1. Field of the Invention
The present invention relates generally to all optical networks, and more particularly to an all optical network that uses broadcast and select ring architecture with various configurations to protect ring fibers, WDM equipment and client equipment.
2. Description of the Related Art
Broadcast-and-select technique has been used in linear, star, and ring optical networks. In a broadcast-and-select optical network, multiple wavelengths in a fiber are simultaneously broadcast to multiple destinations via one or more optical couplers. At each destination, there is either a tunable filter or a fixed filter/demultiplexer to perform the “select” function.
However, optical ring networks usually require protection on one or all of the following facilities: (i) optical fibers on the ring; (ii) WDM equipment; and (iii) client equipment, including but not limited to SONET/SDH, Gigabit Ethernet, Fiber Channel and the like. There is no method to achieve any of these protections in a broadcast and select optical network.
There is a need for a fully-protected broadcast and select architecture in an all optical fiber ring network. There is a further need for a passive fiber ring network that does not have active elements. When there are in-line optical amplifiers on a ring network, there is a further need for an all optical fiber ring network that has minimal fiber ring lasing or coherent cross-talk on the ring. There is still a further need for an all optical fiber ring network that eliminates in-line amplifier gain saturation on the ring by equalizing all wavelength powers at the input of each in-line amplifier.
Accordingly, an object of the present invention is to provide a broadcast and select architecture in an all optical fiber ring network.
Another object of the present invention is to provide a broadcast and select optical ring network with fiber protection, and/or WDM equipment, protection, and/or client equipment protection.
Another object of the present invention is to provide a passive fiber ring network that does not have active elements.
Yet another object of the present invention is to provide an all optical fiber ring network, which uses inline optical amplifiers, that has minimal fiber ring lasing or coherent cross-talk on the ring.
A further object of the present invention is to provide an all optical fiber ring network that eliminates in-line amplifier gain saturation on the ring, by equalizing the power levels of all wavelengths on the ring at the input of each in-line amplifier.
These and other objects of the present invention are achieved in an all optical network for optical signal traffic that provides at least a first ring with at least a first clockwise fiber, a second counter-clockwise fiber and a plurality of network nodes. Each node has at least a WDM transponder that with a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The line-side receiver includes a fixed or a tunable optical wavelength filter. At least a first add and a first drop broadband couplers are positioned on each fiber. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber.
In another embodiment of the present invention, an all optical network for optical signal traffic provides at least a first ring with at least a first clockwise fiber, a second counter-clockwise fiber and a plurality of network nodes. Each node has at least a WDM transponder that with a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The line-side receiver includes a fixed or a tunable optical wavelength filter. At least a first add and a first drop broadband couplers are positioned on each fiber. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber. A first coupler pair includes first and second couplers in each network node. The first coupler has first and second output ports and a first input port coupled to a line-side transmitter. The first output port is coupled to the clockwise fiber and the second output port is coupled to the counter-clockwise fiber. The first coupler enables the line-side transmitter to launch signals to both the clockwise and counter-clockwise fibers. The second coupler has first and second input ports and a first output port coupled to a line-side receiver. The first input port is coupled to the clockwise fiber and the second input port coupled to the counter-clockwise fiber. The second coupler enables the line-side receiver to receive signals from both the clockwise and counter-clockwise fibers.
In another embodiment of the present invention, an all optical network for optical signal traffic has a first ring with at least a clockwise and a counter-clockwise fiber and a plurality of network nodes. Each node has at least a WDM transponder that includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The line-side receiver includes a fixed or a tunable optical wavelength filter. At least a first add and a first drop broadband couplers are positioned on the first ring. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber. A first switch pair includes first and second switches. The first switch has first and second output ports and a first input port coupled to the line-side transmitter. The first output port is coupled to the clockwise fiber and the second output port is coupled to the counter-clockwise fiber. The first switch enables the line-side transmitter to launch signals to either the clockwise or counter-clockwise fibers. The second switch has first and second input ports and a first output port coupled to the line-side receiver. The first input port is coupled to the clockwise fiber and the second input port is coupled to the counter-clockwise fiber. The second switch enables the line-side receiver to receive signals from either the clockwise or counter-clockwise fiber.
In another embodiment of the present invention, an all optical network for optical signal traffic has a first ring with at least a clockwise and a counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are positioned on each fiber. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber. First and second coupler pairs are provided and each include first and second couplers. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are coupled to a receiver and a transmitter of the working client side equipment respectively. A protection WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively.
In another embodiment of the present invention, an all optical network for optical signal traffic has a first ring with at least a clockwise and a counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are positioned on each fiber. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are coupled to a receiver and a transmitter of the working client side equipment respectively. A protection WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively. At least a first add and a first drop broadband couplers are positioned on each fiber. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber. First and second coupler pairs are provided and each include first and second couplers. The first coupler pair is coupled to the working WDM transponder and the second coupler pair is coupled to the protection WDM transponder. The first coupler has first and second output ports and a first input port coupled to the WDM transponder line-side transmitter. The first output port is coupled to the clockwise fiber and the second output port is coupled to the counter-clockwise fiber. The first coupler enables the WDM transponder line-side transmitter to launch signals to both the clockwise and counter-clockwise fibers. The second coupler has first and second input ports and a first output port coupled to the WDM transponder line-side receiver. The first input port is coupled to the clockwise fiber and the second input port is coupled to the counter-clockwise fiber. The second coupler enables the WDM transponder line-side receiver to receive signals from both the clockwise and counter-clockwise fibers.
In another embodiment of the present invention, an all optical network for optical signal traffic includes a first ring with at least a first clockwise and a second counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are positioned on each fiber. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are connected back to back to a receiver and a transmitter of working client equipment respectively. A protection WDM transponder is coupled to the first ring. The protection WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively. First and second coupler pairs are provided, each with first and second couplers. A 1×2 coupler is configured to launch client optical signals to the WDM working transponder and the WDM protection transponder. A 1×2 coupler is configured to permit client equipment to receive signals from either the working WDM transponder or the protection WDM transponder. A client-side transmitter on the WDM equipment is turned off to reduce coherent cross talk and interference.
In another embodiment of the present invention, an all optical network for optical signal traffic includes a first ring with at least a first clockwise and a second counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are positioned on each fiber. Each coupler has first and second ports for through traffic and a third port for adding or dropping local traffic. The first add and first drop broadband couplers are configured to minimize a pass-through loss in each fiber. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are connected back to back to a receiver and a transmitter of working client equipment respectively. A protection WDM transponder is coupled to the first ring. The protection WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively. First and second coupler pairs are provided, each with first and second couplers. The first coupler pair is coupled to the working WDM transponder and the second coupler pair is coupled to the protection WDM transponder. The first coupler has first and second output ports and a first input port coupled to the WDM transponder line-side transmitter. The first output port is coupled to the clockwise fiber and the second output port is coupled to the counter-clockwise fiber. The first coupler enables the WDM transponder line-side transmitter to launch signals to both the clockwise and counter-clockwise fibers. The second coupler has first and second input ports and a first output port coupled to the WDM transponder line-side receiver. The first input port is coupled to the clockwise fiber and the second input port is coupled to the counter-clockwise fiber. The second coupler enables the WDM transponder line-side receiver to receive signals from both the clockwise and counter-clockwise fibers. A 1×2 coupler is configured to launch client optical signals to the WDM working transponder and the WDM protection transponder. A 1×2 coupler is configured to permit client equipment to receive signals from either the working WDM transponder or the protection WDM transponder. A client-side transmitter on the WDM equipment is turned off to reduce coherent crosstalk and interference.
In another embodiment of the present invention, an all optical network for optical signal traffic has a first ring with at least a first clockwise and a second counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are coupled to each fiber. Each coupler has first and second ports for through traffic and a third port for adding traffic to or from each ring fiber. The first add and first drop broadband couplers are positioned on the first ring and configured to minimize a pass-through loss in the first ring. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are connected back to back to a receiver and a transmitter of working client equipment respectively. A protection WDM transponder is coupled to the first ring. The protection WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively. First and second switch pairs are provided, each with first and second switches.
In another embodiment of the present invention, an all optical network for optical signal traffic has a first ring with at least a first clockwise and a second counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are coupled to each fiber. Each coupler has first and second ports for through traffic and a third port for adding traffic to or from each ring fiber. The first add and first drop broadband couplers are positioned on each fiber, and configured to minimize a pass-through loss in each fiber. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are connected back to back to a receiver and a transmitter of working client equipment respectively. A protection WDM transponder is coupled to the first ring. The protection WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively. First and second switch pairs are provided, each with first and second switches. The first switch pair is coupled to the working WDM transponder and the second switch pair is coupled to the protection WDM transponder. The first switch has first and second output ports and a first input port coupled to the WDM transponder line-side transmitter. The first output port is coupled to the clockwise fiber and the second output port is coupled to the counter-clockwise fiber. The first switch enables the WDM transponder line-side transmitter to launch signals to either the clockwise or counter-clockwise fibers. The second switch has first and second input ports and a first output port coupled to the WDM transponder line-side receiver. The first input port is coupled to the clockwise fiber and the second input port is coupled to the counter-clockwise fiber. The second switch enables the WDM transponder line-side receiver to receive signals from either the clockwise or counter-clockwise fibers.
In another embodiment of the present invention, an all optical network for optical signal traffic has a first ring with at least a first clockwise and a second counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are coupled to each fiber. Each coupler has first and second ports for through traffic and a third port for adding traffic to or from each ring fiber. The first add and first drop broadband couplers are positioned on each fiber and configured to minimize a pass-through loss in each fiber. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are connected back to back to a receiver and a transmitter of working client equipment respectively. A protection WDM transponder is coupled to the first ring. The protection WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively. First and second switch pairs are provided, each including first and second switches. A 1×2 coupler is configured to launch client optical signals to the WDM working transponder and the WDM protection transponder. A 1×2 coupler is configured to permit client equipment to receive signals from either the working WDM transponder or the protection WDM transponder. A client-side transmitter on the WDM equipment is turned off to reduce coherent crosstalk and interference.
In another embodiment of the present invention, an all optical network for optical signal traffic has a first ring with at least a first clockwise and a second counter-clockwise fibers and a plurality of network nodes. At least a first add and a first drop broadband couplers are coupled to each fiber. Each coupler has first and second ports for through traffic and a third port for adding traffic to or from each fiber. The first add and first drop broadband couplers are positioned on each fiber and configured to minimize a pass-through loss in each fiber. A working WDM transponder is coupled to the first ring. The working WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the working WDM transponder are connected back to back to a receiver and a transmitter of working client equipment respectively. A protection WDM transponder is coupled to the first ring. The protection WDM transponder includes a line-side transmitter and a client-side receiver in a first direction, and a line-side receiver and a client-side transmitter in an opposing second direction. The client side transmitter and the client side receiver of the protection WDM transponder are coupled to a receiver and a transmitter of the protection client side equipment respectively. First and second switch pairs are provided, each including first and second switches. The first switch pair is coupled to the working WDM transponder and the second switch pair is coupled to the protection WDM transponder. The first switch has first and second output ports and a first input port coupled to the WDM transponder line-side transmitter. The first output port is coupled to the clockwise fiber and the second output port being is coupled to the counter-clockwise fiber. The first switch enables the WDM transponder line-side transmitter to launch signals to either the clockwise or counter-clockwise fibers. The second switch has first and second input ports and a first output port coupled to the WDM transponder line-side receiver. The first input port is coupled to the clockwise fiber and the second input port is coupled to the counter-clockwise fiber. The second switch enables the WDM transponder line-side receiver to receive signals from either the clockwise or counter-clockwise fibers. A 1×2 coupler is configured to launch client optical signals to the WDM working transponder and the WDM protection transponder. A 1×2 coupler is configured to permit client equipment to receive signals from either the working WDM transponder or the protection WDM transponder. A client-side transmitter on the WDM equipment is turned off to reduce coherent crosstalk and interference.
a) illustrates one embodiment of an all optical network of the present invention that uses couplers in each node to protect fibers in a ring.
b) illustrates recovery of the
a) illustrates one embodiment of an all optical network of the present invention that uses 1×2 switches in each node to protect fibers in a ring.
b) illustrates recovery of the
a) illustrates one embodiment of an all optical network of the present invention that uses couplers in each node to protect client equipment, WDM equipment and fibers in a ring.
b) illustrates recovery of the
a) illustrates one embodiment of an all optical network of the present invention that uses couplers in each node to protect WDM equipment and fibers in a ring.
b) illustrates recovery of the
c) illustrates recovery of the
a) illustrates one embodiment of an all optical network of the present invention that uses switches in each node to protect client side equipment, WDM equipment and fibers in a ring.
b) illustrates recovery of the
c) illustrates recovery of the
a) illustrates one embodiment of an all optical network of the present invention that uses switches in each node to protect WDM equipment and fibers in a ring.
b) illustrates recovery of the
c) illustrates recovery of the
a) illustrates another embodiment of a broadcast and select metro-optical network architecture with a Hub that contains WDM Muxes, demuxes, transceivers or OEO regenerators and the like.
b) illustrates a break in the
a) illustrates one embodiment of an all-passive optical ring network with broadband/band optical couplers on a ring as add-drop units, and narrowband OAD off the ring.
b) illustrates another embodiment of the
c) illustrates another embodiment of the
a) is similar to the
b) is similar to the
c) is the same as
Referring now to
A first coupler pair includes first and second couplers 36 and 38 in each network node 18. First coupler 36 has first and second output ports 40 and 42 respectively, and a first input port 44 coupled to a line-side transmitter 22. First output port 40 is coupled to clockwise fiber 14 and second output port 42 is coupled to counter-clockwise fiber 16. First coupler enables the line-side transmitter to launch signals to both clockwise and counter-clockwise fibers 14 and 16. Second coupler 38 has first and second input ports 46 and 48 and a first output port 50 coupled to a line-side receiver 26. First input port 48 is coupled to clockwise fiber 14 and second input port 46 is coupled to counter-clockwise fiber 16. Second coupler 38 enables the line-side receiver to receive signals from both clockwise and counter-clockwise fibers 14 and 16. Note that in each node, the transmitted wavelengths are always different from the selectively received wavelengths.
b) illustrates recovery of all optical network 10 after fiber 14 or 16 breaks. In hub 52, an optical switch coupled to fiber 14 and an optical switch coupled to fiber 16 are now closed. These optical switches can be 1×1 or 1×2 switches.
In another embodiment of the present invention illustrated in
Line-side receiver 124 includes a fixed or a tunable optical wavelength filter 128. At least a first add and a first drop broadband couplers 130 and 132 are positioned on each fiber 112 or 114. Each coupler has three ports for through traffic and for adding or dropping local traffic. First add and first drop broadband couplers 130 and 132 are configured to minimize a pass-through loss in first ring 110, and to ensure that he power levels of locally added wavelengths can be equalized to those of through-wavelengths.
A first switch pair includes first and second switches 140 and 142. First switch 140 has first and second output ports 144 and 146 and a first input port 148 coupled to line-side transmitter 120. First output port 144 is coupled to clockwise fiber 112 and second output port 146 is coupled to counter-clockwise fiber 114. First switch 140 enables line-side transmitter 120 to launch signals to either clockwise 112 or counter-clockwise fiber 114. Second switch 142 has first and second input ports 150 and 152 and a first output port coupled 154 to line-side receiver 124. First input port 150 is coupled to clockwise fiber 112 and second input port 152 is coupled to counter-clockwise fiber 114. Second switch 142 enables line-side receiver 124 to receive signals from either clockwise or counter-clockwise fibers 112 and 114. In a hub, an optical switch coupled to fiber 112 and an optical switch coupled to fiber 114 are now open. These optical switches can be 1×1 or 1×2 switches.
b) illustrates recovery of all optical network 100 after a break of fiber 112 or 114. In hub 160, an optical switch coupled to fiber 112 and an optical switch coupled to fiber 114 are now closed. Switches 140 and 142 are flipped to transmit and receive signals from a direction where there is no fiber break.
In another embodiment of the present invention illustrated in
A working WDM transponder 228 is coupled to first ring 210. Working WDM transponder 228 includes a line-side transmitter 230 and a client-side receiver 232 in a first direction, and a line-side receiver 234 and a client-side transmitter 236 in an opposing second direction. Client side transmitter 236 and client side receiver 232 of working WDM transponder 228 are coupled to a receiver 238 and a transmitter 240 of the working client side equipment respectively.
A protection WDM transponder 242 is coupled to first ring 210. Protection WDM transponder 242 includes a line-side transmitter 244 and a client-side receiver 246 in a first direction, and a line-side receiver 248 and a client-side transmitter 250 in an opposing second direction. Client side transmitter 250 and the client side receiver 246 of protection WDM transponder 242 are coupled to a receiver 252 and a transmitter 254 of the protection client side equipment respectively.
At most two pairs of couplers are provided on each fiber 212 or 214. Each coupler pair includes a first add and a first drop broadband couplers 218 and 220 are positioned on each fiber. Each coupler 218 and 220 has three ports for through traffic and for adding or dropping local traffic. First add and first drop broadband couplers 218 and 220 are configured to minimize a pass-through loss in either 212 or 214, and to ensure that the power levels of locally added wavelengths can be equalized to those of through-wavelengths.
First coupler pair 211 and 213 is coupled to working WDM transponder 228 and second coupler pair 215 and 217 is coupled to protection WDM transponder 242. First coupler 213 of the first pair has first and second output ports 274 and 276 and a first input port 278 coupled to WDM transponder line-side transmitter 230. First output port 274 is coupled to clockwise fiber 212 and second output port 276 is coupled to counter-clockwise fiber 414.
First coupler 213 of the first pair enables WDM transponder line-side transmitter 230 to launch signals to both clockwise and counter-clockwise fibers 212 and 214. Second coupler 211 of the first pair has first and second input ports 280 and 282 and a first output port 284 coupled to WDM transponder line-side receiver 234. First input port 280 is coupled to counter-clockwise fiber 214 and second input port 282 is coupled to clockwise fiber 212. Second coupler 211 of the first pair enables WDM transponder line-side receiver 234 to receive signals from both clockwise and counter-clockwise fibers 212 and 214. Exactly the same arrangement is also installed for the protection WDM transponder, as shown in
b) illustrates recovery of all optical network 200 after both a break of fiber 212 (or 214) and WDM equipment failure. The two switches in the hub are flipped from open to close position. Now in each node, owing to the fact that signals are received and transmitted in both directions, the fiber break is completely bypassed.
In another embodiment of present invention, illustrated in
A working WDM transponder 328 is coupled to first ring 310. Working WDM transponder 328 includes a line-side transmitter 330 and a client-side receiver 332 in a first direction, and a line-side receiver 334 and a client-side transmitter 336 in an opposing second direction. Client side transmitter 336 and client side receiver 332 of working WDM transponder 328 are connected back to back to a receiver 338 and a transmitter 340 of client equipment respectively.
A protection WDM transponder 342 is coupled to first ring 310. Protection WDM transponder 342 includes a line-side transmitter 344 and a client-side receiver 346 in a first direction, and a line-side receiver 348 and a client-side transmitter 350 in an opposing second direction. Client side transmitter 350 and client side receiver 346 of protection WDM transponder 342 are coupled to the receiver 338 and a transmitter 340 of client side equipment respectively.
First and second coupler pairs 356 and 358 are provided, each with first and second couplers 360 and 362. First coupler pair 356 is coupled to working WDM transponder 328 and second coupler pair 358 is coupled to protection WDM transponder 342. First coupler 360 has first and second output ports 364 and 366 and a first input port coupled 368 to WDM transponder line-side transmitter 330 (or 344). First output port 364 is coupled to clockwise fiber 312 and second output port 366 is coupled to counter-clockwise fiber 314. First coupler 360 enables WDM transponder line-side transmitter 330 (or 344) to launch signals to both clockwise and counter-clockwise fibers 312 and 314. Second coupler 362 has first and second input ports 370 and 372 and a first output port 374 coupled to WDM transponder line-side receiver 334 (or 348). First input port 364 is coupled to clockwise fiber 312 and second input port 366 is coupled to counter-clockwise fiber 314. Second coupler 362 enables WDM transponder line-side receiver 334 (or 348) receive signals from both clockwise and counter-clockwise fibers 312 and 314. Exactly the same arrangement is also installed for the working and protection WDM transponders, as shown in
A 1×2 coupler 376 is configured to launch client optical signals to WDM working transponder 328 and WDM protection transponder 342. A 1×2 coupler 378 is configured to permit client equipment to receive signals from either working WDM transponder 328 or protection WDM transponder 342 because a client-side transmitter on WDM equipment is turned off to reduce coherent crosstalk and interference.
b) illustrates recovery of all optical network 300 after a break of fiber 312 or 314.
In another embodiment of present invention, illustrated in
A working WDM transponder 434 is coupled to first ring 410. Working WDM transponder 434 includes a line-side transmitter 436 and a client-side receiver 438 in a first direction, and a line-side receiver 440 and a client-side transmitter 442 in an opposing second direction. Client side transmitter 442 and client side receiver 438 of working WDM transponder 434 are connected back to back to a receiver 444 and a transmitter 446 of working client equipment respectively. An exactly the same arrangement is installed for protection WDM and client equipment, as shown in
First and second switch pairs 464 and 466 are provided, each with first and second switches 470 and 472. First switch pair 464 is coupled to working WDM transponder 434 and second switch pair 466 is coupled to protection WDM transponder 448. First switch 470 has first and second output-ports 474 and 476 and a first input port 478 coupled to WDM transponder line-side transmitter 436. First output port 474 is coupled to clockwise fiber 412 and second output port 476 is coupled to counter-clockwise fiber 414. First switch 470 enables WDM transponder line-side transmitter 436 to launch signals to either clockwise or counter-clockwise fibers 412 and 414. Second switch 472 has first and second input ports 480 and 482 and a first output port 484 coupled to WDM transponder line-side receiver 440. First input port 480 is coupled to clockwise fiber 414 and second input port 482 is coupled to counter-clockwise fiber 412. Second switch 472 enables WDM transponder line-side receiver 440 to receive signals from either clockwise or counter-clockwise fibers 412 and 414.
b) illustrates recovery of all optical network 400 of SONET equipment when WDM equipment fails. No switches are activated in this case.
In another embodiment of present invention, illustrated in
A working WDM transponder 528 is coupled to first ring 510. Working WDM transponder 528 includes a line-side transmitter 530 and a client-side receiver 532 in a first direction, and a line-side receiver 534 and a client-side transmitter 536 in an opposing second direction. Client side transmitter 536 and client side receiver 532 of working WDM transponder 528 are connected back to back to a receiver 538 and a transmitter 540 of client equipment. The same arrangement is installed at the protection WDM transponder 542, as shown in
First and second switch pairs 556 and 558 are provided, each including first and second switches 560 and 562. A 1×2 coupler 564 is configured to launch client optical signals to WDM working transponder 528 and WDM protection transponder 542. A 1×2 coupler 568 is configured to permit client equipment to receive signals from either working WDM transponder 528 or protection WDM transponder 542, because a client-side transmitter on WDM equipment is turned off to reduce coherent crosstalk and interference.
First switch pair 556 is coupled to working WDM transponder 528 and second switch pair 558 is coupled to protection WDM transponder 542. First switch 560 has first and second output ports 570 and 572 and a first input port 574 coupled to WDM transponder line-side transmitter 530. First output port 570 is coupled to clockwise fiber 512 and second output port 572 is coupled to counter-clockwise fiber 514. First switch 560 enables WDM transponder line-side transmitter 530 to launch signals to either clockwise or counter-clockwise fibers 512 and 514. Second switch 562 has first and second input ports 576 and 578 and a first output 580 port coupled to WDM transponder line-side receiver 534. First input port 576 is coupled to counter-clockwise fiber 514 and second input port 578 is coupled to clockwise fiber 512. Second switch 562 enables WDM transponder line-side receiver 534 to receive signals from either clockwise or counter-clockwise fibers 512 and 514.
b) illustrates recovery of all optical network 500 when WDM equipment fails and no switches are activated.
Referring now to
The embodiments of
In another embodiment of the present invention, illustrated in
In
The embodiment or ring 810 with fibers 812 and 814, illustrated in
a) through 9(c) also illustrate where and how all the wavelengths on ring 810 are equalized. At each node, there are four reference points AW, AE, DW, and DE at the input of fibers 812 and 814, in-line amplifiers. Reference points DW and DE are where all wavelengths arriving from a previous node must be adjusted to a fixed level by using the variable optical attenuator (VOA). This fixed level is to ensure that the drop in-line amplifier is operating in a linear region, and that the amplifier signal-spontaneous noise is not be a limiting factor. Reference points AW and AE are where the power levels of all through- and the locally added wavelengths must be equalized. Locally added wavelength power level can be adjusted by a VOA or a similar device.
If the inter-node distance is very short, the drop amplifier or both amplifiers in each node in each direction can be eliminated. If only the drop amplifier is eliminated, the only reference point needed in each direction then is at the input of the add amplifier. If both amplifiers in each node are eliminated, then the locally added wavelength power should be equalized at the next node where there is an inline amplifier.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiment, but on the contrary it is intended to cover various modifications and equivalent arrangement included within the spirit and scope of the claims which follow.
This application is a continuation-in-part of U.S. Ser. No. 09/990,196 filed Nov. 21, 2001, now U.S. Pat. No. 6,895,184 and of Ser. No. 09/575,811 filed May 22, 2000, now U.S. Pat. No. 6,525,857 all of which applications are fully incorporated herein by reference. In addition, this application claims the benefit of U.S. Provisional Application No. 60/346,786, filed Jan. 7, 2002.
Number | Name | Date | Kind |
---|---|---|---|
5062684 | Clyton et al. | Nov 1991 | A |
5101450 | Olshansky | Mar 1992 | A |
5239401 | Olshansky | Aug 1993 | A |
5301058 | Olshansky | Apr 1994 | A |
5333000 | Hietala et al. | Jul 1994 | A |
5390188 | Dawson et al. | Feb 1995 | A |
5442623 | Wu | Aug 1995 | A |
5479082 | Calvani et al. | Dec 1995 | A |
5509093 | Miller et al. | Apr 1996 | A |
5539559 | Cisneros et al. | Jul 1996 | A |
5546210 | Chraplyvy et al. | Aug 1996 | A |
5596436 | Sargis et al. | Jan 1997 | A |
5600466 | Tsushima et al. | Feb 1997 | A |
5608825 | Ip | Mar 1997 | A |
5617233 | Boncek | Apr 1997 | A |
5625478 | Doerr et al. | Apr 1997 | A |
5663820 | Shiragaki | Sep 1997 | A |
5680235 | Johansson | Oct 1997 | A |
5696614 | Ishikawa et al. | Dec 1997 | A |
5710650 | Dugan | Jan 1998 | A |
5712716 | Vanoli et al. | Jan 1998 | A |
5717795 | Sharma et al. | Feb 1998 | A |
5734493 | Jopson | Mar 1998 | A |
5742416 | Mizrahi | Apr 1998 | A |
5745273 | Jopson | Apr 1998 | A |
5764821 | Glance | Jun 1998 | A |
5778118 | Sridhar | Jul 1998 | A |
5781327 | Brock et al. | Jul 1998 | A |
5784184 | Alexander et al. | Jul 1998 | A |
5786913 | Pfeiffer | Jul 1998 | A |
5796501 | Sotom et al. | Aug 1998 | A |
5822095 | Taga et al. | Oct 1998 | A |
5838475 | Takeyari et al. | Nov 1998 | A |
5870212 | Nathan et al. | Feb 1999 | A |
5880870 | Sieben et al. | Mar 1999 | A |
5896212 | Sotom et al. | Apr 1999 | A |
5917638 | Franck et al. | Jun 1999 | A |
5923449 | Doerr et al. | Jul 1999 | A |
5938309 | Taylor | Aug 1999 | A |
5940197 | Ryu | Aug 1999 | A |
5949273 | Mourick et al. | Sep 1999 | A |
5949560 | Roberts et al. | Sep 1999 | A |
5953141 | Liu et al. | Sep 1999 | A |
5982518 | Mizarahi | Nov 1999 | A |
5982963 | Feng et al. | Nov 1999 | A |
6008931 | Von Helmolt et al. | Dec 1999 | A |
6023359 | Asahi | Feb 2000 | A |
6035080 | Henry et al. | Mar 2000 | A |
6069732 | Koch et al. | May 2000 | A |
6084694 | Milton et al. | Jul 2000 | A |
6088141 | Merli et al. | Jul 2000 | A |
6118566 | Price | Sep 2000 | A |
6130766 | Cao | Oct 2000 | A |
6163553 | Pfeiffer | Dec 2000 | A |
6191854 | Grasso et al. | Feb 2001 | B1 |
6192173 | Solheim et al. | Feb 2001 | B1 |
6195186 | Asahi | Feb 2001 | B1 |
6195351 | Hiscock et al. | Feb 2001 | B1 |
6201909 | Kewitsch et al. | Mar 2001 | B1 |
6208441 | Jones et al. | Mar 2001 | B1 |
6211980 | Terahara | Apr 2001 | B1 |
6222654 | Frigo | Apr 2001 | B1 |
6259836 | Dodds | Jul 2001 | B1 |
6271946 | Chang et al. | Aug 2001 | B1 |
6285479 | Okazaki et al. | Sep 2001 | B1 |
6339663 | Leng et al. | Jan 2002 | B1 |
6351323 | Onaka et al. | Feb 2002 | B1 |
6369923 | Kuo et al. | Apr 2002 | B1 |
6385204 | Hoefelmeyer et al. | May 2002 | B1 |
6404535 | Leight | Jun 2002 | B1 |
6414765 | Li et al. | Jul 2002 | B1 |
6433904 | Swanson et al. | Aug 2002 | B1 |
6466342 | Frigo et al. | Oct 2002 | B1 |
6525857 | Way et al. | Feb 2003 | B1 |
6556744 | Brimacombe et al. | Apr 2003 | B1 |
6560252 | Colbourne et al. | May 2003 | B1 |
6580537 | Chang et al. | Jun 2003 | B1 |
6590681 | Egnell et al. | Jul 2003 | B1 |
6657952 | Shiragaki et al. | Dec 2003 | B1 |
6661976 | Gnauck et al. | Dec 2003 | B1 |
6701085 | Muller | Mar 2004 | B1 |
6788899 | Way | Sep 2004 | B2 |
6891981 | Price et al. | May 2005 | B2 |
6895184 | Way | May 2005 | B2 |
6970655 | Ono et al. | Nov 2005 | B2 |
7003231 | Way et al. | Feb 2006 | B2 |
7024112 | Way | Apr 2006 | B2 |
7068949 | Jung et al. | Jun 2006 | B2 |
7120359 | Way | Oct 2006 | B2 |
7206520 | Way et al. | Apr 2007 | B2 |
20020012148 | Oksanen | Jan 2002 | A1 |
20020015553 | Claringburn et al. | Feb 2002 | A1 |
20020023170 | Seaman et al. | Feb 2002 | A1 |
20020030877 | Way et al. | Mar 2002 | A1 |
20020063928 | Hansen et al. | May 2002 | A1 |
20020067523 | Way | Jun 2002 | A1 |
20020080440 | Li et al. | Jun 2002 | A1 |
20020114034 | Way | Aug 2002 | A1 |
20020126350 | Sato et al. | Sep 2002 | A1 |
20020135838 | Way | Sep 2002 | A1 |
20030025961 | Way | Feb 2003 | A1 |
20030169470 | Alagar et al. | Sep 2003 | A1 |
20040208561 | Kinoshita et al. | Oct 2004 | A1 |
20050018600 | Tornar | Jan 2005 | A1 |
20050025490 | Aoki et al. | Feb 2005 | A1 |
20050078965 | Kim et al. | Apr 2005 | A1 |
20050158047 | Way et al. | Jul 2005 | A1 |
20050185969 | Moeller et al. | Aug 2005 | A1 |
20050201762 | Moeller et al. | Sep 2005 | A1 |
20050286908 | Way | Dec 2005 | A1 |
20060051092 | Way | Mar 2006 | A1 |
20060140643 | Way et al. | Jun 2006 | A1 |
20060269295 | Way | Nov 2006 | A1 |
20060275035 | Way | Dec 2006 | A1 |
20070086332 | Way et al. | Apr 2007 | A1 |
Number | Date | Country |
---|---|---|
198 28 614 | Dec 1999 | DE |
WO9632787 | Oct 1996 | WO |
WO0167647 | Sep 2001 | WO |
WO0167648 | Sep 2001 | WO |
WO0223772 | Mar 2002 | WO |
WO02058301 | Jul 2002 | WO |
WO2004002024 | Dec 2003 | WO |
WO 2004064259 | Jul 2004 | WO |
WO2006002080 | Jan 2006 | WO |
WO2006119375 | Nov 2006 | WO |
WO2007044939 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20030180047 A1 | Sep 2003 | US | |
20060275034 A9 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
60346786 | Jan 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09990196 | Nov 2001 | US |
Child | 10338088 | US | |
Parent | 09575811 | May 2000 | US |
Child | 09990196 | US |