The invention will be further described in conjunction with the attached drawings in which:
With reference now to the drawings in detail, in
In the
More particularly in the
Vertical frame members 16 define the substantially enclosed edge volume 26; insulator band 27, typically an elongated block 32 of e.g. cellular polystyrene, that is formed in or inserted into volume 26 in insulation defining relation. With the insulator band 27 in place, the door 10 is in its panes 14, horizontal frame members 18 and vertical frame members 16 insulated against heat transmission therethrough.
Typically the door 10 is substantially rectangular as shown; vertical and horizontal frame members 16, 18 define a grid 34 having row and column apertures 341, 342 with the glass panes 14 fitted into the apertures. Generally the frame members 16, 18 are made of aluminum, but wood and other materials of sufficient strength and durability such as steel can be used.
The interfitting insulator bands 221, 241 each comprise an insulative structure 28, e.g. a solid, porous, layered, uniform or particulate mass such as a multiple void defining mass of mineral, plastic or cellulosic particles, webs, fibers or other structures offering thermal insulation in an insulative structure that is exposed or closed within the edge volumes 13, 15. Insulator bands 221, 241 comprise cooperating male and female structures 281, 381, respectively. Male structures 281 each have an elongated body 282 that substantially fills and engages one of the opposed recessed edge faces 22 of the open edge volumes 13, 15. Body shoulders 283, 284 extend in a plane P, R while male structure elongated body 282 engages one of the recessed edge faces, edge face 22 of the edge volume 13. Body protuberant center portion 285 is oversized and extends beyond the shoulder plane P, R and the engaged recessed edge faces 22.
The female structures 381 each have an elongated body 382 that substantially fills and engages the other of the opposed recessed edge faces 24 of the edge volumes 13, 15, its shoulders 383, 384 extending in the plane P, R parallel and nearly coincident with plane P, R in the closed condition of door 10. Female elongated body 382 fills and engages the other one of the opposed recessed edge faces, i.e. edge face 24. Female structure body 382 further has a recessive center portion 385 generally congruent with male structure protuberant center 285 and located below the shoulder plane R-R. The congruency of the recessive center portion 385 and protuberant center portion 285 ensure that these portions cam slide on each other, thus centering the latter into the former by a self-camming action. Male and female shoulders generally abut as shown. Recessive center portion 385 is shaped as shown to receive in camming and compressing relation the male structure protuberant center 285 in the abutting condition of the male and female shoulders in insulative relation in the closed condition of the door 10. As best shown in
In general, the insulative structures 281, 381 (and band 27 as applicable) comprise, e.g. a mineral material, such as glass or mineral fiber, beads or other shape providing insulation affording voids in the structures, cellulosic materials such as paper, a plastic material such as sprayed-in, preformed, particulate and/or expanded, blown, foamed or solid synthetic organic plastics, including polyolefins such as polyethylenes, polypropylenes, polystyrenes and copolymers thereof, and polyurethanes in a solid, porous, layered, uniform or particulate mass such as a multiple void defining mass of mineral, plastic or cellulosic particles, webs, fibers or other structures such as and particularly expanded sintered polystyrene beads or other polystyrene foamed or cellular materials that offer thermal insulation in an insulative structure that is exposed in edge volumes 13, 15 or closed within the edge volumes that afford insulative properties per se or through cellular, void-defining structure. The glass pane 14 comprises first and second glass (or plastic) pane panels 141, 142 supported in a frame 144 in dead air/gas-filled insulative space 143-defining relation between the pane panels.
Further, the invention provides a large opening rolling door 10 of the articulating type having multiple horizontally and vertically distributed insulative glass panes 14 supported by a plurality of vertically disposed and horizontally disposed heat transmitting metal frame members 16, 18 arranged in vertical and horizontal regions 161, 181 respectively between adjacent glass panes.
The horizontal frame members 18 have opposed open edge volumes 13, 15 within recessed edge faces 22, 24 in the closed condition of the door 10. Preformed, self-supporting, self-camming and self-compressing and cooperating male and female insulator bands 221, 241 rearwardly interfit, at 42, in compressed relation with the recessed edge faces 22, 24 in the closed condition of the door in insulation defining relation in the horizontal regions 181; the insulator bands forwardly interfit in camming, self-compressing and nesting relation with each other, as shown, in
Further, in these and other embodiments herein and as best shown in
In a further aspect of the invention, and with particular reference to
Thus, in a further embodiment, best shown in
Further in the closed condition of the door 10 bands 221, 241 extend in insulation defining relation in the horizontal region 181; the vertical frame members defining a substantially enclosed volume 26, and an insulator band 261 in region 161 within and substantially filling the volume in insulation defining relation, whereby the door in its panes, horizontal frame members and vertical frame members is insulated against heat transmission therethrough.
In its method aspects, the invention provides a method of insulatively closing a large opening 12 including disposing within the opening a rolling door 10, and insulating the door with multiple horizontally and vertically distributed insulative glass panes 14 supported by a plurality of vertically disposed and horizontally disposed heat transmitting metal frame members 16, 18 arranged in vertical and horizontal regions 161, 181 respectively, between adjacent glass panes, the horizontal frame members having opposed and recessed edge volumes such as edge volumes 13, 15 and recessed edge faces 22, 24, in the closed condition of the door, insulating the horizontal regions with insulative bands 221, 241 such as those within the edge volumes that are preformed, self-supporting, self-camming, self-compressing and cooperating male and female insulative bands that interfit with the recessed edge faces in the closed condition of the door in insulation defining relation in the horizontal regions, the vertical frame members defining a substantially enclosed volume 26, and insulating the vertical regions with insulative structures 27, e.g. an insulator band 261 within the volume in insulation defining relation, whereby to insulate the door in its panes, its horizontal frame members and its vertical frame members against heat transmission therethrough.
The invention thus provides a better single section or multiple section rolling door in which thermally insulative glass panes are used to limit heat transfer and the normally heat-transmissive vertical and horizontal glass-supportive metal frame members are also insulated in the vertical and horizontal regions between the adjacent glass panels, by incorporating insulative material wherever significant heat loss can occur, e.g. in the frame members and configuring the insulative material so incorporated to both effect a good interfitting and self-compressing or closed seal and remain in its mounting location despite expected and unexpected door movements by preforming self-supporting insulative material into a contour that will interfit with the openings, recesses and hollow edge volumes in the frame members that have their edge volumes comprised of opposed open or closed edge faces in the closed condition of the door either in-situ or as self-supporting and cooperating e.g. male and female insulator bands that interfit with the recessed edge volumes and faces in the closed condition of the door in insulation defining relation in the horizontal regions, whereby the door in its the panes and the horizontal frame members against heat transmission therethrough, or conforming insulator bands within closed figure horizontal and vertical edge volumes. Stiffeners are also provided across the door width against buckling and other distortions under wind forces or debris impacts.
This application claims the benefit of U.S. Provisional Application No. 60/808,203, filed May 24, 2006.
Number | Date | Country | |
---|---|---|---|
60808203 | May 2006 | US |