The present invention relates to computer related information search and retrieval, and specifically to assessing the relevancy of multimedia and streaming media utilizing metadata.
An aspect of the Internet (also referred to as the World Wide Web, or Web) that has contributed to its popularity is the plethora of multimedia and streaming media files available to users. However, finding a specific multimedia or streaming media file buried among the millions of files on the Web is often an extremely difficult task. The volume and variety of informational content available on the web is likely continue to increase at a rather substantial pace. This growth, combined with the highly decentralized nature of the web, creates substantial difficulty in locating particular informational content.
Streaming media refers to audio, video and interactive files that are delivered to a user's computer via the Internet or other network environment. One advantage of streaming media is that streaming media files begin to play before the entire file is downloaded, saving users the long wait typically associated with downloading the entire file. Digitally recorded music, movies, trailers, news reports, radio broadcasts and live events have all contributed to an increase in streaming content on the Web. In addition, less to expensive high-bandwidth connections such as cable, DSL and T1 are providing Internet users with speedier, more reliable access to streaming media content from news organizations, Hollywood studios, independent producers, record labels and even home users themselves.
A user typically uses a search engine to find specific information on the Internet. A search engine is a set of programs accessible at a network site within a network, for example a local area network (LAN) or the Internet and World Wide Web. One program, called a “robot” or “spider”, pre-traverses a network in search of documents (e.g., web pages) and builds large index files of keywords found in the documents. Typically, a user formulates a query comprising one or more search terms and submits the query to another program of the search engine. In response, the search engine inspects its own index files and displays a list of documents that match the search query, typically as hyperlinks. The user then typically activates one of the hyperlinks to see the information contained in the document.
Search engines, however, have drawbacks. For example, many typical search engines are oriented to discover textual information only. In particular, they are not well suited for indexing information contained in structured databases (e.g. relational databases), voice related information, audio related information, multimedia, and streaming media, etc. Also, mixing data from incompatible data sources is difficult for conventional search engines.
Another disadvantage of conventional search engines is that irrelevant information is aggregated with relevant information. For example, it is not uncommon for a search engine on the web to locate hundreds of thousands of documents in response to a single query. Many of those documents are found because they coincidentally include the same keyword in the search query. Sifting through search results in the thousands, however, is a daunting task. For example, if a user were looking for a song having the title “I Am The Walrus,” the search query would typically contain the word “walrus.” The list of hits would include documents providing biological information on walruses, etc. Thus, the user would have to review an enormous number of these hits before finally (if ever) reaching a hit related to the desired song title. Adding to a user's frustration is the possibility that many of the search results are duplicates and/or variants of each other, leading to the same document (e.g. uniform resource locator, URL). Further difficulty occurs in trying to evaluate the relative merit or relevance of concurrently found documents. The search for specific content based on a few key words will almost always identify documents whose individual relevance is highly variable.
Thus, there is a need for an automated multimedia and streaming media search tool that provides information to a user that overcomes the previously described drawbacks and disadvantages.
A method and system for ranking relevancy of metadata associated with media on a computer network include categorizing the metadata into sets of metadata. Each category of metadata includes at least one set of metadata. Weights are assigned to each set of metadata. The value of each weight is determined in accordance with the content of each set of metadata. A score is calculated for ranking the relevancy of each set of metadata. The score is calculated in accordance with the assigned weight and category.
The above and other advantages and features of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention, which is provided in connection with the accompanying drawings. The various features of the drawings may not be to scale. Included in the drawing are the following figures:
Although the invention is described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
The present invention is a system and method for retrieving media files and data related to media files on a computer network via a search system utilizing metadata. As used herein, the term “media file” includes audio, video, textual, multimedia data files, and streaming media files. Multimedia files comprise any combination of text, image, video, and audio data. Streaming media comprises audio, video, multimedia, textual, and interactive data files that are delivered to a user's computer via the Internet or other communications network environment and begin to play on the user's computer/device before delivery of the entire file is completed. One advantage of streaming media is that streaming media files begin to play before the entire file is downloaded, saving users the long wait typically associated with downloading the entire file. Digitally recorded music, movies, trailers, news reports, radio broadcasts and live events have all contributed to an increase in streaming content on the Web. In addition, the reduction in cost of communications networks through the use of high-bandwidth connections such as cable, DSL, T1 lines and wireless networks (e.g., 2.5G or 3G based cellular networks) are providing Internet users with speedier, more reliable access to streaming media content from news organizations, Hollywood studios, independent producers, record labels and even home users themselves.
Examples of streaming media include songs, political speeches, news broadcasts, movie trailers, live broadcasts, radio broadcasts, financial conference calls, live concerts, web-cam footage, and other special events. Streaming media is encoded in various formats including REALAUDIO®, REALVIDEO®, REALMEDIA®, APPLE QUICKTIME®, MICROSOFT WINDOWS® MEDIA FORMAT, QUICKTIME®, MPEG-2 LAYER III AUDIO, and MP3®. Typically, media files are designated with extensions (suffixes) indicating compatibility with specific formats. For example, media files (e.g., audio and video files) ending in one of the extensions, .ram, .rm, .rpm, are compatible with the REALMEDIA® format. Some examples of file extensions and their compatible formats are listed in the following table. A more exhaustive list of media types, extensions and compatible formats may be found at http://www.bowers.cc/extensions2.htm.
Metadata, literally means “data about data.” Metadata is data that comprises information that describes the contents or attributes of other data (e.g., media file). For example, a document entitled, “Dublin Core Metadata for Resource Discovery,” (http://www.ietf.org/rfc/rfc2413.txt) separates metadata into three groups, which roughly indicate the class or scope of information contained therein. These three groups are: (1) elements related primarily to the content of the resource, (2) elements related primarily to the resource when viewed as intellectual property, and (3) elements related primarily to the instantiation of the resource. Examples of metadata falling into these groups are shown in the following table.
Sources of metadata include web page content, uniform resource locators (URLs), media files, and transport streams used to transmit media files. Web page content includes HTML, XML, metatags, and any other text on the web page. As explained in more detail, herein, metadata may also be obtained from the URLs the web page, media files, and other metadata. Metadata within the media file may include information contained in the media file, such as in a header or trailer, of a multimedia or streaming file, for example. Metadata may also be obtained from the media/metadata transport stream, such as TCP/IP (e.g., packets), ATM, frame relay, cellular based transport schemes (e.g., cellular based telephone schemes), MPEG transport, HDTV broadcast, and wireless based transport, for example. Metadata may also be transmitted in a stream in parallel or as part of the stream used to transmit a media file (a High Definition television broadcast is transmitted on one stream and metadata, in the form of an electronic programming guide, is transmitted on a second stream).
Computers may also encompass computers embedded within consumer products and other computers. For example, an embodiment of the present invention may comprise computers (as a processor) embedded within a television, a set top box, an audio/video receiver, a CD player, a VCR, a DVD player, a multimedia enable device (e.g., telephone), and an Internet enabled device.
In an exemplary embodiment of the invention, the server computers 18, 20 include one or more program modules and one or more databases which allow the user computers 12, 14 to communicate with the server computer, and each other, over the network 16. The program module(s) of the server computers 18, 20 include program code, written in PERL, Extensible Markup Language (XML), Java, Hypertext Mark-up Language (HTML), or any other equivalent language which allows the user computers 12, 14 to access the program module(s) of the server computer through the browser programs stored on the user computers. Although only two user computers 12, 14, two server computers 18, 20, and two databases 21, 22 are labeled in
In an exemplary embodiment of the present invention, media files and related metadata are searched for and retrieved by reading, extracting, enhancing, and grouping metadata describing the contents of files.
Upon finding a media file, metadata associated with that file is extracted (step 26). Metadata is extracted from sources such as the name of the media file, the MIME responses, links to the media file, text surrounding the media file on the website, metatags (descriptive information embedded in sources as program code or HTML) in or surround the media file, content partners supplying metadata about their files, and the results of reading the metadata of the media file with an interpretive extraction process.
Extracted metadata is enhanced in step 28. The extracted metadata associated the media files are stored in memory (e.g., transferred to a database). The metadata is assessed, analyzed, and organized in accordance with attributes associated with the media file. If metadata information is missing from the extracted metadata, it is added (step 28). If metadata information is incorrect, it is corrected (step 28). For example, if metadata associated with a song comprises the fields of Composer, Title, Musician, Album Name, and Music Genre, but is missing the date the song was copyrighted, the copyright date is added to the extracted metadata. The metadata (e.g., copyright date) used to enhance the extracted metadata is obtained from at least one of several sources. These sources include a baseline database of metadata associated with the search target (e.g., the particular song of interest) and the semantic and technical relationships between the fields in the extracted metadata.
The extracted metadata, which may be enhanced, is categorized in accordance with specific metadata attributes in step 30. At this point the links, e.g., uniform resource indicators (URIs) in the form of uniform resource locators (URLs) for web pages and data files, may be transferred to the user, the URL of the media file may be transferred to the user, or the categorized metadata may be used (e.g., transferred to a search engine) to search and retrieve the target media file. In an exemplary embodiment of the invention, the target streaming media stream automatically starts playing. For example, a specific song is searched for, and the ultimate result is the playing of the song on the user's computer system.
Uniform resource indicators (URIs) are a universal set of names that refer to existing protocols or name spaces that identify resources (e.g., website, streaming media server,), services (e.g., videos on demand, internet radio), devices (e.g., mobile phone, internet enable appliance), and data files (e.g., media files and text documents). A URL is a form of a URI that expresses an address that maps to an access algorithm using network protocols (e.g., TCP/IP or a MPEG transport scheme). When a URL is used, a specific resource, service, device, or data file may be accessed and/or manipulated. An alternative form of a URI known as an Internet protocol number or address (IP) is a series of numbers that refers to a specific resource, service, or data file. Optionally, a URL is mapped to an IP number, which provides two ways to access a desired resource (e.g., a resource is accessed either by using www.whitehouse.gov or the IP address 198.137.240.91).
Spider 66 incorporates a process of seeding to search for media and related files.
The spider uses seed URLs to search (step 38) and retrieve (step 40) the HTML text from located web sites. The file name and MIME type of the web site are stored in memory. The text is parsed to look for links to other web resources associated with media in step 42. The HTML code of each web page is examined for anchor tags, form elements, known JavaScript functions, etc., to find other web resources associated with media. These newly found web resources are used as seeds for the spider for additional searches (added to the spider input queue) by repeating steps 36 through 42 using the new seeds.
Referring again to
The extraction agent 68 comprises an interpretive metadata extractor and a database retriever. The extraction agent 68 distributes and performs enhanced metadata extraction of queue entries on the extraction queue 67.
In step 48, queue entries sent to a specific media extractor are extracted by that specific extractor. Metadata extraction comprises the process of extracting metadata from the media file or from related media content (e.g., from the referring web page). Types of media specific extractors include multimedia and streaming extractors that can extract metadata from formats such as REALAUDIO®, REALVIDEO®, REALMEDIA®, APPLE QUICKTIME®, MICROSOFT WINDOWS®MEDIA FORMAT, QUICKTIME®, MPEG-2 LAYER III AUDIO, and MP3, for example. As discussed in more detail herein, interpretive metadata extraction captures and aggregates metadata pertaining to a media file using metadata from the media stream, third party databases, the referring web page, and the URL, and replaces inaccurate metadata with known good metadata. An Internet stream object is created comprising the media file from the URL, metadata extracted from the media file and an identifier (id). The Internet stream object is automatically stored in memory (step 50). In an exemplary embodiment of the invention, memory storage comprises providing the object to a relational database management system (DBMS) for storage and database management.
In step 52, it is determined if the accessible media file and the associated metadata links are valid. Validation comprises determining if the Web page comprises a link to a desired media file, and also determining if the desired media file works. In an exemplary embodiment of the invention, a streaming media file is retrieved and played to determine it is valid. If determined to be invalid (not successful in step 52), the Internet stream object is assigned a later time and priority. The Internet stream object is requeued to the extractor, and steps 48 through 50 are repeated with at the later time and in accordance with the newly assigned priority. If extraction is valid (successful in step 52), the Internet streaming object is queued and available to all agents.
Extraction agent 68 captures and aggregates media specific metadata pertaining to the media (including multimedia and streaming media) from sources such as the media URL, the referring Web page URL, title, key words, description, and third party databases.
For example, assume the spider 66 finds a media file containing a music song. The metadata is extracted by extracting agent 68, and parsed and indexed into the following metadata fields: the referring URL, the media URL, the title, and the performer of the song. The information contained in these fields is as follows.
The metadata fields are compared to a known database, such as a third party database, to compare contents of the metadata fields with the contents of the fields in the known database. In this example, assume a known database is located and contains the following indexed metadata.
The interpretive extraction agent 68, adds the missing fields corresponding to the copyright, album, music genre, and composer, and adds the additional performer (i.e., John Lennon). The interpretive extraction 68 also corrects the title of the song from “I am the Fishman” to “We are the Fishmen” because the database comprises valid or authoritative metadata. Thus, prior to these enhancements, this media file could only be located if a user enter “Paul McCarpney” as the performer and/or “I am the Fishman” as the title. As a result of the enhancements provided by the interpretive metadata extraction agent 68, a user may locate this media file also by searching for any of the resultant fields (e.g., the album name or the composer).
Not all databases queried are determined to be ground truth databases.
A score is calculated, in step 88, to quantify the degree of similarity between the noisy data (candidate metadata) and potential ground truth data (valid metadata). In an exemplary embodiment of the invention, the number of matching keywords in the fields being compared determines a score. For example, if the input query is “oops i did it” and two potential ground truth data records are “oops i did it again” and “did it again for you”, the first score is 4 and the second score is 2. In an alternate embodiment of the invention, fields are also assigned weights, which are multiplied by the number of matching keywords. For example, the artist field may be assigned a weight of 3, and the copyright date field may be assigned a weight of 1. Thus, if two keywords match in each of the artist and copyright fields, the score for the artist field is 6, and the score for the copyright field is 2. Further, individual field scores may be added, averaged, or combined by any appropriate means to derive a cumulative database score. The scores are compared to a threshold value (step 90) to determine if the potential ground truth database qualifies (step 92), or does not qualify (step 94) as a ground truth database. If a database qualifies as a ground truth database, it is used by the interpretive extraction process as described herein. The threshold value may be predetermined and constant, or may be adaptively determined in accordance with the range of calculated scores.
Referring again to
The virtual domain detector 74 dequeues data from the queue in time and priority order. The virtual domain detector 74 looks for duplicate domains (field of the URL). If duplicates are found, they are identified as such and queued. The queued ids are available to all agents.
It is not uncommon for Web pages and multiple servers with different portions of a URL, e.g., different domains, to host the same media content. Further, the same media content may be available in different formats and bit rates. The grouper 76 analyzes and compares URLs in the database. The grouper 76 combines variants of the same media URL and creates a group in which all metadata for similar URLs are added to the group. URLs are analyzed to determine if they are variations of related files. For example, if two URLs share a very complex path that differs only in the file extension, the two URLs are considered to be related. Differences are eliminated by masking out tokens at the same relative location with respect to the original string.
Selected bins are iteratively masked in step 104. The masking process 104 is performed on URLs on a bin by bin basis. Each field of each URL is compared to a mask. Not all bins require processing by the iterative masking process 104. In an exemplary embodiment of the invention, bins containing only a single URL are not iteratively masked 104, and bins containing a plurality of URLs are processed in accordance with the iterative masking process 104.
Resultant URLs (i.e., URLs that have been compared to the mask) in the bin are compared and collapsed into a single URL if they are the same (step 120). For example, if four URLs differ only by bit rate, and the bit rate of each URL is masked out, the resulting four URLs are collapsed into a single URL. If more bins have been selected, the iterative masking process is repeated for the next bin (step 122) starting at step 112. Grouped URLs are queued and available for all agents.
For example, assume all URLs in the database have been binned such that all URLs comprising the same referring URL are binned together. Thus, assume the following URLs are in the same bin.
The fields of the URL are reorganized in step 138. In an exemplary embodiment of the invention, the URL is reorganized in reverse order. Thus the first field of the URL becomes the last field and the last field becomes the first. In many instances, this results in a reorganized URL having its most specific field first and its least specific field last. In many instances, this also results in the first set of contiguous fields (i.e., prefix) of the reorganized URL having associated metadata. The first field of the reorganized URL is analyzed to determine if an association exists between the first field and predetermined sets of metadata (step 140). Predetermined sets of metadata may comprise metadata obtained from other fields in the metadata and/or terms (metadata) contained in a database of terms. If it is determined that an association exists (step 142), the associated metadata are added to the original metadata in step 148. After metadata are added, it is determined if the reorganized URL contains more fields (which have not been analyzed for associated metadata) in step 150. If no associated metadata are identified (step 140 and 142), it is also determined if more fields exist (step 150). If more fields exist, the next field is analyzed to determine if an association exists between the next field and the predetermined sets of metadata (step 146). In an exemplary embodiment of the invention, the next field is the next contiguous field. If no associated metadata are identified (step 142), no new metadata are added to the metadata associated with the media file. If associated metadata are identified, the associated metadata are added to the original metadata in step 148. This process is continued until all the fields in the reorganized URL have been analyzed. At this point, metadata associated with the longest match (i.e., the greatest number of fields having associated metadata) have been added to the original metadata. Databases are updated with the newly added metadata, and the associated ids are queued and available to all agents.
In an exemplary embodiment of the invention, the genre metadata if updated to ensure proper formatting and correctness. The updated metadata is analyzed to determine if the genre field(s) are correct. If it is determined that the genre field(s) are not correct, they are updated. The genre fields are updated in accordance with predetermined association rules. For example, assume the contents of a field pertaining to category is “music” (i.e., “category=music”). The metadata is analyzed, and the metadata terms “artist=Freddy Roulette”, “genre MP3=punk rock” are found. The field associated with category will be changed from music to punk rock, resulting in “category=punk rock”. In this example, the category field is changed because a predetermined association rule is encoded to change the “category” field to the same as the “genre_MP3” field.
In another exemplary embodiment of the invention, the iterative process is halted after metadata associated with the longest prefix of contiguous fields of the reorganized URL are identified, and metadata associated with the prefix, and not the individual fields is added to the original metadata. For example, assuming a URL has ten fields, if the first four fields of the reorganized URL have associated metadata, and the fifth field does not have associated metadata, the sixth through the tenth fields are not analyzed for associated metadata. In this example, the metadata associated with the first four fields, i.e., the prefix, and not the individual fields, (and, as will be explained herein with reference to muze annotation, possibly the metadata associated with the fifth field) are added to the original metadata.
Metadata is added to the metadata associated with the media file. Added metadata may comprise metadata corresponding to category, title, delivery mode, publisher, performer, program title, creation country, and language, for example. The added metadata may be in the form of textual data (e.g., new terms) and/or URLs (e.g., new links). Also, in accordance with the MUZE® annotation rule, added metadata may comprise the content of the field in the reorganized URL that is next to the matching prefix (e.g., first non-matching field). The content of the field is edited to replace connecting characters with spaces, and then added as new metadata. Connecting characters may include, for example, period (“.”), underscore (“_”), backslash (“\”), forward slash (“/”), comma (“,”), asterisk (“*”), hyphen (“-”), and/or any other appropriate connecting character. This muze annotation rule is advantageous for URLs comprising field content of “MP3”. In an exemplary embodiment of the invention, all reorganized URLs beginning with the prefix “com.MP3.downloads” are categorized as music and the recommended title (i.e., song title) is based on the filename as given in the field next to the matched prefix. For example, assume the following reorganized URL, “com.MP3.downloads/Freddy Roulette/Laundry_Mat_Blues”. In this example, Freddy Roulette is the content of the artist field and Laundry_Mat_Blues is the content of the title field. The metadata quality improvement process finds a match for the prefix of the reorganized URL ending with Freddy Roulette. Because the reorganized URL begins with com.MP3, the metadata quality improver 78 edits the next field (i.e., Laundry_Mat_Blues) after the matched prefix and adds the edited data as the recommended title of the song. The edited field content has no underscores. Thus the resultant added metadata in this example is “Laundry Mat Blues”. Databases are updated with the newly added metadata, and the associated ids are queued and available to all agents. Examples of the types of metadata that are added to matched fields are shown in the following table.
The full-text relevancy ranker 80 comprises ranking and sorting data (e.g., media metadata) based on a variety of semantic and technical data fields (e.g., title, author, date, duration, bit rate, etc.). Full-text relevancy ranker 80 is depicted as part of the work flow architecture of system 300. This depiction is exemplary. In another embodiment of the invention, full-text relevancy ranker 80 is not part of the workflow architecture. The option to include full-text relevancy ranker 80 as part of the workflow architecture (or not) is depicted by the dashed arrows in
For example, suppose a user enters a search query comprising the terms “Mozart”, “Magic Flute”, and “Red”. The full-text relevancy ranker 80, knowing that Mozart is a name of a composer (encoded rule), semantically associates Mozart with the who category and looks for “Mozart” in a field designated as WhoCreation. Magic Flute is recognized as a music composition and is semantically associated with the What category and looked for in the Title field. Weights of greater value are assigned to terms that are associated with semantic categories than to terms that are not associated with semantic categories. Thus, matches to “Mozart” and “Magic Flute” are assigned a greater weight, and accordingly a higher relevancy score, than the unrelated term “Red”. The full-text relevancy ranker 80 also considers technical parameters in the calculation of the relevancy score. In the current example, if the term news were added to the search query, the full-text relevancy ranker 80 looks for news pieces about Mozart and the Magic Flute, rather than for a piece of music. In an exemplary embodiment of the invention, full-text relevancy ranker 80 searches for news articles by considering the duration of the indexed files. For example, the full-text relevancy ranker 80 knows that news pieces typically have a shorter duration than music files (an encoded rule). Accordingly, the full-text relevancy ranker 80 assigns a higher score to files with shorter lengths. If full-text ranker 80 is incorporated as part of the workflow architecture, the database is updated with the full-text relevancy ranked data and the associated ids are queued and available to all agents. If full-text relevancy ranker 80 is not incorporated as part of the workflow architecture, no associated ids are queued and made available to all agents. Rather, the results are made directly available to search systems and/or users.
Referring again to
The present invention may be embodied in the form of computer-implemented processes and apparatus for practicing those processes. The present invention may also be embodied in the form of computer program code embodied in tangible media, such as floppy diskettes, read only memories (ROMs), CD-ROMs, hard drives, high density disk, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. The present invention may also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose processor, the computer program code segments configure the processor to create specific logic circuits.
The present invention may be embodied to update or replace the metadata relating to a media file, contained in a database, web page, storage device, media file (header or footer), URI, transport stream, electronic program guide, and other sources of metadata, by using the same processes and/or apparatuses described wherein.
Although the present invention is described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claims should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
This application claims priority from U.S. provisional application No. 60/252,273, filed on Nov. 21, 2000, which is herein incorporated by reference in its entirety. This application is related to the following applications filed on Jun. 8, 2001: application Ser. No. 09/876,941, entitled “Internet Streaming Media Workflow Architecture,”; application Ser. No. 09/876,943, entitled “Interpretive Stream Metadata Extraction,”; application Ser. No. 09/876,942, entitled “Metadata Quality Improvement,”. This application is also related to the following applications filed on Jun. 11, 2001: application Ser. No. 09/878,877, entitled “Grouping Multimedia And Streaming Media Search Results,”; application Ser. No. 09/878,866, entitled “Fuzzy Database Retrieval,”; and application Ser. No. 09/878,876, entitled “Internet Crawl Seeding,”.
Number | Name | Date | Kind |
---|---|---|---|
5241305 | Fascenda et al. | Aug 1993 | A |
5345227 | Fascenda et al. | Sep 1994 | A |
5483522 | Derby et al. | Jan 1996 | A |
5917424 | Goldman et al. | Jun 1999 | A |
5920854 | Kirsch et al. | Jul 1999 | A |
5941944 | Messerly | Aug 1999 | A |
5953718 | Wical | Sep 1999 | A |
5963940 | Liddy et al. | Oct 1999 | A |
5991756 | Wu | Nov 1999 | A |
5991809 | Kriegsman | Nov 1999 | A |
6112203 | Bharat et al. | Aug 2000 | A |
6138113 | Dean et al. | Oct 2000 | A |
6151584 | Papierniak et al. | Nov 2000 | A |
6173287 | Eberman et al. | Jan 2001 | B1 |
6175830 | Maynard | Jan 2001 | B1 |
6389467 | Eyal | May 2002 | B1 |
6484199 | Eyal | Nov 2002 | B2 |
6519648 | Eyal | Feb 2003 | B1 |
6584468 | Gabriel et al. | Jun 2003 | B1 |
Number | Date | Country | |
---|---|---|---|
20020099694 A1 | Jul 2002 | US |
Number | Date | Country | |
---|---|---|---|
60252273 | Nov 2000 | US |