1999 WO
WO 0004707 Jan 2000 WO
WO 0007372 Feb 2000 WO
WO 0045590 Mar 2000 WO
WO 0035201 Jun 2000 WO
WO 0101677 Jan 2001 WO
WO 0147234 Jun 2001 WO
WO 0156286 Aug 2001 WO
WO 0156297 Aug 2001 WO
WO 0174003 Oct 2001 WO
WO 0178382 Oct 2001 WO
WO 0186948 Nov 2001 WO
WO 0207378 Jan 2002 WO
WO 0211418 Feb 2002 WO
WO 0211446 Feb 2002 WO
WO 0217642 Feb 2002 WO
WO 0219623 Mar 2002 WO
WO 0247388 Jun 2002 WO
WO 02097997 Dec 2002 WO
WO 03032620 Apr 2003 WO
WO 03039154 May 2003 WO
WO 2004023717 Mar 2004 WO
WO 2004032514 Apr 2004 WO
WO 2004036808 Apr 2004 WO
WO 2004036892 Apr 2004 WO
WO 2004064296 Jul 2004 WO
WO 2004098190 Nov 2004 WO
WO 2005034515 Apr 2005 WO
WO 2006093741 Sep 2006 WO
Related Publications (1)
Number Date Country
20050030910 A1 Feb 2005 US
Continuation in Parts (1)
Number Date Country
Parent 10342670 Jan 2003 US
Child 10924077 US