The present disclosure relates to an illumination system, in particular for endoscopy, and more particularly a full spectrum illumination system using light-emitting diodes (LED) and/or semiconductor lasers.
Illumination systems for endoscopy, microscopy and similar optical imaging applications have for many years utilized arc lamp or halogen technology as the light source of choice. More recently, various forms of solid state light sources such as light emitting diodes or diode lasers have been introduced for use in some of these imaging applications. Due to the output brightness or output spectrum limitations of these solid state light sources, the use of LEDs and/or laser diodes has, until recently, been limited to optical imaging applications where low light levels are sufficient or where narrow spectrum illumination is required/desired.
Achieving sufficiently bright, full visible spectrum illumination with solid state light sources has remained challenging for a number of reasons.
a) Firstly, LED technology has been improving, but started far behind that of lamp technology in terms of total light output. Increasingly higher light outputs are now available, but light from a single phosphor-coated (“white”) LED, for example, is still orders of magnitude below that of an arc lamp.
b) Alternatively light from multiple, different colored (e.g. red, green and blue) LEDs can be combined using dichroic mirrors to “source” emitting over a wide spectral range. The imaging applications mentioned above, however, generally require coupling light into liquid, fiberoptic, or rod lens light guides. Such optical light guides typically have both a small physical aperture with dimensions of a few mm across and a constrained/limited numerical aperture (NA). Moreover, etendue considerations rapidly constrain the practical implementation of such combined source illumination systems.
c) Should the etendue considerations with a multiple different colored LED arrangement be overcome by a suitable arrangement of sources and dichroics with optical path lengths that are carefully equalized, then other implementation issues arise with respect to effective cooling and cost.
Finally, although output brightness of red and blue LEDs has reached levels at which they can produce light with a brightness substantially equivalent to that of the red and blue portions of an arc lamp or a halogen lamp spectrum, the output of green LEDs tends to be substantially less than the green light produced by lamps.
It would therefore be desirable and advantageous to address this problem and to obviate other prior art shortcomings by providing a cost-effective and reliable illuminator utilizing solid state light sources to produce a bright, color balanced, broad spectrum visible light output that may be effectively coupled to an optical light guide. It would also be desirable to include in such illuminator and in the resulting light emission, other light sources for UV or NIR illumination (e.g. for fluorescence excitation of tissue).
According to one aspect of the present disclosure, an illuminator is disclosed which utilizes solid state light sources to produce a bright, color balanced, broad-spectrum, visible light output.
According to one advantageous feature of the disclosure, the illuminator may contain multiple high power LED light sources that span the visible spectrum (e.g. from 400-700 nm). These LED light sources are separately powered and controlled. The light produced by these LEDs is combined into a single beam using either mirrors or dichroic filters appropriately wavelength matched to the LED light output. The combined light may then be coupled into an optical light guide using an appropriate optical element such as a high (e.g. >0.5) NA lens.
According to one advantageous feature of the disclosure, the illuminator may include LED light sources housed in discrete high thermal conductivity packages. The LED dies may be edge-emitting or surface emitting and they may be packaged in single or multi-die configurations.
According to one advantageous feature of the disclosure, the illuminator may contain a combination of red, green and blue LED light sources. Alternatively or in addition, one or more of these LED light sources may have other hues of the visible spectrum, including violet, yellow, amber/orange LEDs, as required or desirable for the application (e.g. in the endoscope). Alternatively, or in addition, a single LED package may contain any combination of these color dies.
According to one advantageous feature of the disclosure, to increase the green component of the emitted light and provide a more color balanced output, the illuminator may contain in addition to red and blue LED light sources at least two green LED light sources, such as a long wavelength green and a short wavelength green. The peak wavelengths and bandwidth of the two green LEDs is carefully selected to ensure that the combining optics produce maximum net green light output. In one embodiment the long wavelength green may have a peak wavelength at ˜530 nm and an approximate FWHM bandwidth of +/−40 nm and the short wavelength green may have a peak wavelength at ˜515 nm and an approximate FWHM bandwidth of +/−37 nm.
According to one advantageous feature of the disclosure, the LED light sources may be mounted on a heat sink in good thermal contact with a single heat spreader plate. The spreader plate may be a metal having high thermal conductivity, such as copper, aluminum, iron, diamond, gold or silver and the like. The spreader plate may be mounted on or integral with a passive cooling system, such as a finned heat sink or a heat pipe, or an active cooling system, such as a thermoelectric cooler (TEC) or liquid cooler. Thermal contact between the LEDs and the plate may be provided by, for example, soldering or with the application of a thermally conductive compound, such as Type 120 Silicon Thermal Joint Compound (Wakefield Thermal Solutions, New Hampshire). This mounting arrangement and cooling structure optimizes both cost/complexity of the assembly and cooling efficiency and therefore also the lifetime/reliability of the solid state source.
According to one advantageous feature of the disclosure, the LED light sources may be mounted on a plane which is common to the planar surface of the heat sink on the single heat spreader plate, with the optical path length increasing with wavelength, e.g. the red LED has longest optical path, the blue LED has shortest optical path. LED light source is positioned at or near the focal point of a compound collector group consisting of an aspheric lens (e.g., Newport KPA040-C, Irvine, Calif.), which collects the light from each LED light source. The collection efficiency of the aspheric lens may be enhanced by a field lens mounted between the LED and the aspheric lens. The aspheric lens projects a nearly collimated light beam from the LED onto a mirror or a dichroic filter (e.g. Semrock FF670-SDi01-25×36, Rochester, N.Y.) positioned to reflect light at a right angle relative to the light projected by the aspheric lens into the combined light beam path. The dichroic filter is designed to reflect substantially all light at or above the wavelength of the LED emission and transmits the light of all shorter wavelengths. The power and position of each aspheric lens and the power and position of any field lens is adjusted as required for each LED to accommodate the differences in optical path lengths. In this way, the etendue constraints with a linear arrangement of light sources can be managed and the capacity of the high NA lens in coupling the combined beam of light into an optical light guide can be maximized.
According to one advantageous feature of the disclosure, all optical elements not directly attached to the LED light sources (including all remaining collector lenses, reflective and dichroic mirrors, and collimating/condensing lenses) may be mounted in a mating mechanical enclosure. The enclosure may be fabricated from a single block of material such as aluminum, or similar material and may be machined or may be cast and machined as a single element. The mechanical enclosure may also be composed of multiple elements individually fabricated (e.g. machined) and assembled. The enclosure has a linear array of input ports matching the linear pattern of LED sources on the heat spreader plate—e.g., one input port for each LED light source and a single output port. Once all optical components are mounted in the enclosure, the plate with the LED light sources is assembled to the enclosure input ports and a shutter that seals the exit aperture in the absence of a light guide is mounted placed on the output port. The enclosure is consequently fully sealed and the optical elements are protected against the ingress of dust and other contaminants.
According to one advantageous feature of the disclosure, the illuminator may utilize a design without lenses and have instead polished reflective surfaces that propagate the light emitted by the LEDs. The light can then, as before, be combined using dichroic filters, with the combined light being coupled into the optical light guide, by means of reflective surfaces.
According to one advantageous feature of the disclosure, the illuminator may also contain other light sources, such as one or more diode lasers, that are coupled into the combined optical path. In one embodiment, the diode lasers may be fiber coupled NIR lasers that emit in the 800-820 nm wavelength range suitable for fluorescence excitation of, for example, indocyanine green (ICG) or other NIR excited fluorescence agent. Alternatively or in addition, one or more of the fiber coupled diode lasers may produce 830 nm NIR light for purposes of mimicking the fluorescence of ICG. The NIR light emitted by the lasers may be coupled into the optical path by introducing an additional dichroic mirror that reflects NIR but transmits shorter wavelengths into the LED optical path. Alternatively, or in addition, the illuminator may contain one or more UV diode lasers for tissue autofluorescence excitation. These lasers may be coupled into the blue LED channel or directly coupled into the combined beam channel before the blue LED dichroic filter. The illuminator may also contain high powered NIR or UV LEDs instead of diode lasers.
The system also provides for imaging a conjugate plane from the collector group onto the light guide (i.e. fit a round cone to the light guide).
Other features and advantages of the present invention will be more readily apparent upon reading the following description of currently preferred exemplified embodiments of the invention with reference to the accompanying drawing, in which:
Throughout all the figures, same or corresponding elements may generally be indicated by same reference numerals. These depicted embodiments are to be understood as illustrative of the invention and not as limiting in any way. It should also be understood that the figures are not necessarily to scale and that the embodiments are sometimes illustrated by graphic symbols, phantom lines, diagrammatic representations and fragmentary views. In certain instances, details which are not necessary for an understanding of the present invention or which render other details difficult to perceive may have been omitted.
Turning now to the drawing, and in particular to
According to some exemplary embodiments, optical elements not directly attached to the LED light sources, for example, collector lenses, reflective and dichroic mirrors, and collimating/condensing lenses, may be mounted in a mating mechanical enclosure 224. The enclosure may be fabricated from a single block of material such as aluminum, or similar material, and may be machined or may be cast and machined as a single element. The mechanical enclosure may also be composed of multiple elements individually fabricated (e.g. machined) and assembled. The enclosure 224 has a linear array of input ports matching the linear pattern of LED sources 232, 234, 236, 238 on the heat spreader plate 212 e.g., one input port for each LED light source—and a single output port. Once all optical components are mounted in the enclosure 224, the heat spreader plate 212 with the LED light sources 232, 234, 236, 238 is assembled to the enclosure input ports.
The illuminator 210 may contain one or more other light sources, such as a diode laser 250, that are coupled into the combined optical path. The diode laser 250 may be a fiber-coupled NIR laser that emits in the 800-820 nm wavelength range suitable for fluorescence excitation of, for example, indocyanine green (ICG) or other NIR-excited fluorescence agent. Alternatively or additionally, a fiber-coupled diode laser may produce 830 nm NIR light for purposes of mimicking the fluorescence of ICG. As shown in
While the invention has been illustrated and described in connection with currently preferred embodiments shown and described in detail, it is not intended to be limited to the details shown since various modifications and structural changes may be made without departing in any way from the spirit and scope of the present invention. The embodiments were chosen and described in order to explain the principles of the invention and practical application to thereby enable a person skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated.
This application is a continuation of U.S. patent application Ser. No. 14/658,869, filed Mar. 16, 2015, which is a continuation of U.S. patent application Ser. No. 13/415,561, filed Mar. 8, 2012, now U.S. Pat. No. 8,979,301, which claims the benefit of provisional Application No. 61/450,360, filed Mar. 8, 2011, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1290744 | Hollander | Jan 1919 | A |
2453336 | Orser | Nov 1948 | A |
2857523 | Corso | Oct 1958 | A |
3215029 | Woodcock | Nov 1965 | A |
3582178 | Boughton et al. | Jun 1971 | A |
3671098 | Rotter | Jun 1972 | A |
3749494 | Hodges | Jul 1973 | A |
3790248 | Kellow | Feb 1974 | A |
3931593 | Marshall | Jan 1976 | A |
3970373 | Pledger | Jul 1976 | A |
3971068 | Gerhardt et al. | Jul 1976 | A |
4037866 | Price | Jul 1977 | A |
4066330 | Jones | Jan 1978 | A |
4115812 | Akatsu | Sep 1978 | A |
4149190 | Wessler et al. | Apr 1979 | A |
4158504 | de Ponteves et al. | Jun 1979 | A |
4200801 | Schuresko | Apr 1980 | A |
4260217 | Traeger et al. | Apr 1981 | A |
4318395 | Tawara | Mar 1982 | A |
4355325 | Nakamura et al. | Oct 1982 | A |
4378571 | Handy | Mar 1983 | A |
4449535 | Renault | May 1984 | A |
4471766 | Terayama | Sep 1984 | A |
4532918 | Wheeler | Aug 1985 | A |
4556057 | Hiruma et al. | Dec 1985 | A |
4575632 | Lange | Mar 1986 | A |
4597630 | Brandstetter et al. | Jul 1986 | A |
4611888 | Prenovitz et al. | Sep 1986 | A |
4638365 | Kato | Jan 1987 | A |
4660982 | Okada | Apr 1987 | A |
4688905 | Okamura | Aug 1987 | A |
4717952 | Kohayakawa et al. | Jan 1988 | A |
4742388 | Cooper et al. | May 1988 | A |
4768513 | Suzuki | Sep 1988 | A |
4786813 | Svanberg et al. | Nov 1988 | A |
4799104 | Hosoya et al. | Jan 1989 | A |
4806005 | Schneider et al. | Feb 1989 | A |
4821117 | Sekiguchi | Apr 1989 | A |
4837625 | Douziech et al. | Jun 1989 | A |
4852985 | Fujihara et al. | Aug 1989 | A |
4856495 | Tohjoh et al. | Aug 1989 | A |
4885634 | Yabe | Dec 1989 | A |
4895145 | Joffe et al. | Jan 1990 | A |
4930516 | Alfano et al. | Jun 1990 | A |
4930883 | Salzman | Jun 1990 | A |
4951135 | Sasagawa et al. | Aug 1990 | A |
4953539 | Nakamura et al. | Sep 1990 | A |
4954897 | Ejima et al. | Sep 1990 | A |
4974936 | Ams et al. | Dec 1990 | A |
5001556 | Nakamura et al. | Mar 1991 | A |
5007408 | Ieoka | Apr 1991 | A |
5028128 | Onuki | Jul 1991 | A |
5034888 | Uehara et al. | Jul 1991 | A |
5041852 | Misawa et al. | Aug 1991 | A |
5115308 | Onuki | May 1992 | A |
5121220 | Nakamoto | Jun 1992 | A |
5128803 | Sprafke | Jul 1992 | A |
5132837 | Kitajima | Jul 1992 | A |
5134662 | Bacus et al. | Jul 1992 | A |
5165079 | Schulz-Hennig | Nov 1992 | A |
5205280 | Dennison, Jr. et al. | Apr 1993 | A |
5208651 | Buican | May 1993 | A |
5214503 | Chiu et al. | May 1993 | A |
5225883 | Carter et al. | Jul 1993 | A |
5255087 | Nakamura et al. | Oct 1993 | A |
5278642 | Danna et al. | Jan 1994 | A |
5282082 | Espie et al. | Jan 1994 | A |
5295017 | Brown | Mar 1994 | A |
RE34622 | Ledley | May 1994 | E |
5365057 | Morley et al. | Nov 1994 | A |
5371355 | Wodecki | Dec 1994 | A |
5377686 | O'Rourke et al. | Jan 1995 | A |
5379756 | Pileski et al. | Jan 1995 | A |
5408263 | Kikuchi et al. | Apr 1995 | A |
5410363 | Capen et al. | Apr 1995 | A |
5419323 | Kittrell et al. | May 1995 | A |
5420628 | Poulsen et al. | May 1995 | A |
5421337 | Richards-Kortum et al. | Jun 1995 | A |
5424841 | Van Gelder et al. | Jun 1995 | A |
5426530 | Copenhaver et al. | Jun 1995 | A |
5430476 | Häfele et al. | Jul 1995 | A |
5481401 | Kita et al. | Jan 1996 | A |
5485203 | Nakamura et al. | Jan 1996 | A |
5490015 | Umeyama et al. | Feb 1996 | A |
5507287 | Palcic et al. | Apr 1996 | A |
5515449 | Tsuruoka et al. | May 1996 | A |
5535052 | Jörgens | Jul 1996 | A |
5536236 | Yabe et al. | Jul 1996 | A |
5557451 | Copenhaver et al. | Sep 1996 | A |
5585846 | Kim | Dec 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5596654 | Tanaka | Jan 1997 | A |
5646680 | Yajima | Jul 1997 | A |
5647368 | Zeng et al. | Jul 1997 | A |
5647840 | D'Amelio et al. | Jul 1997 | A |
5667472 | Finn et al. | Sep 1997 | A |
5677724 | Takizawa et al. | Oct 1997 | A |
5682567 | Spruck et al. | Oct 1997 | A |
5689354 | Orino | Nov 1997 | A |
5695049 | Bauman | Dec 1997 | A |
5697373 | Richards-Kortum et al. | Dec 1997 | A |
5713364 | DeBaryshe et al. | Feb 1998 | A |
5729382 | Morita et al. | Mar 1998 | A |
5749830 | Kaneko et al. | May 1998 | A |
5769792 | Palcic et al. | Jun 1998 | A |
5772355 | Ross et al. | Jun 1998 | A |
5772580 | Utsui et al. | Jun 1998 | A |
5827190 | Palcic et al. | Oct 1998 | A |
5833617 | Hayashi | Nov 1998 | A |
5838001 | Minakuchi et al. | Nov 1998 | A |
5840017 | Furusawba et al. | Nov 1998 | A |
5852498 | Youvan et al. | Dec 1998 | A |
5891016 | Utsui et al. | Apr 1999 | A |
5897269 | Ross et al. | Apr 1999 | A |
5971918 | Zanger | Oct 1999 | A |
5973315 | Saldana et al. | Oct 1999 | A |
5984861 | Crowley | Nov 1999 | A |
5986271 | Lazarev et al. | Nov 1999 | A |
5986642 | Ueda et al. | Nov 1999 | A |
5990996 | Sharp | Nov 1999 | A |
5999240 | Sharp et al. | Dec 1999 | A |
6002137 | Hayashi | Dec 1999 | A |
6004263 | Nakaichi et al. | Dec 1999 | A |
6008889 | Zeng et al. | Dec 1999 | A |
6021344 | Lui et al. | Feb 2000 | A |
6028622 | Suzuki | Feb 2000 | A |
6030339 | Tatsuno et al. | Feb 2000 | A |
6059719 | Yamamoto et al. | May 2000 | A |
6059720 | Furusawa et al. | May 2000 | A |
6061591 | Freitag et al. | May 2000 | A |
6069689 | Zeng et al. | May 2000 | A |
6070096 | Hayashi | May 2000 | A |
6095982 | Richards-Kortum et al. | Aug 2000 | A |
6099466 | Sano et al. | Aug 2000 | A |
6110106 | MacKinnon et al. | Aug 2000 | A |
6120435 | Eino | Sep 2000 | A |
6147705 | Krauter et al. | Nov 2000 | A |
6148227 | Wagnières et al. | Nov 2000 | A |
6161035 | Furusawa | Dec 2000 | A |
6181414 | Raz et al. | Jan 2001 | B1 |
6192267 | Scherninski et al. | Feb 2001 | B1 |
6212425 | Irion et al. | Apr 2001 | B1 |
6226126 | Conemac | May 2001 | B1 |
6258576 | Richards-Kortum et al. | Jul 2001 | B1 |
6280378 | Kazuhiro et al. | Aug 2001 | B1 |
6293911 | Imaizumi et al. | Sep 2001 | B1 |
6315712 | Rovegno | Nov 2001 | B1 |
6332092 | Deckert et al. | Dec 2001 | B1 |
6364829 | Fulghum | Apr 2002 | B1 |
6364831 | Crowley | Apr 2002 | B1 |
6419628 | Rudischhauser et al. | Jul 2002 | B1 |
6422994 | Kaneko et al. | Jul 2002 | B1 |
6462770 | Cline et al. | Oct 2002 | B1 |
6510338 | Irion et al. | Jan 2003 | B1 |
6526213 | Ilenda et al. | Feb 2003 | B1 |
6529239 | Dyck et al. | Mar 2003 | B1 |
6529768 | Hakamata | Mar 2003 | B1 |
6537211 | Wang et al. | Mar 2003 | B1 |
6544102 | Schäfer et al. | Apr 2003 | B2 |
6571119 | Hayashi | May 2003 | B2 |
6596996 | Stone et al. | Jul 2003 | B1 |
6603552 | Cline et al. | Aug 2003 | B1 |
6639664 | Haan et al. | Oct 2003 | B2 |
6652452 | Seifert et al. | Nov 2003 | B1 |
6750971 | Overbeck et al. | Jun 2004 | B2 |
6772003 | Kaneko et al. | Aug 2004 | B2 |
6773392 | Kikuchi et al. | Aug 2004 | B2 |
6786865 | Dhindsa | Sep 2004 | B2 |
6821245 | Cline et al. | Nov 2004 | B2 |
6826424 | Zeng et al. | Nov 2004 | B1 |
6898458 | Zeng et al. | May 2005 | B2 |
6899675 | Cline et al. | May 2005 | B2 |
6922583 | Perelman et al. | Jul 2005 | B1 |
6960165 | Ueno et al. | Nov 2005 | B2 |
7043291 | Sendai | May 2006 | B2 |
7150552 | Weidel | Dec 2006 | B2 |
7179222 | Imaizumi et al. | Feb 2007 | B2 |
7235045 | Wang et al. | Jun 2007 | B2 |
7236815 | Richards-Kortum et al. | Jun 2007 | B2 |
7253894 | Zeng et al. | Aug 2007 | B2 |
7324674 | Ozawa et al. | Jan 2008 | B2 |
7333270 | Pochapsky et al. | Feb 2008 | B1 |
7341557 | Cline et al. | Mar 2008 | B2 |
7385772 | Forkey et al. | Jun 2008 | B2 |
7420151 | Fengler et al. | Sep 2008 | B2 |
7479990 | Imaizumi et al. | Jan 2009 | B2 |
7697975 | Zeng | Apr 2010 | B2 |
7704206 | Suzuki et al. | Apr 2010 | B2 |
7722534 | Cline et al. | May 2010 | B2 |
7798955 | Ishihara et al. | Sep 2010 | B2 |
7811229 | Sugimoto | Oct 2010 | B2 |
8140147 | Maynard et al. | Mar 2012 | B2 |
8285015 | Demos | Oct 2012 | B2 |
8337400 | Mizuyoshi | Dec 2012 | B2 |
8361775 | Flower | Jan 2013 | B2 |
8408269 | Fengler et al. | Apr 2013 | B2 |
8408772 | Li | Apr 2013 | B2 |
8448867 | Liu et al. | May 2013 | B2 |
8498695 | Westwick et al. | Jul 2013 | B2 |
8630698 | Fengler et al. | Jan 2014 | B2 |
8759243 | Coffy et al. | Jun 2014 | B2 |
8773756 | Tesar et al. | Jul 2014 | B2 |
8790253 | Sunagawa et al. | Jul 2014 | B2 |
8961403 | Cline et al. | Feb 2015 | B2 |
8979301 | Moore | Mar 2015 | B2 |
9143746 | Westwick et al. | Sep 2015 | B2 |
9173554 | Fengler et al. | Nov 2015 | B2 |
9295392 | Douplik et al. | Mar 2016 | B2 |
9386909 | Fengler et al. | Jul 2016 | B2 |
9435496 | Moore | Sep 2016 | B2 |
9642532 | Fengler et al. | May 2017 | B2 |
20010016679 | Futatsugi et al. | Aug 2001 | A1 |
20010028458 | Xiao | Oct 2001 | A1 |
20010049473 | Hayashi | Dec 2001 | A1 |
20020013937 | Ostanevich et al. | Jan 2002 | A1 |
20020016533 | Marchitto et al. | Feb 2002 | A1 |
20020021355 | Utsui et al. | Feb 2002 | A1 |
20020035330 | Cline et al. | Mar 2002 | A1 |
20020076480 | Hsieh et al. | Jun 2002 | A1 |
20020138008 | Tsujita et al. | Sep 2002 | A1 |
20020143243 | Georgakoudi et al. | Oct 2002 | A1 |
20020155619 | Kurihara et al. | Oct 2002 | A1 |
20020161282 | Fulghum | Oct 2002 | A1 |
20020161283 | Sendai | Oct 2002 | A1 |
20020161284 | Tanaka | Oct 2002 | A1 |
20020175993 | Ueno et al. | Nov 2002 | A1 |
20020177778 | Averback et al. | Nov 2002 | A1 |
20020186478 | Watanabe et al. | Dec 2002 | A1 |
20020196335 | Ozawa | Dec 2002 | A1 |
20030002036 | Haan et al. | Jan 2003 | A1 |
20030042493 | Kazakevich | Mar 2003 | A1 |
20030117491 | Avni et al. | Jun 2003 | A1 |
20030135092 | Cline et al. | Jul 2003 | A1 |
20030153811 | Muckner | Aug 2003 | A1 |
20030191368 | Wang et al. | Oct 2003 | A1 |
20030229270 | Suzuki et al. | Dec 2003 | A1 |
20040006276 | Demos et al. | Jan 2004 | A1 |
20040010183 | Dhindsa | Jan 2004 | A1 |
20040021859 | Cunningham | Feb 2004 | A1 |
20040037454 | Ozawa et al. | Feb 2004 | A1 |
20040044275 | Hakamata | Mar 2004 | A1 |
20040046865 | Ueno et al. | Mar 2004 | A1 |
20040133073 | Berci et al. | Jul 2004 | A1 |
20040143162 | Krattiger et al. | Jul 2004 | A1 |
20040148141 | Tsujita et al. | Jul 2004 | A1 |
20040149998 | Henson et al. | Aug 2004 | A1 |
20040156124 | Okada | Aug 2004 | A1 |
20040186351 | Imaizumi et al. | Sep 2004 | A1 |
20040218115 | Kawana et al. | Nov 2004 | A1 |
20040225222 | Zeng et al. | Nov 2004 | A1 |
20040245350 | Zeng | Dec 2004 | A1 |
20040263643 | Imaizumi et al. | Dec 2004 | A1 |
20050027166 | Matsumoto et al. | Feb 2005 | A1 |
20050096505 | Imaizumi et al. | May 2005 | A1 |
20050140270 | Henson et al. | Jun 2005 | A1 |
20050143627 | Cline et al. | Jun 2005 | A1 |
20050154319 | Cline et al. | Jul 2005 | A1 |
20050171440 | Maki et al. | Aug 2005 | A1 |
20050182291 | Hirata | Aug 2005 | A1 |
20050182321 | Frangioni | Aug 2005 | A1 |
20050203421 | Zeng et al. | Sep 2005 | A1 |
20050256373 | Bar-Or et al. | Nov 2005 | A1 |
20050273011 | Hattery et al. | Dec 2005 | A1 |
20050280783 | Yamasaki et al. | Dec 2005 | A1 |
20050288593 | Georgakoudi et al. | Dec 2005 | A1 |
20060002141 | Ouderkirk et al. | Jan 2006 | A1 |
20060004292 | Beylin | Jan 2006 | A1 |
20060017913 | Kawamata et al. | Jan 2006 | A1 |
20060089554 | Ishihara et al. | Apr 2006 | A1 |
20060146322 | Komachi et al. | Jul 2006 | A1 |
20060149133 | Sugimoto et al. | Jul 2006 | A1 |
20060155166 | Takahashi et al. | Jul 2006 | A1 |
20060211915 | Takeuchi et al. | Sep 2006 | A1 |
20060215406 | Thrailkill | Sep 2006 | A1 |
20060217594 | Ferguson | Sep 2006 | A1 |
20060241496 | Fengler et al. | Oct 2006 | A1 |
20060258910 | Stefanchik et al. | Nov 2006 | A1 |
20070041195 | Chen | Feb 2007 | A1 |
20070091634 | Sakurada | Apr 2007 | A1 |
20070177152 | Tearney et al. | Aug 2007 | A1 |
20070213593 | Nakaoka | Sep 2007 | A1 |
20070229309 | Tomita et al. | Oct 2007 | A1 |
20080021274 | Bayer et al. | Jan 2008 | A1 |
20080027280 | Fengler et al. | Jan 2008 | A1 |
20080039697 | Morishita | Feb 2008 | A1 |
20080074752 | Chaves et al. | Mar 2008 | A1 |
20080177140 | Cline et al. | Jul 2008 | A1 |
20080208006 | Farr | Aug 2008 | A1 |
20080246920 | Buczek et al. | Oct 2008 | A1 |
20090012361 | MacKinnon et al. | Jan 2009 | A1 |
20090021739 | Tsujita et al. | Jan 2009 | A1 |
20090040754 | Brukilacchio et al. | Feb 2009 | A1 |
20090052185 | Toriyama et al. | Feb 2009 | A1 |
20090114799 | Maeda | May 2009 | A1 |
20090114803 | Yamaguchi | May 2009 | A1 |
20090122135 | Matsui | May 2009 | A1 |
20090122152 | Yamaguchi et al. | May 2009 | A1 |
20090124854 | Yamaguchi et al. | May 2009 | A1 |
20090153797 | Allon et al. | Jun 2009 | A1 |
20090181339 | Liang et al. | Jul 2009 | A1 |
20090201577 | LaPlante et al. | Aug 2009 | A1 |
20090290149 | Roth | Nov 2009 | A1 |
20100087741 | Douplik et al. | Apr 2010 | A1 |
20100094136 | Nakaoka et al. | Apr 2010 | A1 |
20100110168 | Avni et al. | May 2010 | A1 |
20100110393 | Chen et al. | May 2010 | A1 |
20100121146 | Sugimoto | May 2010 | A1 |
20100125164 | LaBombard | May 2010 | A1 |
20100157039 | Sugai | Jun 2010 | A1 |
20100168588 | Matsumoto et al. | Jul 2010 | A1 |
20100198010 | Cline et al. | Aug 2010 | A1 |
20100208487 | Li | Aug 2010 | A1 |
20100277817 | Durell | Nov 2010 | A1 |
20110270092 | Kang et al. | Nov 2011 | A1 |
20120044462 | Kaji | Feb 2012 | A1 |
20130237762 | Fengler et al. | Sep 2013 | A1 |
20140071328 | Miesak | Mar 2014 | A1 |
20140078378 | Demers et al. | Mar 2014 | A1 |
20140194687 | Fengler et al. | Jul 2014 | A1 |
20150184811 | Moore | Jul 2015 | A1 |
20150230698 | Cline et al. | Aug 2015 | A1 |
20160100763 | Fengler et al. | Apr 2016 | A1 |
20160249019 | Westwick et al. | Aug 2016 | A1 |
20170064257 | Westwick et al. | Mar 2017 | A1 |
20170064258 | Westwick et al. | Mar 2017 | A1 |
20170142314 | Moore et al. | May 2017 | A1 |
Number | Date | Country |
---|---|---|
101726980 | Jun 2010 | CN |
101828139 | Sep 2010 | CN |
201974160 | Sep 2011 | CN |
19535114 | Mar 1996 | DE |
19608027 | Sep 1996 | DE |
0512965 | Nov 1992 | EP |
0672379 | Sep 1995 | EP |
0774865 | May 1997 | EP |
0792618 | Sep 1997 | EP |
1374755 | Jan 2004 | EP |
1883337 | Feb 2008 | EP |
2051603 | Apr 2009 | EP |
2671405 | Jul 1992 | FR |
S-60-246733 | Dec 1985 | JP |
S-61-159936 | Jul 1986 | JP |
H-01-135349 | May 1989 | JP |
03-97439 | Apr 1991 | JP |
03-97441 | Apr 1991 | JP |
03-97442 | Apr 1991 | JP |
05-115435 | May 1993 | JP |
06-125911 | May 1994 | JP |
H-07-155285 | Jun 1995 | JP |
H-07-155286 | Jun 1995 | JP |
H-07-155290 | Jun 1995 | JP |
H-07-155291 | Jun 1995 | JP |
H-07-155292 | Jun 1995 | JP |
H-07-204156 | Aug 1995 | JP |
H-07-222712 | Aug 1995 | JP |
H-07-250804 | Oct 1995 | JP |
H-07-250812 | Oct 1995 | JP |
H-07-327913 | Dec 1995 | JP |
H-08-126605 | May 1996 | JP |
08-140928 | Jun 1996 | JP |
08-140929 | Jun 1996 | JP |
H-08-224208 | Sep 1996 | JP |
H-08-224209 | Sep 1996 | JP |
H-08-224210 | Sep 1996 | JP |
H-08-224240 | Sep 1996 | JP |
H-08-252218 | Oct 1996 | JP |
H-09-19408 | Jan 1997 | JP |
09-066023 | Mar 1997 | JP |
09-070384 | Mar 1997 | JP |
H-10-127563 | May 1998 | JP |
H-10-151104 | Jun 1998 | JP |
10-201707 | Aug 1998 | JP |
10-225427 | Aug 1998 | JP |
H-10-201700 | Aug 1998 | JP |
H-10-225426 | Aug 1998 | JP |
H-10-243915 | Sep 1998 | JP |
H-10-243920 | Sep 1998 | JP |
H-10-308114 | Nov 1998 | JP |
H-10-309281 | Nov 1998 | JP |
H-10-309282 | Nov 1998 | JP |
H10-321005 | Dec 1998 | JP |
H-10-328129 | Dec 1998 | JP |
H-11-47079 | Feb 1999 | JP |
11-089789 | Apr 1999 | JP |
11-104059 | Apr 1999 | JP |
11-104060 | Apr 1999 | JP |
11-104061 | Apr 1999 | JP |
H-11-104070 | Apr 1999 | JP |
H-11-113839 | Apr 1999 | JP |
H-11-155812 | Jun 1999 | JP |
H-11-244220 | Sep 1999 | JP |
H-11-332819 | Dec 1999 | JP |
2000-504968 | Apr 2000 | JP |
2000-245693 | Sep 2000 | JP |
2000-354583 | Dec 2000 | JP |
2001-078205 | Mar 2001 | JP |
2002-000560 | Jan 2002 | JP |
2002-049302 | Feb 2002 | JP |
2002-244122 | Aug 2002 | JP |
2003-045210 | Feb 2003 | JP |
2004-024611 | Jan 2004 | JP |
2004-094043 | Mar 2004 | JP |
2004-163902 | Jun 2004 | JP |
2004-520105 | Jul 2004 | JP |
2004-247156 | Sep 2004 | JP |
2004-289545 | Oct 2004 | JP |
2004-292722 | Oct 2004 | JP |
2005-010315 | Jan 2005 | JP |
2005-058618 | Mar 2005 | JP |
2005-058619 | Mar 2005 | JP |
2005-058620 | Mar 2005 | JP |
2005-080819 | Mar 2005 | JP |
2005-081079 | Mar 2005 | JP |
2005-292404 | Oct 2005 | JP |
2006087764 | Apr 2006 | JP |
2006-525494 | Nov 2006 | JP |
2007-029453 | Feb 2007 | JP |
2007072392 | Mar 2007 | JP |
2007-089840 | Apr 2007 | JP |
2010-117442 | May 2010 | JP |
2011-500921 | Jan 2011 | JP |
2011-528918 | Dec 2011 | JP |
5231625 | Jul 2013 | JP |
5859578 | Feb 2016 | JP |
99592 | Nov 2010 | RU |
WO-9304648 | Mar 1993 | WO |
WO-9413191 | Jun 1994 | WO |
WO-9526673 | Oct 1995 | WO |
WO-9824360 | Jun 1998 | WO |
WO-9901749 | Jan 1999 | WO |
WO-9953832 | Oct 1999 | WO |
WO-0042910 | Jul 2000 | WO |
WO-0054652 | Sep 2000 | WO |
WO-0207587 | Jan 2002 | WO |
WO-0250518 | Jun 2002 | WO |
WO-03059159 | Jul 2003 | WO |
WO-03059159 | Jul 2003 | WO |
WO-2006116847 | Nov 2006 | WO |
WO-2008011722 | Jan 2008 | WO |
WO-2009033021 | Mar 2009 | WO |
WO-2016055837 | Apr 2016 | WO |
Entry |
---|
US 6,692,429, 02/2004, Imaizumi et al. (withdrawn) |
Alfano, R.R. et al. (Oct. 1987). “Fluorescence Spectra From Cancerous and Normal Human Breast and Lung Tissues,” IEEE Journal of Quantum Electronics QE-23(10):1806-1811. |
Andersson-Engels, S. et al. (Mar. 1989). “Tissue Diagnostics Using Laser Induced Fluorescence,” Ber. Bunsenges Physical Chemistry 93(3):335-342. |
Bhunchet, E. et al. (Apr. 2002). “Fluorescein Electronic Endoscopy: A Novel Method for Detection of Early Stage Gastric Cancer Not Evident to Routine Endoscopy,” Gastrointestinal Endoscopy 55(4):562-571. |
Dawson, J.B. et al. (Jul. 1980). “A Theoretical and Experimental Study of Light Absorption and Scattering by In Vivo Skin,” Phys. Med. Biol. 25(4):695-709. |
Georgakoudi, I et al. (2003). “Quantitative Characterization of Biological Tissue Using Optical Spectroscopy,” in Chapter 31 of Biomedical Photonics Handbook, Tuan Vo-Dinh (ed.), CRC Press, New York, thirty three pages. |
Georgakoudi, I et al. (Apr. 2005). “Characterization of Dysplastic Tissue Morphology and Biochemistry in Barrett's Esophagus using Diffuse Reflectance and Light Scattering Spectroscopy,” Techniques in Gastrointestinal Endoscopy 7(2):100-105. |
Hung, J. et al. (1991). “Autofluorescence of Normal and Malignant Bronchial Tissue,” Lasers in Surgery and Medicine 11(2):99-105. |
Török, B. et al. (May 1996). “Simultane digitale Indocyaningrün- und Fluoreszeinangiographie (Simultaneous Digital ICG and Fluorescein Angiography),” Klin Monatsbl Augenheilkd 208(5):333-336, (with English Translation of the Introduction only). |
Chinese Office action dated Jul. 29, 2016 for application No. 2012800222843 filed on Mar. 8, 2012, eight pages. |
Chinese Office action dated Nov. 24, 2015 for application No. 2012800222843 filed on Mar. 8, 2012, sixteen pages. |
European Extended Search Report dated Jul. 17, 2014, for EP Application No. 09721252.6 filed on Mar. 18, 2009; eleven pages. |
European Extended Search Report dated Sep. 20, 2013, for EP Application No. 08706262.6 filed on Jan. 23, 2008, five pages. |
European Office Action dated Dec. 3, 2015, for EP Application No. 08706262.6 filed on Jan. 23, 2008; fifteen pages. |
European Office Action dated Nov. 19, 2015, for EP Application No. 07 785 001.4, filed on Jul. 30, 2007, four pages. |
European Office Action dated Nov. 3, 2015 for EP Patent Application No. 12754208.2 filed Oct. 4, 2013, four pages. |
European Office Action dated Sep. 29, 2015, for EP Application No. 09721252.6 filed on Mar. 18, 2009; five pages. |
European Supplemental Search Report dated Oct. 1, 2014 for EP Application No. 12754208.2 filed on Mar. 8, 2012, five pages. |
European Supplemental Search Report dated Oct. 9, 2013, for European Patent Application No. 06721854.5, filed on May 4, 2005, six pages. |
Extended European Search Report dated Jan. 24, 2012 for EP Application No. 07 785 001.4, filed on Jul. 30, 2007, seven pages. |
Final Office Action dated Apr. 24, 2015 for U.S. Appl. No. 12/933,512, filed Nov. 24, 2010, nineteen pages. |
Final Office Action dated Jul. 23, 2008, for U.S. Appl. No. 11/122,267, six pages. |
Final Office Action dated Jun. 18, 2015, for U.S. Appl. No. 14/154,177, eight pages. |
Final Office Action dated Jun. 5, 2014, for U.S. Appl. No. 12/761,462, fourteen pages. |
Final Office Action dated May 11, 2011, for U.S. Appl. No. 11/412,715, eight pages. |
Final Office Action dated May 21, 2012, for U.S. Appl. No. 11/964,330; twelve pages. |
Final Office Action dated Nov. 24, 2009, for U.S. Appl. No. 11/009,965, fourteen pages. |
Final Office Action dated Mar. 22, 2016 for U.S. Appl. No. 14/873,842, filed Oct. 2, 2015, eighteen pages. |
International Preliminary Report on Patentability dated Feb. 3, 2009, for International Application No. PCT/CA2007/001335 filed on Jul. 30, 2007, five pages. |
International Preliminary Report on Patentability dated Nov. 6, 2007, for International Application No. PCT/CA2006/000669, filed on Apr. 27, 2006, nine pages. |
International Preliminary Report on Patentability dated Sep. 21, 2010, for International Application No. PCT/US2009/037506, filed on Mar. 18, 2009, seven pages. |
International Search Report dated Aug. 3, 2006, for International Application No. PCT/CA2006/000669, filed on Apr. 27, 2006, three pages. |
International Search Report dated Aug. 3, 2012, for International Application No. PCT/IB2012/000601, filed on Mar. 8, 2012, three pages. |
International Search Report dated Dec. 7, 2007, for International Application No. PCT/CA2007/001335, filed on Jul. 30, 2007, two pages. |
International Search Report dated Jan. 21, 2002, for International Application No. PCT/US2001/022198, filed on Jul. 13, 2001, three pages. |
International Search Report dated Jul. 22, 2009, for International Application No. PCT/US09/37506, filed on Mar. 18, 2009, two pages. |
International Search Report dated May 13, 2008 for Intentional Application No. PCT/CA2008/00015, filed on Jan. 8, 2008, one page. |
Invitation to Pay additional Fees and, where Applicable, Protest Fee, dated Dec. 22, 2016 for International Application No. PCT/CA2016/051315, filed on Nov. 10, 2016, two pages. |
Japanese Final Office Action dated Aug. 2, 2013, for Japanese Patent Application No. 2008-509275, filed on Apr. 27, 2006, four pages. |
Japanese Notice of Allowance dated Nov. 28, 2016 for Japanese Patent Application No. 2015-245598, filed on Mar. 8, 2012, six pages. |
Japanese Office Action dated Apr. 20, 2012, issued in counterpart Japanese Application No. 2011-500921, filed Mar. 18, 2009, four pages. |
Japanese Office Action dated Apr. 3, 2015 in Japanese Application No. 2013-058356, filed Mar. 18, 2009, four pages. |
Japanese Office Action dated Feb. 17, 2012, for Japanese Patent Application No. 2008-509275, filed on Apr. 27, 2006, six pages. |
Japanese Office Action dated Jul. 22, 2014 for Japanese Patent Application No. 2013-557187 filed Mar. 8, 2012, seven pages. |
Japanese Office Action dated Mar. 9, 2015 for Japanese Patent Application No. 2013-557187, filed Mar. 8, 2012, five pages. |
Japanese Office Action dated Nov. 11, 2011, for Japanese Patent Application No. 2009-521077, filed on Jul. 30, 2007, four pages. |
Japanese Office Action dated Sep. 14, 2012, for Japanese Patent Application No. 2008-509275, filed on Apr. 27, 2006, seven pages. |
Japanese Office Action dated Sep. 19, 2014, for Japanese Patent Application No. 2013-246636, filed on Apr. 27, 2006, six pages. |
Japanese Office dated Dec. 26, 2012 for Japanese Patent Application No. 2011-500921, filed on Mar. 18, 2009, two pages. |
Japanese Office Action dated May 26, 2014 in Japanese Patent Application No. 2013-058356, filed on Mar. 18, 2009, w/Concise Explanation of the Relevance, three pages. |
Korean Decision of Refusal Action dated Aug. 30, 2016 for patent application No. 10-2015-7033310 filed on Mar. 8, 2012, seven pages. |
Korean Office Action dated Aug. 20, 2015 for patent application No. 20137026479 filed on Mar. 8, 2012. |
Korean Office Action dated Dec. 8, 2015 for patent application No. 20157033310 filed on Mar. 8, 2012, seven pages. |
Korean Notice of Allowance dated Jan. 2, 2017 for Korean Application No. 10-2015-7033310, filed on Nov. 20, 2015, three pages. |
Non Final Office Action dated Apr. 2, 2009, for U.S. Appl. No. 11/009,965, thirteen pages. |
Non Final Office Action dated Aug. 16, 2013, for U.S. Appl. No. 12/761,462, ten pages. |
Non Final Office Action dated Aug. 16, 2013, for U.S. Appl. No. 12/761,523, nine pages. |
Non Final Office Action dated Dec. 10, 2010, for U.S. Appl. No. 11/412,715, ten pages. |
Non Final Office Action dated Dec. 14, 2011, for U.S. Appl. No. 11/412,715, eight pages. |
Non Final Office Action dated Feb. 3, 2010, for U.S. Appl. No. 11/626,308; eleven pages. |
Non Final Office Action dated Jan. 2, 2008, for U.S. Appl. No. 11/122,267, five pages. |
Non Final Office Action dated Jan. 20, 2016, for U.S. Appl. No. 14/629,473, fifteen pages. |
Non Final Office Action dated Jul. 17, 2003, for U.S. Appl. No. 09/905,642, six pages. |
Non Final Office Action dated Jul. 2, 2013 for U.S. Appl. No. 12/933,512, filed Nov. 24, 2010, twelve pages. |
Non Final Office Action dated Jun. 1, 2007, for U.S. Appl. No. 10/899,648, seven pages. |
Non Final Office Action dated Jun. 20, 2008, for U.S. Appl. No. 11/009,398, fifteen pages. |
Non Final Office Action dated Jun. 23, 2010, for U.S. Appl. No. 11/009,965, fifteen pages. |
Non Final Office Action dated Jun. 27, 2014 for U.S. Appl. No. 13/415,561, filed Mar. 3, 2012, fourteen pages. |
Non Final Office Action dated Jun. 9, 2011, for U.S. Appl. No. 11/830,323, five pages. |
Non Final Office Action dated May 18, 2004, for U.S. Appl. No. 10/050,601, eight pages. |
Non Final Office Action dated Nov. 23, 2009, for U.S. Appl. No. 11/969,974, seven pages. |
Non Final Office Action dated Nov. 5, 2014, for U.S. Appl. No. 13/930,225; six pages. |
Non Final Office Action dated Oct. 23, 2013 for U.S. Appl. No. 13/415,561, filed Mar. 8, 2012, ten pages. |
Non Final Office Action dated Oct. 7, 2011, for U.S. Appl. No. 11/964,330; ten pages. |
Non Final Office Action dated Sep. 12, 2014, for U.S. Appl. No. 14/154,177, four pages. |
Non Final Office Action dated Sep. 6, 2016 for U.S. Appl. No. 14/873,842, filed Oct. 2, 2015, seven pages. |
Non Final Office Action with Restriction Requirement dated Mar. 4, 2011, for U.S. Appl. No. 11/830,323, nine pages. |
U.S. Appl. No. 15/348,664, titled “Systems and Methods for Illumination and Imaging of a Target.” |
Design U.S. Appl. No. 29/562,795, filed Apr. 28, 2016, titled “Device for Illumination and Imaging of a Target.” |
Notice of Allowance dated Dec. 30, 2016, for U.S. Appl. No. 14/873,842, filed Oct. 2, 2015, eleven pages. |
Notice of Allowance dated Apr. 7, 2004, for U.S. Appl. No. 09/905,642, six pages. |
Notice of Allowance dated Aug. 26, 2004, for U.S. Appl. No. 10/050,601, eight pages. |
Notice of Allowance dated Aug. 6, 2015, for U.S. Appl. No. 13/853,656, seven pages. |
Notice of Allowance dated Dec. 10, 2012, for U.S. Appl. No. 11/964,330; seven pages. |
Notice of Allowance dated Feb. 25, 2010, for U.S. Appl. No. 11/969,974, four pages. |
Notice of Allowance dated Jan. 2, 2008, for U.S. Appl. No. 10/899,648, three pages. |
Notice of Allowance dated Jun. 25, 2015, for U.S. Appl. No. 12/933,512, filed Nov. 24, 2010 fourteen pages. |
Notice of Allowance dated Mar. 22, 2013, for U.S. Appl. No. 11/964,330; eight pages. |
Notice of Allowance dated Mar. 28, 2016, for U.S. Appl. No. 13/853,656 eight pages. |
Notice of Allowance dated May 18, 2015, for U.S. Appl. No. 13/930,225; nine pages. |
Notice of Allowance dated Nov. 23, 2015, for U.S. Appl. No. 13/853,656, seven pages. |
Notice of Allowance dated Oct. 10, 2014, for U.S. Appl. No. 12/761,462, ten pages. |
Notice of Allowance dated Oct. 5, 2007, for U.S. Appl. No. 10/899,648, six pages. |
Notice of Allowance dated Sep. 10, 2013, for U.S. Appl. No. 11/412,715, eight pages. |
Notice of Allowance dated Sep. 14, 2012, for U.S. Appl. No. 11/830,323, eight pages. |
Russian Office Action—Decision to Grant dated Aug. 19, 2016 for Russian Patent Application No. 2013144845/07, filed on Mar. 8, 2012, thirteen pages. |
Supplemental Notice of Allowability dated Mar. 10, 2005, for U.S. Appl. No. 10/050,601, five pages. |
Written Opinion of the International Searching Authority dated Aug. 3, 2006, for International Application No. PCT/CA2006/000669, filed on Apr. 27, 2006, eight pages. |
Written Opinion of the International Searching Authority dated Dec. 7, 2007, for International Application No. PCT/CA2007/001335, filed on Jul. 30, 2007, four pages. |
Japanese Notice of Allowance dated Jan. 5, 2017 in Japanese Patent Application No. 2015-238784, filed on Dec. 7, 2015, six pages. |
Canadian Examiner's Report for Registration of an Industrial Design dated Feb. 1, 2017 for Canadian Application No. 171282, filed on Oct. 27, 2016, two pages. |
Chinese Third Office Action dated Mar. 14, 2017 for Chinese Patent Application No. 201280022284.3, filed on Nov. 7, 2013, seven pages. |
European Communication pursuant to Rules 70(2) and 70a(2) EPC and Reference to Rule 39(1) EPC dated Jan. 23, 2017 for European Application No. 16186321.2 filed on Aug. 30, 2016, two pages. |
European Communication under Rule 71(3) EPC dated Nov. 25, 2016 for EP Application No. 08706262.6 filed on Aug. 21, 2009, eight pages. |
European Search Report and Written Opinion dated Dec. 21, 2016 for European Application No. 16186321.2 filed on Aug. 30, 2016, nine pages. |
International Search Report and Written Opinion dated Apr. 24, 2017, for International Application No. PCT/CA2017/050083, filed on Jan. 26, 2017, seven pages. |
International Search Report and Written Opinion of the International Searching Authority dated Feb. 10, 2017, for International Application No. PCT/CA2016/051315 filed on Nov. 10, 2016, thirteen pages. |
U.S. Non Final Office Action dated Feb. 1, 2017, for U.S. Appl. No. 14/860,687, filed Sep. 21, 2015, sixteen pages. |
U.S. Non Final Office Action dated Jan. 26, 2017, for U.S. Appl. No. 15/343,034, filed Nov. 3, 2016, seventeen pages. |
U.S. Non Final Office Action dated Jan. 27, 2017, for U.S. Appl. No. 15/343,038, filed Nov. 3, 2016, fifteen pages. |
U.S. Appl. No. 15/584,405 titled “Imaging System for Combine Full-Color Reflectance and Near-Infrared Imaging,” filed May 2, 2017. |
Number | Date | Country | |
---|---|---|---|
20160360956 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
61450360 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14658869 | Mar 2015 | US |
Child | 15247419 | US | |
Parent | 13415561 | Mar 2012 | US |
Child | 14658869 | US |