The invention relates generally to the field of numerical inversion of seismic data to infer elastic parameters of the propagating medium. More particularly, the invention is a method for reducing the accuracy requirements on the starting model when performing local objective function optimization in inversions such as seismic data inversion.
Inversion [see, for example, Tarantola, 1984] attempts to find a model that optimally explains observed data. Local inversion methods that minimize the value of an objective function that measures the difference between simulated and observed data, are often the only practical means of solving an inversion problem for a model having a large number of free parameters. These local methods require an initial guess for the model to be inverted. They then iteratively update the model to make it closer to the true solution by searching for a perturbation of the current model in a direction based on the gradient of the objective function. Unfortunately, the objective function often has many minima, not just one minimum corresponding to the solution model. These other minima are called local minima, while the minimum corresponding to the desired solution is termed the global minimum. If the starting model for inversion is too close to the model corresponding to one of these local minima, then local inversion methods will get stuck near that local minimum and never iterate away from it to the global minimum. Thus, the wrong solution is produced no matter how much effort is expended on iteration.
This local minima problem can be solved by first iterating inversion on an altered objective function that has fewer local minima, but has a global minimum near the location of the desired solution. The result of iterating on this altered objective function should produce a model closer to the desired solution. This more accurate model is then used as the initial model for iteration on the original objective function. Since this new initial model is close to the global minimum of the original objective function, iteration on the original objective function should now produce an accurate solution. This technique of iterating on an altered objective function is often termed multi-resolution, or multi-grid, or multi-scale inversion, which is discussed further below.
There are a large number of well known methods of inversion. These methods fall into one of two categories, iterative inversion and non-iterative inversion. The following are definitions of what is commonly meant by each of the two categories:
Wave inversion means any inversion based on a wave simulator, such as acoustic or seismic inversion. The iterative method most commonly employed in wave inversion is objective function optimization. Objective function optimization involves iterative minimization of the value, with respect to the model M, of an objective function S(M) which is a measure of the misfit between the calculated and observed data (this is also sometimes referred to as the cost function). The calculated data are simulated with a computer programmed to use the physics governing propagation of the source signal in a medium represented by the current model. The simulation computations may be done by any of several numerical methods including but not limited to finite differences, finite elements or ray tracing. Following Tarantola [Tarantola, 1984], the most commonly employed objective function is the least squares objective function:
S(M)=(u(M)−d)TC−1(u(M)−d), (1)
where T represent the vector transpose operator and:
Local objective function optimization involves:
Local inversion methods are much more efficient than global methods, and are therefore the only practical methods to apply to a large scale inversion problem. Commonly used local objective function inversion methods include steepest descent, conjugate gradients and Newton's method.
It should be noted that computation of ∇MS(M), the second step Algorithm 1, requires computation of the derivative of S(M) with respect to each of the N model parameters mi. When N is very large (roughly more than a thousand), this computation can be extremely time consuming if it had to be performed for each individual model parameter. Fortunately, the adjoint method can be used to efficiently perform this computation for all model parameters at once [Tarantola, 1984]. The adjoint method for the least squares objective function and a gridded model parameterization (M is a vector with each element representing the model's value in a grid cell) is summarized by the following algorithm:
Local objective function optimization is generally much less expensive than global objective function optimization, but requires a more accurate starting model. This more accurate starting model is required, because the objective function often has many minima and local optimization methods will generally find the closest of these minima. The minimum corresponding to the true model is called the global minimum and all other minima are termed local minima. If the starting model is not nearest to the global minimum then a local optimization technique will likely yield an inaccurate inverted model that corresponds to the closest local minimum. This is illustrated in
Several methods have been proposed that attempt to overcome this local minima problem. As mentioned above, many of these methods involve iterating on an altered objective function during the early iterations of the inversion. This altered objective function is chosen to have fewer local minima, but to have a global minimum near the original objective function's global minimum. By this means, the early iterations will produce a model that though inaccurate, is significantly closer to the original objective function's global minimum.
Typically when altering the original objective function, the number of local minima in the altered objective function is inversely related to the distance between the global minima of the original and that of the altered objective function. Thus, it can be advantageous to iterate on a sequence of altered objective functions starting with one having the fewest number of local minima and least accurate global minimum, proceeding through objective functions that have increasing numbers of local minima and increasing accuracy of the global minim, then ending by iterating on the original objective function. Methods that perform initial iterations on altered objective functions having few local minima are often referred to as multi-scale or multi-grid methods, and a flow chart for this technique is illustrated in
The process starts at step 410 by choosing an alteration of the original objective function to optimize. This altered objective function, which depends on the data to be fit 420, is iterated at step 430 until the altered objective function is found to be sufficiently minimized at step 440. (The value is less than a selected maximum or another stopping condition is met.) When that occurs, it is determined at step 450 whether the current inverted model sufficiently minimizes the original objective function. If not, the process returns to step 410 and either choose a new altered objective function or the original objective function to optimize. Eventually, the process ends (460).
Two altered objective functions have been proposed in the literature for solving the local minima problem in seismic full wave field inversion (“FWI”):
The present invention is an improved method for reducing the accuracy requirements on the starting model when performing local objective function optimization.
The present inventive method is applicable to any inversion based on a wave simulator, such as acoustic or seismic inversion. In one of its aspects, the invention is a specific method for altering the objective function which will, for a given inaccuracy in the starting model, reduce the number of iterations needed to find the global minimum. Reducing the number of iterations will correspondingly reduce cost and compute time. The alteration comprises incorporating a time varying filter into the objective function. This filter is chosen so that some statistical measure of the traveltime difference between the measured and computed data is less than some fraction (usually one quarter) of the dominant period of the data. This implies that the filter be a high-cut filter. The filter is further chosen such that the high-cut frequency of this filter decreases with increasing traveltime, making it a time-varying filter.
With reference to the flow chart of
As with any data inversion, the process in practical applications is highly automated, i.e. is performed with the aid of a computer programmed in accordance with the disclosures herein.
The present invention and its advantages will be better understood by referring to the following detailed description and the attached drawings in which:
The invention will be described in connection with example embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use of the invention, this is intended to be illustrative only, and is not to be construed as limiting the scope of the invention. On the contrary, it is intended to cover all alternatives, modifications and equivalents that may be included within the scope of the invention, as defined by the appended claims.
Mathematically, Pratt's criterion can be stated as:
where terror is the traveltime error between the measured and simulated data, and T is the instantaneous period of the measured data as illustrated in
Both the traveltime error and instantaneous period are functions of the source s, the receiver r and the traveltime t. In addition terror is a function of the accuracy of the current model M. In practice Equation 2 may be more restrictive than necessary to ensure convergence of FWI. In particular a less rigid statistical measure than the maximum (e.g., the mean) could be used or a target other than ½ could be used on the right side of the inequality. Thus, in practice, Equation 2 can be replaced by the following:
where stat is some statistic such as the mean, mode or mean squared error, and α is a constant that is approximately equal to one. It is not expected that the results will be very sensitive to the choice of statistic.
Bunks's alteration of the objective function follows a line of reasoning similar to Pratt's criterion by using a high-cut filter to increase T(s,r,t) thus allowing larger values of terror. It is understood that a main cause of local minima is cycle skipping, and longer periods make this less likely. In theory, terror could be reduced instead of limiting the data to lower frequency; however the only way to do this would be to have a more accurate starting model, which is very difficult and maybe impossible. Furthermore the goal of FWI is to produce a more accurate model, so requiring a very accurate starting model reduces the value of FWI. On the other hand Maharramov's layer stripping method avoids large traveltime errors by inverting only a shallow model that propagates only modes that have small traveltimes. Since traveltime errors usually increase with traveltime, limiting the inversion to shorter traveltimes keeps terror within the rule of thumb.
In the present invention, an alternative is proposed to Equation 3's “rule of thumb” that will lead to a new strategy for ensuring convergence. The alternative rule of thumb is as follows:
This rule of thumb differs from Equation 3 in that the statistical analysis is no longer performed with respect to time. After applying the statistical calculations, the numerator and denominator on the left side of Equation 4 are not functions of the source and receiver locations. Equation 4 is equivalent to:
In practice {circumflex over (t)}error is an increasing function of traveltime t, because traveltime errors tend to accumulate as waves propagate through an inaccurate model. Equation 5 suggests that the optimal strategy for multi-scale inversion would be to alter the measured and simulated data so that the average instantaneous period of the seismic data increases with traveltime in a manner similar to {circumflex over (t)}error. This can be accomplished by applying a time-varying high-cut filter to the measured data. The high-cut frequency of this time varying filter should decrease with increasing traveltime. The advantage of this approach over the Bunks technique is that more information (i.e. higher frequency information at small traveltimes) would be used for the early iterations of inversion, thus better constraining the inverted model leading to faster convergence. The advantage of our proposal relative to Maharramov's layer stripping is again that more of the data (i.e. seismic modes propagating through deeper portions of the model) would be used in early iterations, leading to faster convergence.
The function {circumflex over (t)}error depends on both how traveltime errors are measured and also on what statistical measure is applied to these traveltime error measurements. However, it may be expected that this proposed multi-scale inversion strategy will not be strongly sensitive to {circumflex over (t)}error. In fact, rather than put significant effort into measuring {circumflex over (t)}error from the data an alternative strategy would be to assume a simple functional form for {circumflex over (t)}error, such as the linear function {circumflex over (t)}error=β(M0)t where M0 is the initial model. This assumed functional form would then be used to design a time-varying high-cut filter satisfying Equation 5, and inversion using this filter would be attempted. If the inversion does not converge then the value of β would be increased and inversion with this more conservative estimate of {circumflex over (t)}error would be attempted. This testing would continue until a β is found that yields convergence for the initial model.
After finding a β that converges for the initial model, M0, then iteration will produce a current inverted model which is more accurate than the initial model. This increased accuracy implies that β should be reduced as iteration proceeds. This decrease in β implies a corresponding time-varying filter that passes higher frequencies. The inversion proceeds with time-varying filters that pass more and more high frequencies, until all frequencies in the data are used in the final iterations of inversion.
To make practical use of time-varying filters in inversion, it is necessary to be able to compute the adjoint gradient (Algorithm 2) in a manner consistent with the time varying filter. The mathematically most straight forward way of doing this is to implement the time varying filter using the inverse covariance matrix C−1 in Equation 1. To do this, the inverse covariance matrix C−1 would be chosen to be non-diagonal (in the time dimension), with elements equal to a temporal representation of the time varying filter coefficients. Since the filter would be time varying, the filter coefficients vary with time. Example 1 shows an example sub-matrix of C−1, corresponding to a particular source and receiver, that implements a time-varying filter. The first row of this sub-matrix is zero, excepting a one on the diagonal.
This implies that this particular time varying filter performs no filtering at time zero. The off-diagonal elements increase for increasing rows in the sub-matrix, implying that the high cut frequency of this time varying filter decreases with increasing time. Notice that the traveltime error could be viewed as functions of the source or receiver. In this case, this method could be applied in a more general manner than just a simple time varying filter. For example:
In any case the filter (e.g. a space- and time-varying filter, a time-varying dip-filter etc.), can be implemented in the covariance matrix C−1 as explained above, and the computation of the gradient then also proceeds as described above.
A preferred approach might be that if {circumflex over (t)}error (M,t) can be estimated for the current model M, then the time varying filter should be designed to be consistent with Equation 5. Otherwise, it is reasonable to estimate that {circumflex over (t)}error (M,t) is a linear function βt, using an initial guess for the value of β. Again the time varying filter should be designed to be consistent with both this estimate of β and Equation 5. If this inversion converges then the process is completed. If the inversion does not converge, then β would be increased and another inversion would be attempted. This process of increasing β would continue until convergence is achieved.
In practice the matrix C−1 representing the time varying filter would be very sparse, and therefore its application to the data residual in step 3 of algorithm 2 would best be accomplished by application of a time varying filter operator rather than by matrix multiplication. In fact this method of inversion is probably not strongly sensitive to the method used to implement the time varying filter. Therefore, time varying filter could be most efficiently implemented as a windowed time invariant filter. In other words, the data would be separated into time windows, and then different time invariant filters would be applied to the different windows.
The foregoing description is directed to particular embodiments of the present invention for the purpose of illustrating it. It will be apparent, however, to one skilled in the art, that many modifications and variations to the embodiments described herein are possible. For example, the inventive method is not limited to seismic data, and can be applied to any data where multiscale inversion is used to avoid local minima All such modifications and variations are intended to be within the scope of the present invention, as defined by the appended claims.
This application claims the benefit of U.S. Provisional Patent Application 61/318,561, filed Mar. 29, 2010, entitled FULL WAVEFIELD INVERSION USING TIME VARYING FILTERS, the entirety of which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3812457 | Weller | May 1974 | A |
3864667 | Bahjat | Feb 1975 | A |
4159463 | Silverman | Jun 1979 | A |
4168485 | Payton et al. | Sep 1979 | A |
4545039 | Savit | Oct 1985 | A |
4562540 | Devaney | Dec 1985 | A |
4575830 | Ingram et al. | Mar 1986 | A |
4594662 | Devaney | Jun 1986 | A |
4636956 | Vannier et al. | Jan 1987 | A |
4675851 | Savit et al. | Jun 1987 | A |
4686654 | Savit | Aug 1987 | A |
4707812 | Martinez | Nov 1987 | A |
4715020 | Landrum, Jr. | Dec 1987 | A |
4766574 | Whitmore et al. | Aug 1988 | A |
4780856 | Becquey | Oct 1988 | A |
4823326 | Ward | Apr 1989 | A |
4924390 | Parsons et al. | May 1990 | A |
4953657 | Edington | Sep 1990 | A |
4969129 | Currie | Nov 1990 | A |
4982374 | Edington et al. | Jan 1991 | A |
5260911 | Mason et al. | Nov 1993 | A |
5469062 | Meyer, Jr. | Nov 1995 | A |
5583825 | Carrazzone et al. | Dec 1996 | A |
5677893 | de Hoop et al. | Oct 1997 | A |
5715213 | Allen | Feb 1998 | A |
5717655 | Beasley | Feb 1998 | A |
5719821 | Sallas et al. | Feb 1998 | A |
5721710 | Sallas et al. | Feb 1998 | A |
5790473 | Allen | Aug 1998 | A |
5798982 | He et al. | Aug 1998 | A |
5822269 | Allen | Oct 1998 | A |
5838634 | Jones et al. | Nov 1998 | A |
5852588 | de Hoop et al. | Dec 1998 | A |
5878372 | Tabarovsky et al. | Mar 1999 | A |
5920828 | Norris et al. | Jul 1999 | A |
5924049 | Beasley et al. | Jul 1999 | A |
5999488 | Smith | Dec 1999 | A |
5999489 | Lazaratos | Dec 1999 | A |
6014342 | Lazaratos | Jan 2000 | A |
6021094 | Ober et al. | Feb 2000 | A |
6028818 | Jeffryes | Feb 2000 | A |
6058073 | VerWest | May 2000 | A |
6125330 | Robertson et al. | Sep 2000 | A |
6219621 | Hornbostel | Apr 2001 | B1 |
6225803 | Chen | May 2001 | B1 |
6311133 | Lailly et al. | Oct 2001 | B1 |
6317695 | Zhou et al. | Nov 2001 | B1 |
6327537 | Ikelle | Dec 2001 | B1 |
6374201 | Grizon et al. | Apr 2002 | B1 |
6381543 | Guerillot et al. | Apr 2002 | B1 |
6388947 | Washbourne et al. | May 2002 | B1 |
6480790 | Calvert et al. | Nov 2002 | B1 |
6522973 | Tonellot et al. | Feb 2003 | B1 |
6545944 | de Kok | Apr 2003 | B2 |
6549854 | Malinverno et al. | Apr 2003 | B1 |
6574564 | Lailly et al. | Jun 2003 | B2 |
6662147 | Fournier et al. | Dec 2003 | B1 |
6665615 | Van Riel et al. | Dec 2003 | B2 |
6687619 | Moerig et al. | Feb 2004 | B2 |
6687659 | Shen | Feb 2004 | B1 |
6704245 | Becquey | Mar 2004 | B2 |
6714867 | Meunier | Mar 2004 | B2 |
6735527 | Levin | May 2004 | B1 |
6754590 | Moldoveanu | Jun 2004 | B1 |
6766256 | Jeffryes | Jul 2004 | B2 |
6826486 | Malinverno | Nov 2004 | B1 |
6836448 | Robertsson et al. | Dec 2004 | B2 |
6842701 | Moerig et al. | Jan 2005 | B2 |
6859734 | Bednar | Feb 2005 | B2 |
6865487 | Charron | Mar 2005 | B2 |
6865488 | Moerig et al. | Mar 2005 | B2 |
6876928 | Van Riel et al. | Apr 2005 | B2 |
6882938 | Vaage et al. | Apr 2005 | B2 |
6901333 | Van Riel et al. | May 2005 | B2 |
6903999 | Curtis et al. | Jun 2005 | B2 |
6927698 | Stolarczyk | Aug 2005 | B2 |
6944546 | Xiao et al. | Sep 2005 | B2 |
6947843 | Fisher et al. | Sep 2005 | B2 |
6970397 | Castagna et al. | Nov 2005 | B2 |
6977866 | Huffman et al. | Dec 2005 | B2 |
6999880 | Lee | Feb 2006 | B2 |
7046581 | Calvert | May 2006 | B2 |
7050356 | Jeffryes | May 2006 | B2 |
7069149 | Goff et al. | Jun 2006 | B2 |
7072767 | Routh et al. | Jul 2006 | B2 |
7092823 | Lailly et al. | Aug 2006 | B2 |
7110900 | Adler et al. | Sep 2006 | B2 |
7184367 | Yin | Feb 2007 | B2 |
7230879 | Herkenhoff et al. | Jun 2007 | B2 |
7271747 | Baraniuk et al. | Sep 2007 | B2 |
7330799 | Lefebvre et al. | Feb 2008 | B2 |
7337069 | Masson et al. | Feb 2008 | B2 |
7373251 | Hamman et al. | May 2008 | B2 |
7373252 | Sherrill et al. | May 2008 | B2 |
7376046 | Jeffryes | May 2008 | B2 |
7376539 | Lecomte | May 2008 | B2 |
7400978 | Langlais et al. | Jul 2008 | B2 |
7436734 | Krohn | Oct 2008 | B2 |
7480206 | Hill | Jan 2009 | B2 |
7584056 | Koren | Sep 2009 | B2 |
7599798 | Beasley et al. | Oct 2009 | B2 |
7602670 | Jeffryes | Oct 2009 | B2 |
7620534 | Pita et al. | Nov 2009 | B2 |
7646924 | Donoho | Jan 2010 | B2 |
7672194 | Jeffryes | Mar 2010 | B2 |
7675815 | Saenger et al. | Mar 2010 | B2 |
7679990 | Herkenhoff et al. | Mar 2010 | B2 |
7715985 | Van Manen et al. | May 2010 | B2 |
7725266 | Sirgue et al. | May 2010 | B2 |
7835072 | Izumi | Nov 2010 | B2 |
7840625 | Candes et al. | Nov 2010 | B2 |
20020120429 | Ortoleva | Aug 2002 | A1 |
20020183980 | Guillaume | Dec 2002 | A1 |
20040199330 | Routh et al. | Oct 2004 | A1 |
20060235666 | Assa et al. | Oct 2006 | A1 |
20070274155 | Ikelle | Nov 2007 | A1 |
20080175101 | Saenger et al. | Jul 2008 | A1 |
20080306692 | Singer et al. | Dec 2008 | A1 |
20090070042 | Birchwood et al. | Mar 2009 | A1 |
20090164186 | Haase et al. | Jun 2009 | A1 |
20090248308 | Luling | Oct 2009 | A1 |
20090259406 | Khadhraoui et al. | Oct 2009 | A1 |
20100008184 | Hegna et al. | Jan 2010 | A1 |
20100018718 | Krebs et al. | Jan 2010 | A1 |
20100142316 | Keers et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
1 094 338 | Apr 2001 | EP |
1 746 443 | Jan 2007 | EP |
2 390 712 | Jan 2004 | GB |
2 391 665 | Feb 2004 | GB |
WO 2006037815 | Apr 2006 | WO |
WO 2007046711 | Apr 2007 | WO |
WO 2008042081 | Apr 2008 | WO |
WO 2008123920 | Oct 2008 | WO |
WO 2009067041 | May 2009 | WO |
WO 2009117174 | Sep 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20110238390 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61318561 | Mar 2010 | US |