The contents of the text file submitted electronically herewith are incorporated herein by reference in their entirety: A computer readable format copy of the Sequence Listing (filename: “NOVV—003—02_US_SeqList.txt” date recorded: Mar. 11, 2013, file size 9 kb).
Influenza virus is a member of Orthomyxoviridae family (for review, see Murphy and Webster, 1996). There are three subtypes of influenza viruses designated A, B, and C. The influenza virion contains a segmented negative-sense RNA genome. The influenza virion includes the following proteins: hemagglutinin (HA), neuraminidase (NA), matrix (M1), proton ion-channel protein (M2), nucleoprotein (NP), polymerase basic protein 1 (PB1), polymerase basic protein 2 (PB2), polymerase acidic protein (P A), and nonstructural protein 2 (NS2) proteins. The HA, NA, M1, and M2 are membrane associated, whereas NP, PB 1, PB2, P A, and NS2 are nucleocapsid associated proteins. The NS 1 is the only nonstructural protein not associated with virion particles but specific for influenza-infected cells. The M1 protein is the most abundant protein in influenza particles. The HA and NA proteins are envelope glycoproteins, responsible for virus attachment and penetration of the viral particles into the cell, and the sources of the major immunodominant epitopes for virus neutralization and protective immunity. Both HA and NA proteins are considered the most important components for prophylactic influenza vaccines.
Influenza virus infection is initiated by the attachment of the virion surface HA protein to a sialic acid-containing cellular receptor (glycoproteins and glycolipids). The NA protein mediates processing of the sialic acid receptor, and virus penetration into the cell depends on HA-dependent receptor-mediated endocytosis. In the acidic confines of internalized endosomes containing an influenza virion, the HA2 protein undergoes conformational changes that lead to fusion of viral and cell membranes and virus uncoating and M2-mediated release of M1 proteins from nucleocapsid-associated ribonucleoproteins (RNPs), which migrate into the cell nucleus for viral RNA synthesis. Antibodies to HA proteins prevent virus infection by neutralizing virus infectivity, whereas antibodies to NA proteins mediate their effect on the early steps of viral replication.
Inactivated influenza A and B virus vaccines are licensed currently for parenteral administration. These trivalent vaccines are produced in the allantoic cavity of embryonated chick eggs, purified by rate zonal centrifugation or column chromatography, inactivated with formalin or β-propiolactone, and formulated as a blend of the two strains of type A and the type B strain of influenza viruses in circulation among the human population for a given year. The available commercial influenza vaccines are whole virus (WV) or subvirion (SV; split or purified surface antigen) virus vaccines. The WV vaccine contains intact, inactivated virions. SV vaccines treated with solvents such as tri-n-butyl phosphate (Flu-Shield, Wyeth-Lederle) contain nearly all of the viral structural proteins and some of the viral envelopes. SV vaccines solubilized with Triton X-100 (Fluzone, Connaught; Fluvirin, Evans) contain aggregates of HA monomers, NA, and NP principally, although residual amounts of other viral structural proteins are present. A potential cold-adapted live attenuated influenza virus vaccine (FluMist, MedImmune) was granted marketing approval recently by the FDA for commercial usage as an intranasally delivered vaccine indicated for active immunization and the prevention of disease caused by influenza A and B viruses in healthy children and adolescents, 5-17 years of age and healthy adults 18-49 years of age.
Several recombinant products have been developed as recombinant influenza vaccine candidates. These approaches have focused on the expression, production, and purification of influenza type A HA and NA proteins, including expression of these proteins using baculovirus infected insect cells (Crawford et al, 1999; Johansson, 1999; Treanor et al., 1996), viral vectors (Pushko et al., 1997; Berglund et al, 1999), and DNA vaccine constructs (Olsen et al., 1997).
Crawford et al. (1999) demonstrated that influenza HA expressed in baculovirus infected insect cells is capable of preventing lethal influenza disease caused by avian H5 and H7 influenza subtypes. At the same time, another group demonstrated that baculovirus-expressed influenza HA and NA proteins induce immune responses in animals superior to those induced by a conventional vaccine (Johansson et al., 1999). Immunogenicity and efficacy of baculovirus-expressed hemagglutinin of equine influenza virus was compared to a homologous DNA vaccine candidate (Olsen et al., 1997). Taken together, the data demonstrated that a high degree of protection against influenza virus challenge can be induced with recombinant HA or NA proteins, using various experimental approaches and in different animal models.
Lakey et al. (1996) showed that a baculovirus-derived influenza HA vaccine was well-tolerated and immunogenic in human volunteers in a Phase I dose escalation safety study. However, results from Phase II studies conducted at several clinical sites in human volunteers vaccinated with several doses of influenza vaccines comprised of HA and/or NA proteins indicated that the recombinant subunit protein vaccines did not elicit protective immunity [G. Smith, Protein Sciences; M. Perdue, USDA, Personal Communications]. These results indicated that conformational epitopes displayed on the surface of HA and NA peplomers of infectious virions were important in the elicitation of neutralizing antibodies and protective immunity.
Regarding the inclusion of other influenza proteins in recombinant influenza vaccine candidates, a number of studies have been carried out, including the experiments involving influenza nucleoprotein, NP, alone or in combination with M1 protein (Ulmer et al., 1993; Ulmer et al., 1998; Zhou et al., 1995; Tsui et al., 1998). These vaccine candidates, which were composed of quasi-invariant inner virion proteins, elicited a broad spectrum immunity that was primarily cellular (both CD4+ and CD8+ memory T cells). These experiments involved the use of the DNA or viral genetic vectors. Relatively large amounts of injected DNA were needed, as results from experiments with lower doses of DNA indicated little or no protection (Chen et al., 1998). Hence, further preclinical and clinical research may be required to evaluate whether such DNA-based approaches involving influenza NP and M1 are safe, effective, and persistent.
Recently, in an attempt to develop more effective vaccines for influenza, particulate proteins were used as carriers of influenza M2 protein epitopes. The rationale for development of an M2-based vaccine was that in animal studies protective immunity against influenza was elicited by M2 proteins (Slepushkin et al., 1995). Neirynck et al. (1999) used a 23-aa long M2 transmembrane domain as an amino terminal fusion partner with the hepatitis B virus core antigen (HBcAg) to expose the M2 epitope(s) on the surface of HBcAg capsid-like particles. However, in spite of the fact that both full-length M2 protein and M2-HBcAg VIP induced detectable antibodies and protection in mice, it was unlikely that future influenza vaccines would be based exclusively on the M2 protein, as the M2 protein was present at low copy number per virion, was weakly antigenic, was unable to elicit antibodies that bound free influenza virions, and was unable to block virus attachment to cell receptors (i.e. virus neutralization).
Since previous research has shown that the surface influenza glycoproteins, HA and NA, are the primary targets for elicitation of protective immunity against influenza virus and that M1 provides a conserved target for cellular immunity to influenza, a new vaccine candidate may include these viral antigens as a protein macromolecular particle, such as virus-like particles (VLPs). Further, the particle with these influenza antigens may display conformational epitopes that elicit neutralizing antibodies to multiple strains of influenza viruses.
Several studies have demonstrated that recombinant influenza proteins could self-assemble into VLPs in cell culture using mammalian expression plasmids or baculovirus vectors (Gomez-Puertas et al., 1999; Neumann et al., 2000; Latham and Galarza, 2001). Gomez-Puertas et al. (1999) demonstrated that efficient formation of influenza VLP depends on the expression levels of viral proteins. Neumann et al. (2000) established a mammalian expression plasmid-based system for generating infectious influenza virus-like particles entirely from cloned cDNAs. Latham and Galarza (2001) reported the formation of influenza VLPs in insect cells infected with recombinant baculovirus co-expressing HA, NA, M1, and M2 genes. These studies demonstrated that influenza virion proteins may self-assemble upon co-expression in eukaryotic cells.
According to the present invention, macromolecular protein structures are provided that comprise avian influenza virus type A H9N2 coding sequences for HA (GenBank Accession No. AJ404626), NA (GenBank Accession No. AJ404629), M1 (GenBank Accession No. AJ278646), M2 (GenBank Accession No. AF255363), and NP (GenBank Accession No. AF255742) proteins and that comprise human influenza virus type A H3N2 coding sequences for HA (GenBank Accession No. AJ311466) and for NA (GenBank Accession No. AJ291403). The genomic RNA encoding these influenza viral genes may be isolated from influenza virus isolates or from tissues of influenza-infected organisms. Each of these coding sequences from the same or different strains or types of influenza virus is cloned downstream of transcriptional promoters within expression vectors and are expressed in cells.
Thus, the invention provides a macromolecular protein structure containing (a) a first influenza virus M1 protein and (b) an additional structural protein, which may include a second or more influenza virus M1 protein; a first, second or more influenza virus HA protein; a first, second, or more influenza virus NA protein; and a first, second, or more influenza virus M2 protein. If the additional structural protein is not from a second or more influenza virus M1 protein, then both or all members of the group, e.g., first and second influenza M2 virus proteins are included. As such, there is provided a functional influenza protein structure, including a subviral particle, VLP, or capsomer structure, or a portion thereof, a vaccine, a multivalent vaccine, and mixtures thereof consisting essentially of influenza virus structural proteins produced by the method of the invention. In a particularly preferred embodiment, the influenza macromolecular protein structure includes influenza virus HA, NA, and M1 proteins that are the expression products of influenza virus genes cloned as synthetic fragments from a wild type virus.
The macromolecular protein structure may also include an additional structural protein, for example, a nucleoprotein (NP), membrane proteins from species other than noninfluenza viruses and a membrane protein from a non-influenza source, which are derived from avian or mammalian origins and different subtypes of influenza virus, including subtype A and B influenza viruses. The invention may include a chimeric macromolecular protein structure, which includes a portion of at least one protein having a moiety not produced by influenza virus.
Prevention of influenza may be accomplished by providing a macromolecular protein structure that may be self-assembled in a host cell from a recombinant construct. The macromolecular protein structure of the invention has the ability to self-assemble into homotypic or heterotypic virus-like particles (VLPs) that display conformational epitopes on HA and NA proteins, which elicit neutralizing antibodies that are protective. The composition may be a vaccine composition, which also contains a carrier or diluent and/or an adjuvant. The functional influenza VLPs elicit neutralizing antibodies against one or more strains or types of influenza virus depending on whether the functional influenza VLPs contain HA and/or NA proteins from one or more viral strains or types. The vaccine may include influenza virus proteins that are wild type influenza virus proteins. Preferably, the structural proteins containing the influenza VLP, or a portion of thereof, may be derived from the various strains of wild type influenza viruses. The influenza vaccines may be administered to humans or animals to elicit protective immunity against one or more strains or types of influenza virus.
The macromolecular protein structures of the invention may exhibit hemagglutinin activity and/or neuraminidase activity.
The invention provides a method for producing a VLP derived from influenza by constructing a recombinant construct that encodes influenza structural genes, including M1, HA, and at least one structural protein derived from influenza virus. A recombinant construct is used to transfect, infect, or transform a suitable host cell with the recombinant baculovirus. The host cell is cultured under conditions which permit the expression of M1, HA and at least one structural protein derived from influenza virus and the VLP is formed in the host cell. The infected cell media containing a functional influenza VLP is harvested and the VLP is purified. The invention also features an additional step of co-transfecting, co-infecting or co-transforming the host cell with a second recombinant construct which encodes a second influenza protein, thereby incorporating the second influenza protein within the VLP. Such structural proteins may be derived from influenza virus, including NA, M2, and NP, and at least one structural protein is derived from avian or mammalian origins. The structural protein may be a subtype A and B influenza viruses. According to the invention, the host cell may be a eukaryotic cell. In addition, the VLP may be a chimeric VLP.
The invention also features a method of formulating a drug substance containing an influenza VLP by introducing recombinant constructs encoding influenza viral genes into host cells and allowing self-assembly of the recombinant influenza viral proteins into a functional homotypic or heterotypic VLP in cells. The influenza VLP is isolated and purified and a drug substance is formulated containing the influenza VLP. The drug substance may further include an adjuvant. In addition, the invention provides a method for formulating a drug product, by mixing such a drug substance containing an influenza VLP with a lipid vesicle, i.e., a non-ionic lipid vesicle. Thus, functional homotypic or heterotypic VLPs may bud as enveloped particles from the infected cells. The budded influenza VLPs may be isolated and purified by ultracentrifugation or column chromatography as drug substances and formulated alone or with adjuvants such as Novasomes®, a product of Novavax, Inc., as drug products such as vaccines. Novasomes®, which provide an enhanced immunological effect, are further described in U.S. Pat. No. 4,911,928, which is incorporated herein by reference.
The invention provides a method for detecting humoral immunity to influenza virus infection in a vertebrate by providing a test reagent including an effective antibody-detecting amount of influenza virus protein having at least one conformational epitope of an influenza virus macromolecular structure. The test reagent is contacted with a sample of bodily fluid from a vertebrate to be examined for influenza virus infection. Influenza virus specific antibodies contained in the sample are allowed to bind to the conformational epitope of an influenza virus macromolecular structure to form antigen-antibody complexes. The complexes are separated from unbound complexes and contacted with a detectably labeled immunoglobulin-binding agent. The amount of the detectably labeled immunoglobulin-binding agent that is bound to the complexes is determined.
Influenza virus may be detected in a specimen from an animal or human suspected of being infected with the virus by providing antibodies, which have a detectable signal producing label, or are attached to a detectably labeled reagent, having specificity to at least one conformational epitope of the particle of the influenza virus. The specimen is contacted with antibodies and the antibodies are allowed to bind to the influenza virus. The presence of influenza virus in the specimen is determined by means of the detectable label.
The invention provides methods for treatment, prevention, and generating a protective immune response by administering to a vertebrate an effective amount of the composition of the invention.
Alternatively, the influenza VLP drug substance may be formulated as laboratory reagents used for influenza virus structure studies and clinical diagnostic assays. The invention also provides a kit for treating influenza virus by administering an effective amount of a composition of the invention and directions for use.
As used herein, the term “baculovius,” also known as baculoviridae, refers to a family of enveloped DNA viruses of arthropods, members of which may be used as expression vectors for producing recombinant proteins in insert cell cultures. The virion contains one or more rod-shaped nucleocapsids containing a molecule of circular supercoiled double-stranded DNA (Mr 54×106−154×106). The virus used as a vector is generally Autographa californica nuclear polyhedrosis virus (NVP). Expression of introduced genes is under the control of the strong promoter that normally regulates expression of the polyhedron protein component of the large nuclear inclusion in which the viruses are embedded in the infected cells.
As used herein, the term “derived from” refers to the origin or source, and may include naturally occurring, recombinant, unpurified, or purified molecules. The proteins and molecules of the present invention may be derived from influenza or non-influenza molecules.
As used herein the term “first” influenza virus protein, i.e., a first influenza virus M1 protein, refers to a protein, such as M1, HA, NA, and M2, that is derived from a particular strain of influenza virus. The strain or type of the first influenza virus differs from the strain or type of the second influenza virus protein. Thus, “second” influenza virus protein, i.e., the second influenza virus M1 protein, refers to a protein, such as M1, HA, NA, and M2, that is derived from a second strain of influenza virus, which is a different strain or type than the first influenza virus protein.
As used herein, the term “hemagglutinin activity” refers to the ability of HA-containing proteins, VLPs, or portions thereof to bind and agglutinate red blood cells (erythrocytes).
As used herein, the term “neuraminidase activity” refers to the enzymatic activity of NA-containing proteins, VLPs, or portions thereof to cleave sialic acid residues from substrates including proteins such as fetuin.
As used herein, the term “heterotypic” refers to one or more different types or strains of virus.
As used herein, the term “homotypic” refers to one type or strain of virus.
As used herein, the term “macromolecular protein structure” refers to the construction or arrangement of one or more proteins.
As used herein, the term “multivalent” vaccine refers to a vaccine against multiple types or strains of influenza virus.
As used herein, the term “non-influenza” refers to a protein or molecule that is not derived from influenza virus.
As used herein, the term “vaccine” refers to a preparation of dead or weakened pathogens, or of derived antigenic determinants, that is used to induce formation of antibodies or immunity against the pathogen. A vaccine given to provide immunity to the disease, for example, influenza, which is caused by influenza viruses. The present invention provides vaccine compositions that are immunogenic and provide protection.
Influenza remains a pervasive public health concern despite the availability of specific inactivated virus vaccines that are 60-80% effective under optimal conditions. When these vaccines are effective, illness is usually averted by preventing viral infection. Vaccine failure can occur as a result of accumulated antigenic differences (antigenic shift and antigenic drift). For example, avian influenza virus type A H9N2 co-circulated with human influenza virus type A Sydney/97 H3N2 in pigs and led to genetic reassortment and emergence of new strains of human influenza virus with pandemic potential (Peiris et al., 2001). In the event of such antigenic shift, it is unlikely that current vaccines would provide adequate protection.
Another reason for the paucity of influenza vaccine programs is the relatively short persistence of immunity elicited by the current vaccines. Further inadequacy of influenza control measures reflects restricted use of current vaccines because of vaccine reactogenicity and side effects in young children, elderly, and people with allergies to components of eggs, which are used in manufacturing of commercially licensed inactivated virus influenza vaccines.
Additionally, inactivated influenza virus vaccines often lack or contain altered HA and NA conformational epitopes, which elicit neutralizing antibodies and play a major role in protection against disease. Thus, inactivated viral vaccines, as well as some recombinant monomeric influenza subunit protein vaccines, deliver inadequate protection. On the other hand, macromolecular protein structures, such as capsomers, subviral particles, and/or VLPs, include multiple copies of native proteins exhibiting conformational epitopes, which are advantageous for optimal vaccine immunogenicity.
The present invention describes the cloning of avian influenza A/Hong Kong/1073/99 (H9N2) virus HA, NA, and M1 genes into a single baculovirus expression vector alone or in tandem and production of influenza vaccine candidates or reagents comprised of recombinant influenza structural proteins that self-assemble into functional and immunogenic homotypic macromolecular protein structures, including subviral influenza particles and influenza VLP, in baculovirus-infected insect cells.
The present invention further features the cloning of human influenza A/Sydney/5/94 (H3N2) virus HA, NA, M1, M2, and NP genes into baculovirus expression vectors and production influenza vaccine candidates or reagents comprised of influenza structural proteins that self-assemble into functional and immunogenic homotypic macromolecular protein structures, including subviral influenza particles and influenza VLP, in baculovirus-infected insect cells.
In addition, the instant invention describes the cloning of the HA gene of human influenza A/Sydney/5/94 (H3N2) virus and the HA, NA, and M1 genes of avian influenza A/Hong Kong/1073/99 (H9N2) into a single baculovirus expression vector in tandem and production influenza vaccine candidates or reagents comprised of influenza structural proteins that self-assemble into functional and immunogenic heterotypic macromolecular protein structures, including subviral influenza particles and influenza VLP, in baculovirus-infected insect cells.
This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures and the Sequence Listing, are incorporated herein by reference.
Materials and Methods
Avian influenza A/Hong Kong/1073/99 (H9N2) virus HA, NA, and M1 genes were expressed in Spodoptera frugiperda cells (Sf-9S cell line; ATCC PTA-4047) using the baculovirus bacmid expression system. The HA, NA, and M1 genes were synthesized by the reverse transcription and polymerase chain reaction (PCR) using RNA isolated from avian influenza A/Hong Kong/1073/99 (H9N2) virus (
Finally, a restriction DNA fragment from the pHAM plasmid that encoded both the HA and M1 expression cassettes was cloned into the pNA plasmid. This resulted in the plasmid pNAHAM encoding avian influenza A/Hong Kong/1073/99 (H9N2) virus HA, NA, and M1 genes (
Plasmid pNAHAM was used to construct a recombinant baculovirus containing influenza virus NA, HA, and M1 genes integrated into the genome, each downstream from a separate baculovirus polyhedrin promoter. Infection of permissive Sf-9S insect cells with the resulting recombinant baculovirus resulted in co-expression of these three influenza genes in each Sf-9S cell infected with such recombinant baculovirus.
Results
The expression products in infected Sf-9S cells were characterized at 72 hr postinfection (p.i.) by SDS-PAGE analysis, Coomassie blue protein staining, and Western immunoblot analysis using HA- and M1-specific antibodies (
The culture medium from the Sf-9S cells infected with recombinant baculovirus expressing A/Hong Kong/1073/99 (H9N2) HA, NA, and M1 proteins was also probed for influenza proteins. The clarified culture supernatants were subjected to ultracentrifugation at 27,000 rpm in order to concentrate high-molecular protein complexes of influenza virus, such as subviral particles, VLP, complexes of VLP, and possibly, other self-assembled particulates comprised of influenza HA, NA, and M1 proteins. Pelleted protein products were resuspended in phosphate-buffered saline (PBS, pH 7.2) and further purified by ultracentrifugation on discontinuous 20-60% sucrose step gradients. Fractions from the sucrose gradients were collected and analyzed by SDS-PAGE analysis, Western immunoblot analysis, and electron microscopy.
Influenza HA and M1 proteins of the expected molecular weights were detected in multiple sucrose density gradient fractions by Coomassie blue staining and Western immunoblot analysis (
The presence of high-molecular VLPs was confirmed by gel filtration chromatography. An aliquot from sucrose density gradient fractions containing influenza viral proteins was loaded onto a Sepharose CL-4B column for fractionation based on mass. The column was calibrated with dextran blue 2000, dextran yellow, and vitamin B12 (Amersham Pharmacia) with apparent molecular weights of 2,000,000; 20,000; and 1,357 daltons, respectively, and the void volume of the column was determined. As expected, high-molecular influenza viral proteins migrated in the void volume of the column, which was characteristic of macromolecular proteins, such as virus particles. Fractions were analyzed by Western immunoblot analysis to detect influenza and baculovirus proteins. For example, M1 proteins were detected in the void volume fractions, which also contained baculovirus proteins (
The morphology of influenza VLPs and proteins in sucrose gradient fractions was elucidated by electron microscopy. For negative-staining electron microscopy, influenza proteins from two sucrose density gradient fractions were fixed with 2% glutaraldehyde in PBS, pH 7.2. Electron microscopic examination of negatively-stained samples revealed the presence of macromolecular protein complexes or VLPs in both fractions. These VLPs displayed different sizes including diameters of approximately 60 and 80 nm and morphologies (spheres). Larger complexes of both types of particles were also detected, as well as rod-shaped particles (
To characterize the functional properties of the purified influenza A/Hong Kong/1073/99 (H9N2) VLPs, samples were tested in a hemagglutination assay (
Additionally, a neuraminidase enzyme assay was performed on samples of purified H9N2 VLPs. The amount of neuraminidase activity in sucrose density gradient fractions was determined using fetuin as a substrate. In the neuraminidase assay, the neuraminidase cleaved sialic acid from substrate molecules to release sialic acid for measurement. Arsenite reagent was added to stop enzyme activity. The amount of sialic acid liberated was determined chemically with thiobarbituric acid that produces a pink color that was proportional to the amount of free sialic acid. The amount of color (chromophor) was measured spectrophotometrically at wavelength 549 nm. Using this method, neuraminidase activity was demonstrated in sucrose gradient fractions containing influenza VLPs (
The results from the above analyses and assays indicated that expression of influenza A/Hong Kong/1073/99 (H9N2) HA, NA, and M1 proteins was sufficient for the self-assembly and transport of functional VLPs from baculovirus-infected insect cells. Since these influenza VLPs represented self-assembled influenza structural proteins and demonstrated functional and biochemical properties similar to those of wild type influenza virus, these influenza VLPs conserved important structural conformations including surface epitopes necessary for effective influenza vaccines.
It is an object of the present invention to provide synthetic nucleic acid sequences capable of directing production of recombinant influenza virus proteins. Such synthetic nucleic acid sequences were obtained by reverse transcription and polymerase chain reaction (PCR) methods using influenza virus natural genomic RNA isolated from the virus. For the purpose of this application, nucleic acid sequence refers to RNA, DNA, cDNA or any synthetic variant thereof which encodes the protein.
Avian influenza A/Hong Kong/1073/99 (H9N2) virus was provided by Dr. K. Subbarao (Centers for Disease Control, Atlanta, Ga., USA). Viral genomic RNA was isolated by the acid phenol RNA extraction method under Biosafety Level 3 (BSL3) containment conditions at CDC using Trizol LS reagent (Invitrogen, Carlsbad, Calif. USA). cDNA molecules of the viral RNAs were obtained by reverse transcription using MuLV reverse transcriptase (InVitrogen) and PCR using oligonucleotide primers specific for HA, NA, and M1 proteins and Taq I DNA polymerase (InVitrogen) (Table 1). The PCR fragments were cloned into the bacterial subcloning vector, pCR2.1TOPO (InVitrogen), between Eco RI sites that resulted in three recombinant plasmids, containing the HA, NA, and M1 cDNA clones.
Influenza A/Sydney/5/94 (H3N2) virus was obtained from Dr. M. Massare (Novavax, Inc., Rockville, Md.). Viral genomic RNA was isolated by the RNA acid phenol extraction method under BSL2 containment conditions at Novavax, Inc. using Trizol LS reagent (Invitrogen). cDNA molecules of the viral RNAs were obtained by reverse transcription and PCR using oligonucleotide primers specific for HA, NA, M1, M2, and NP proteins (Table 2). The PCR fragments were cloned into the bacterial subcloning vector, pCR2.1TOPO, between Eco RI sites that resulted in five recombinant plasmids, containing the HA, NA, M1, M2, and NP cDNA clones.
From the pCR2.1TOPO-based plasmids, the HA, NA, or M1 genes were subcloned into pFastBac1 baculovirus transfer vector (InVitrogen) within the polyhedron locus and Tn7 att sites and downstream of the baculovirus polyhedrin promoter and upstream of the polyadenylation signal sequence. The viral genes were ligated with T4 DNA ligase. For the HA gene, a Bam HI-Kpn I DNA fragment from pCR2.1TOPO-HA was inserted into Bam HI-Kpn I digested pFastBac1 plasmid DNA. For the NA gene, an Eco RI DNA fragment from pCR2.1TOPO-NA was inserted into Eco RI digested pFastBac1 plasmid DNA. For the MI gene, an Eco RI DNA fragment from pCR2.1TOPO-M1 was inserted into Eco RI digested pFastBac1 plasmid DNA. Competent E. coli DH5α=bacteria (InVitrogen) were transformed with these DNA ligation reactions, transformed colonies resulted, and bacterial clones isolated. The resulting pFastBac1-based plasmids, pFastBac1-HA, pFastBac1-NA, and pFastBac1-M1 were characterized by restriction enzyme mapping on agarose gels (
From the pCR2.1TOPO-based plasmids, the HA, NA, M1, M2, and NP genes were subcloned into pFastBac1 baculovirus transfer vector within the polyhedron locus and Tn7 att sites and downstream of the baculovirus polyhedrin promoter and upstream of the polyadenylation signal sequence. The viral genes were ligated with T4 DNA ligase. For the HA gene, a Bam HI-Kpn I DNA fragment from pCR2.1TOPO-hHA3 was inserted into Bam HI-Kpn I digested pFastBac1 plasmid DNA. For the NA gene, an Eco RI DNA fragment from pCR2.1TOPO-hNA was inserted into Eco RI digested pFastBac1 plasmid DNA. For the M1 gene, an Eco RI DNA fragment from pCR2.1TOPO-hM1 was inserted into Eco RI digested pFastBac1 plasmid DNA. For the M2 gene, an Eco RI DNA fragment from pCR2.1TOPO-hM2 was inserted into Eco RI digested pFastBac1 plasmid DNA. For the NP gene, an Eco RI DNA fragment from pCR2.1TOPO-hNP was inserted into Eco RI digested pFastBac1 plasmid DNA. Competent E. coli DH5α=bacteria were transformed with these DNA ligation reactions, transformed colonies resulted, and bacterial clones isolated. The resulting pFastBac1-based plasmids, pFastBac1-hHA3, pFastBac1-hNA2, pFastBac1-hM1, pFASTBAC1-hM2, and pFASTBAC1-hNP were characterized by restriction enzyme mapping on agarose gels. The nucleotide sequences of the cloned genes were determined by automated DNA sequencing. DNA sequence analysis showed that the cloned influenza HA, NA, M1, M2, and NP genes were identical to the nucleotide sequences for these genes as published previously.
In order to construct pFastBac1-based bacmid transfer vectors expressing multiple influenza A/Hong Kong/1073/99 (H9N2) virus genes, initially a Sna BI-Hpa I DNA fragment from pFastBac1-M1 plasmid containing the M1 gene was cloned into Hpa I site of pFastBac1-HA. This resulted in pFastBac1-NAHAM plasmid encoding both HA and M1 genes within independent expression cassettes and expressed under the control of separate polyhedrin promoters.
Finally, a Sna BI-Avr II DNA fragment from pFastBac1-HAM containing the HA and M1 expression cassettes, was transferred into Hpa I-Avr II digested pFastBac1-NA plasmid DNA. This resulted in the plasmid pFastBac1-NAHAM encoding three independent expression cassettes for expression of influenza HA, NA, and M1 genes and expressed under the control of separate polyhedrin promoters (
In another example, the H3 gene from pFASTBAC1-hHA3 (see Example 5) was cloned into pFASTBAC1-NAHAM as a fourth influenza viral gene for the expression and production of heterotypic influenza VLPs.
The resulting multigenic bacmid transfer vector pFastBac1-NAHAM was used to generate a multigenic recombinant baculovirus encoding avian influenza A/Hong Kong/1073/99 (H9N2) HA, NA, and M1 genes for expression in insect cells. Recombinant bacmid DNAs were produced by site-specific recombination at polyhedrin and Tn7 att DNA sequences between pFastBac1-NAHAM DNA and the AcMNPC baculovirus genome harbored in competent E. coli DH10BAC cells (InVitrogen) (
Sf-9S insect cells maintained as suspension cultures in shaker flasks at 28° C. in serum-free medium (HyQ SFM, HyClone, Ogden, Utah) were infected at a cell density of 2×106 cells/ml with the recombinant baculovirus, bNAHAM-H9N2, at a Multiplicity of infection (MOI) of 3 pfu/cell. The virus infection proceeded for 72 hrs. to allow expression of influenza proteins. Expression of avian influenza A/Hong Kong/1073/99 (H9N2) HA and M1 proteins in infected insect cells was confirmed by SDS-PAGE and Western immunoblot analyses. SDS-PAGE analysis was performed on 4-12% linear gradient NuPAGE gels (Invitrogen) under reduced and denaturing conditions. Primary antibodies in Western immunoblot analysis were polyclonal rabbit antiserum raised against avian influenza A/Hong Kong/1073/99 (H9N2) obtained from CDC and monoclonal murine antiserum to influenza M1 protein (Serotec, UK). Secondary antibodies for Western immunoblot analysis were alkaline phosphatase conjugated goat IgG antisera raised against rabbit or mouse IgG (H+L) (Kirkegaard and Perry Laboratories, Gaithersburg, Md., USA). Results of these analyses (
Culture supernatants (200 ml) from Sf-9S insect cells infected with the recombinant baculovirus bNAHAM-H9N2 that expressed avian influenza A/Hong Kong/1073/99 (H9N2) HA, NA, and M1 gene products were harvested by low speed centrifugation. Culture supernatants were clarified by centrifugation in a Sorval RC-5B superspeed centrifuge for 1 hr at 10,000×g and 4° C. using a GS-3 rotor. Virus and VLPs were isolated from clarified culture supernatants by centrifugation in a Sorval OTD-65 ultracentrifuge for 3 hr at 27,000 rpm and 4° C. using a Sorval TH-641 swinging bucket rotor. The virus pellet was resuspended in 1 ml of PBS (pH 7.2), loaded onto a 20-60% (w/v) discontinuous sucrose step gradient, and resolved by centrifugation in a Sorval OTD-65 ultracentrifuge for 16 hr at 27,000 rpm and 4° C. using a Sorval TH-641 rotor. Fractions (0.5 ml) were collected from the top of the sucrose gradient.
Influenza proteins in the sucrose gradient fractions were analyzed by SDS-PAGE and Western immunoblot analyses as described above in Example 6. The HA and M1 proteins were found in the same sucrose gradient fractions (
Protein macromolecules such as VLPs and monomeric proteins migrate differently on gel filtration or size exclusion chromatographic columns based on their mass size and shape. To determine whether the recombinant influenza proteins from sucrose gradient fractions were monomeric proteins or macromolecular protein complexes such as VLPs, a chromatography column (7 mm×140 mm) with a resin bed volume of 14 ml of Sepharose CL-4B (Amersham) was prepared. The size exclusion column was equilibrated with PBS and calibrated with Dextran Blue 2000, Dextran Yellow, and Vitamin B12 (Amersham Pharmacia) with apparent molecular weights of 2,000,000; 20,000; and 1,357, respectively, to ascertain the column void volume. Dextran Blue 2000 eluted from the column in the void volume (6 ml fraction). As expected, the recombinant influenza protein complexes eluted from the column in the void volume (6 ml fraction) also. This result was characteristic of a high molecular weight macromolecular protein complex such as VLPs. Viral proteins in the column fractions were detected by Western immunoblot analysis as described above in Example 6. The M1 proteins were detected in the void volume fractions (
To determine whether the macromolecular protein complexes isolated on sucrose gradients and containing recombinant avian influenza proteins had morphologies similar to influenza virions, electron microscopic examination of negatively stained samples was performed. Recombinant avian influenza A/Hong Kong/1073/99 (H9N2) protein complexes were concentrated and purified from culture supernatants by ultracentrifugation on discontinuous sucrose gradients as described in Example 7. Aliquots of the sucrose gradient fractions were treated with a 2% glutaraldehyde in PBS, pH7.2, absorbed onto fresh discharged plastic/carbon-coated grids, and washed with distilled water. The samples were stained with 2% sodium phosphotungstate, pH 6.5, and observed using a transmission electron microscope (Philips). Electron micrographs of negatively-stained samples of recombinant avian influenza H9N2 protein complexes from two sucrose gradient fractions showed spherical and rod-shaped particles (
To determine whether the purified influenza VLPs and proteins possessed functional activities, such as hemagglutination and neuraminidase activity, which were characteristic for influenza virus, the purified influenza VLPs and proteins were tested in hemagglutination and neuraminidase assays.
For the hemagglutination assay, a series of 2-fold dilutions of sucrose gradient fractions containing influenza VLPs or positive control wild type influenza virus type A were prepared. Then they were mixed with 0.6% guinea pig red blood cells in PBS (pH 7.2) and incubated at 4° C. for 1 to 16 hr. As a negative control, PBS was used. The extent of hemagglutination was determined visually, and the highest dilution of fraction capable of agglutinating guinea pig red blood cells was determined (
The amount of neuraminidase activity in influenza VLP-containing sucrose gradient fractions was determined by the neuraminidase assay. In this assay the NA (an enzyme) acted on the substrate (fetuin) and released sialic acid. Arsenite reagent was added to stop enzyme activity. The amount of sialic acid liberated was determined chemically with the thiobarbituric acid that produced a pink color in proportion to free sialic acid. The amount of color (chromophor) was measured in a spectrophotometer at wavelength 594 nm. The data, as depicted in
The immunogenicity of the recombinant influenza VLPs was ascertained by immunization of mice followed by Western blot analysis of immune sera. Recombinant VLPs (1 μg/injection) comprised of viral HA, NA, and M1 proteins from avian influenza virus type A/Honk Kong/1073/99 and purified on sucrose gradients were inoculated subcutaneously into the deltoid region of ten (10) female BALB/c mice at day 0 and day 28 (
For Western blot analysis, 200 ng of inactivated avian influenza virus type A H9N2 or cold-adapted avian influenza virus type A H9N2, as well as See Blue Plus 2 pre-stained protein standards (InVitrogen), was denatured (95° C., 5 minutes) and subjected to electrophoresis under reduced conditions (10 mM β-mercaptoethanol) on 4-12% polyacrylamide gradient NuPAGE gels (InVitrogen) in MES buffer at 172 volts until the bromophenol blue tracking dye disappeared. For protein gels, the electrophoresced proteins were visualized by staining with Colloidal Coomassie Blue reagent (InVitrogen). Proteins were transferred from the gel to nitrocellulose membranes in methanol by the standard Western blot procedure. Sera from VLP-immunized mice and rabbits immunized with inactivated avian influenza virus H9N2 (positive control sera) were diluted 1:25 and 1:100, respectively, in PBS solution (pH 7.2) and used as primary antibody. Protein bound membranes, which were blocked with 5% casein, were reacted with primary antisera for 60 minutes at room temperature with constant shaking. Following washing of primary antibody membranes with phosphate buffered saline solution containing Tween 20, secondary antisera [goat anti-murine IgGp—alkaline phosphatase conjugate (1:10,000) or goat anti-rabbit IgG—alkaline phosphatase conjugate (1:10,000)] were reacted 60 minutes with the membrane. Following washing of secondary antibody membranes with phosphate buffered saline solution containing Tween 20, antibody-binding proteins on the membranes were visualized by development with the chromogenic substrate such as NBT/BCIP (InVitrogen).
The results of Western blot analysis (
The following references are incorporated herein by reference:
Berglund, P., Fleeton, M. N., Smerdou, C., and Liljestrom, P. (1999). Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine 17, 497-507.
Cox, J. C., and Coulter, A. R.(1997). Adjuvants—a classification and review of their modes of action. Vaccine 15, 248-256.
Crawford, J., Wilkinson, B., Vosnesensky, A., Smith, G., Garcia, M., Stone, H., and Perdue, M. L. (1999). Baculovirus-derived hemagglutinin vaccines protect against lethal influenza infections by avian H5 and H7 subtypes. Vaccine 17, 2265-2274.
Crowther R A, Kiselev N A, Bottcher B, Berriman J A, Borisova G P, Ose V, Pumpens P. (1994). Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy. Cell 17, 943-50.
Gomez-Puertas, P., Mena, I., Castillo, M., Vivo, A., Perez-Pastrana, E., and Portela, A. (1999). Efficient formation of influenza virus-like particles: dependence on the expression levels of viral proteins. J. Gen. Virol. 80, 1635-1645.
Johansson, B. E. (1999). Immunization with influenza A virus hemagglutinin and neuraminidase produced in recombinant baculovirus results in a balanced and broadened immune response superior to conventional vaccine. Vaccine 17, 2073-2080.
Lakey, D. L., Treanor, J. J., Betts, B. F., Smith, G. E., Thompson, J., Sannella, E., Reed, G., Wilkinson, B. E., and Wright, P. E. (1996) Recombinant baculovirus influenza A hemagglutinin vaccines are well tolerated and immunogenic in healthy adults. J. Infect. Dis. 174, 838-841.
Latham, T., and Galarza, J. M. (2001). Formation of wild-type and chimeric influenza virus-like particles following simultaneous expression of only four structural proteins. J. Virol. 75, 6154-6165.
Mena, I., Vivo, A., Perez, E., and Portela, A (1996). Rescue of a synthetic chloramphenicol acetyltransferase RNA into influenza-like particles obtained from recombinant plasmids. J. Virol. 70, 5016-5024.
Murphy, B. R., and Webster, R. G. (1996). Orthomyxoviruses. In “Virology” (D. M. K. B. N. Fields, P. M. Howley, Eds.) Vol. 1, pp. 1397-1445. Lippincott-Raven, Philadelphia.
Neumann, G., Watanabe, T., and Kawaoka, Y. (2000). Plasmid-driven formation of influenza virus-like particles. J. Virol. 74, 547-551.
Olsen, C. W., McGregor, M. W., Dybdahl-Sissoko, N., Schram, B. R., Nelson, K. M., Lunn, D. P., Macklin, M. D., and Swain, W. F. (1997). Immunogenicity and efficacy of baculovirus-expressed and DNA-based equine influenza virus hemagglutinin vaccines in mice. Vaccine 15, 1149-1156.
Peiris, J. S., Guan, Y., Markwell, D., Ghose, P., Webster, R. G., and Shortridge, K. F. (2001). Cocirculation of avian H9N2 and contemporary “human” H3N2 influenza A viruses in pigs in southwestern China: potential for genetic reassortment? J. Virol. 75, 9679-9686.
Pumpens, P., and Grens, E. (2003). Artificial genes for chimeric virus-like particles. In: “Artificial DNA” (Khudyakov, Y. E, and Fields, H. A., Eds.) pp. 249-327. CRC Press, New York.
Pushko, P., Parker, M., Ludwig, G. V., Davis, N. L., Johnston, R. E., and Smith, J. F. (1997). Replicon-helper systems from attenuated Venezuelan equine encephalitis virus: expression of heterologous genes in vitro and immunization against heterologous pathogens in vivo. Virology 239, 389-401.
Slepushkin, V. A., Katz, J. M., Black, R. A., Gamble, W. C., Rota, P. A., and Cox, N. J. (1995). Protection of mice against influenza A virus challenged by vaccination with baculovirus-expressed M2 protein. Vaccine 13, 1399-1402.
Treanor, J. J., Betts, R. F., Smith, G. E., Anderson, E. L., Hackett, C. S., Wilkinson, B. E., Belshe, R. B., and Powers, D. C. (1996). Evaluation of a recombinant hemagglutinin expressed in insect cells as an influenza vaccine in young and elderly adults. J. Infect. Dis. 173, 1467-1470.
Tsuji, M., et al. (1998). Recombinant Sindbis viruses expressing a cytotoxic T-lymphocyte epitope of a malaria parasite or of influenza virus elicit protection against the corresponding pathogen in mice. J. Virol. 72, 6907-6910.
Ulmer, J. B., et al. (1993). Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 259, 1745-1749.
Ulmer, J. B., et al. (1998). Protective CD4+ and CD8+ T cells against influenza virus induced by vaccination with nucleoprotein DNA. J. Virol. 72, 5648-5653.
Watanabe, T., Watanabe, S., Neumann, G., and Kawaoka, Y. (2002) Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles. J. Virol. 76, 767-773.
Zhou, X., et al. (1995). Generation of cytotoxic and humoral immune responses by non-replicative recombinant Semliki Forest virus. Proc. Natl. Acad. Sci. USA 92, 3009-3013.
Other Embodiments
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims:
This application is a continuation of U.S. Ser. No. 10/617,569, filed Jul. 11, 2003, which is incorporated herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4552758 | Murphy et al. | Nov 1985 | A |
6224882 | Smith et al. | May 2001 | B1 |
6649372 | Palese et al. | Nov 2003 | B1 |
7556940 | Galarza et al. | Jul 2009 | B2 |
7763450 | Robinson et al. | Jul 2010 | B2 |
8080255 | Smith et al. | Dec 2011 | B2 |
8506967 | Smith et al. | Aug 2013 | B2 |
8592197 | Robinson et al. | Nov 2013 | B2 |
20030035814 | Kawaoka et al. | Feb 2003 | A1 |
20050009008 | Robinson et al. | Jan 2005 | A1 |
20060263804 | Robinson et al. | Nov 2006 | A1 |
20070184526 | Smith et al. | Aug 2007 | A1 |
20100129401 | Smith et al. | May 2010 | A1 |
20120207786 | Smith et al. | Aug 2012 | A1 |
20130039938 | Smith et al. | Feb 2013 | A1 |
20130295135 | Smith et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
0870508 | Oct 1998 | EP |
1644037 | Dec 2011 | EP |
WO 9610633 | Apr 1996 | WO |
WO 9637624 | Nov 1996 | WO |
WO 0200885 | Jan 2002 | WO |
WO 2005020889 | Mar 2005 | WO |
Entry |
---|
Latham et al., Formation of Wild-type and Chimeric Influenza Virus0Like Particles following Similtanious Expression of Only Four Structural Proteins. 2001 Journal of Virology vol. 75, pp. 6154-6165. |
“Section 1. Past Achievements and Future Needs,” Vaccines, Vaccination and the Immune Response, pp. 1-45, by Gordon Ada, Alistair Ramsay (1997). |
Ali et al., “Influenza Virus Assembly: Effect of Influenza Virus Glycoproteins on the Membrane Association of M1 Protein,” J. Virol. 74:8709-8719 (2000). |
Avalos et al., “Association of Influenza Virus NP and M1 Proteins with Cellular Cytoskeletal Elements in Influenza Virus-Infected Cells,” J. Virol. 71:2947-2958 (1997). |
Belser et al., “The ferret as a model organism to study influenza A virus infection,” Dis. Model. Mech. 4(5):575-579 (2011). |
Bender et al., “Characterization of the Surface Proteins of Influenza A (H5N1) Viruses Isolated from Humans in 1997-1998,” Virology 254:115-123 (1999). |
Berglund et al., “Immunization with Recombinant Semlike Forest Virus Induces Protection Against Influenza Challenge in Mice,” Vaccine 17:497-507 (1999). |
Bright et al., “Cross-Clade Protective Immune Responses to Influenza Viruses with H5N1 HA and NA Elicited by an Influenza Virus-Like Particle,” PLOS One, Public Library of Science 3:1501 (2008). |
Bucher et al., “Incorporation of Influenza Virus M-Protein into Liposomes,” J. Virol. 36:586-590 (1980). |
Bucher et al., “M Protein (M1) of Influenza Virus: Antigenic Analysis and Intracellular Localization with Monoclonal Antibodies,” J. Virol. 63:3622-3633 (1989). |
Bullido et al., “Several Protein Regions Contribute to Determine the Nuclear and Cytoplasmic Localization of the Influenza A Virus Nucleoprotein,” J. Gen. Virol. 81:135-142 (2000). |
Castrucci et al., “Reverse Genetics System for Generation of an Influenza A Virus Mutant Containing a Deletion of the Carboxyl-Terminal Residue of M2 Protein,” J. Virol. 69:2725-2728 (1995). |
Chambers et al., “A single dose of killed Mycobacterium bovis BCG in a novel class of adjuvant (Novasome™) protects guinea pigs from lethal tuberculosis,” Vaccine 22:1063-1071 (2004). |
Chen et al., “Avian flu: H5N1 virus outbreak in migratory waterfowl,” Nature 436:191-192 (2005). |
Chen et al., “Comparison of the ability of viral protein-expressing plasmid DNAs to protect against influenza,” Vaccine 16:1544-1549 (1998). |
Chen et al., “Enhanced protection against a lethal influenza virus challenge by immunization with both hemagglutinin- and neuraminidase- expressing DNAs,” Vaccine 17:653-659 (1999). |
Chen et al., “The Evolution of H5N1 Influenza Viruses in Ducks in Southern China,” Proc. Natl. Acad. Sci. USA 101:10452-10457 (2004). |
Cox and Coulter, “Adjuvants—A Classification and Review of Their Modes of Action,” Vaccine 15:248-256 (1997). |
Crawford et al., “Baculovirus-Derived Hemagglutinin Vaccines Protect Against Lethal Influenza Infections by Avian H5 and H7 Subtypes,” Vaccine 17:2265-2274 (1999). |
Crowther et al., “Three-Dimensional Structure of Hepatitis B. Virus Core Particles Determined by Electron Cryomicroscopy,” Cell 77:943-950 (1994). |
Das et al., “Structural basis for suppression of a host antoviral response by influenza A virus,” Proc. Natl. Acad. Sci. USA 105:13093-13098 (2008). |
Database UniProt [Online] Oct. 1, 2004, Hongbo Z et al.: “Matrix protein 1” XP002526328 retrieved from http://www.uniprot.org/uniprot/q6b3p4 Database accession No. Q6B3P4. |
Database UniProt [Online] Jul. 11, 2006, Hoffmann E et al.: “Hemagglutinin” XP002526332 retrieved from http://www.uniprot.org/uniprot/q195d4 Database accession No. Q195D4. |
Database UniProt [Online] Sep. 13, 2005, Chen H et al.: “Neuramidase” XP002526329 retrieved from http://www.uniprot.org/uniprot/q4fb59 Database accession No. Q4FB59. |
Database UniProt [Online] Aug. 16, 2004, Li Ks et al.: “Hemagglutinin” XP002526330 retrieved from http://www.uniprot.org/uniprot/q6dq47 Database accession No. Q6DQ47. |
Database UniProt Oct. 25, 2004, Li Ks et al.: “Neuramidase” XP002526331 retrieved from http://www.uniprot.org/uniprot/q6dph6 Database accession No. Q6DPH6. |
Ebel, Search Report and Written Opinion, 9 pages, from Singapore Patent Appl. No. 200701731-2 (mailed Feb. 25, 2010). |
Elster et al., “Influenza Virus M1 Protein Binds to RNA Through Its Nuclear Localization Signal”, J. Gen. Virol. 78:1589-1956 (1997). |
Enami and Enami, “Influenza Virus Hemagglutinin and Neuraminidase Glycoproteins Stimulate the Membrane Association of the Matrix Protein,” J. Virol. 70:6653-6657 (1996). |
Fodor et al., “Rescue of Influenza A Virus from Recombinant DNA,” J. Virol. 73:9679-9682 (1999). |
Galarza et al., “Virus-Like Particle (VLP) Conferred Complete Protection Against a Lethal Influenza Virus Challenge,” Viral Immunol. 18:244-251 (2005). |
Galarza et al., “Virus-Like Particle Vaccine Conferred Complete Protection Against a Lethal Influenza Virus Challenge,” Viral Immunol. 18:365-372 (2005). |
Germann et al., “Mitigation Strategies for Pandemic Influenza in the United States,” Proc. Natl. Acad. Sci. USA 103:5935-5940 (2006). |
Gómez-Puertas et al., “Efficient Formation of Influenza Virus-Like Particles: Dependence on the Expression Levels of Viral Proteins,” J. Gen. Virol. 80:1635-1645 (1999). |
Gómez-Puertas et al., “Influenza Virus Matrix Protein is the Major Driving Force in Virus Budding,” J. Virol. 74:11538-11547 (2000). |
Gregoriadis et al., “Vaccine Entrapment in Liposomes,” Methods 19:156-162 (1999). |
Gupta et al., “Adjuvant properties of non-phospholipid liposomes (Novasomes) in experimental animals for human vaccine antigens,” Vaccine 14:219-225 (1996). |
Heiduschat, “Supplementary European Search Report,” 12 pages, from EP Appl. No. 06826264.1, European Patent Office, Munich, Germany (mailed May 28, 2009). |
Hoffmann et al., “A DNA Transfection System for Generation of Influenza A Virus from Eight Plasmids,” Proc. Natl. Acad. Sci. USA 97:6108-6113 (2000). |
Huylebroeck et al., “High-level transient expression of influenza virus proteins from a series of SV40 late and early replacement vectors,” Gene 66:163-181 (1988). |
Itamura, “Development of influenza vaccines against newly emerging A/H5N1 virus,” Nippon Rinsho 58:255-264 (2000). |
Johansson, “Immunization with Influenza A Virus Hemagglutinin and Neuraminidase Produced in Recobinant Baculovirus Results in a Balanced and Broadened Immune Response Superior to Conventional Vaccine,” Vaccine 17:2073-2080 (1999). |
Korsman, “Vaccines,” Chapter 6, pp. 127-149 in: Influenza Report 2006; Eds. Bernd Sebastian Kamps, Christian Hoffmann and Wolfgang Preiser; Mar. 24, 2006. |
Kretzschmar et al., “Membrane Association of Influenza Virus Matrix Protein Does Not Require Specific Hydrophobic Domains or the Viral Glycoproteins,” Virol. 220:37-45 (1996). |
Kuroda et al., “Expression of the Influenza virus Haemagglutinin in Insect Cells by a Baculovirus Vector,” EMBO J. 5:1359-1365 (1986). |
Lakey et al., “Recombinant Baculovirus Influenza A Hemagglutinin Vaccines are Well Tolerated and Immunogenic in Healthy Adults” J. Infect. Dis. 174:838-841 (1996). |
Latham and Galarza, “Formation of Wild-Type and Chimeric Influenza Virus-Like Particles Following Simultaneous Expression of Only Four Structural Proteins,” J. Virol. 75:6154-6165 (2001). |
Li et al., “Chimeric Influenza Virus Induces Neutralizing Antibodies and Cytotoxic T Cells Against Human Immunodeficiency Virus Type 1,” J. Virol. 67:6659-6666 (1993). |
Li et al., “Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia,” Nature 430:209-213 (2004). |
Li et al., “Recombinant Influenza A Virus Vaccines for the Pathogenic Human A/Hong Kong/97 (H5N1 Viruses,” J. Infect. Dis. 179:1132-1138 (1999). |
Li et al., Matrix protein 1 [Influenza A virus (A/Dk/HN/5806/2003(H5N1))], Genbank AAT70589.1 published on Jul. 16, 2004. |
Logrippo, “Investigations of the use of beta-propiolactone in virus inactivation,” Ann. N.Y. Acad. Sci. 83:578-594 (1960). |
Lyles et al. “Subunit Interactions of Vesicular Stomatitis Virus Envelope Glycoprotein Stablilized by Binding to Viral Matrix Protein,” J. Virol. 66:349-358 (1992). |
Matassov et al., “A Novel intranasal Virus-Like Particle (VLP) Vaccine Designed to Protect against the Pandemic 1918 Influenza A Virus (H1N1,” Viral Immunol. 20:441-452 (2007). |
Matsuda, “Notice of Reasons for Rejection,” 3 pages, Japan Patent Appl. No. 2006-518925, with 4 page translation (mailed Mar. 17, 2010). |
Mena et al., “Rescue of a Synthetic Chloramphenicol Acetyltransferase RNA into Influenza Virus-Like Particles Obtained from Recombinant Plasmids,” J. Virol. 70:5016-5024 (1996). |
Murphy and Webster, Orthomyxoviruses, Fields Virology, Third Edition, vol. 1, pp. 1397-1445 (1996). |
NCBI Accession No. CY014173, “Influenza A virus (A/Indonesia/5/2005 (H5N1)) segment 7 sequence,” 3 pages (available Aug. 30, 2006). |
Nerome et al., “Development of a new type of influenza subunit vaccine made by muramyldipeptide-liposome: enhancement of humoral and cellular immune responses,” Vaccine 8:503-509 (1990). |
Neumann et al., “An Improved Reverse Genetics System for Influenza A Virus Generation and its Implications for Vaccine Production,” Proc. Natl. Acad. Sci. USA 102:16825-16829 (2005). |
Neumann et al., “Generation of Influenza A Viruses Entirely from Cloned cDNAs,” Proc. Natl. Acad. Sci. USA 96:9345-9350 (1999). |
Neumann et al., “Plasmid-Driven Formation of Influenza Virus-Like Particles,” J. Virol. 74:547-551 (2000). |
Olsen et al., “Immunogenicity and Efficacy of Baculovirus-Expressed and DNA-Based Equine Influenza Virus Hemagglutinin Vaccines in Mice,” Vaccine 15:1149-1156 (1997). |
Ottolini et al,. “The cotton rat provides a useful small-animal model for the study of influenza virus pathogenesis,” J. Gen. Virol. 86(Pt 10):2823-2830 (2005). |
Palese, “Making Better Influenza Vaccines?” Emerg. Infect. Dis. 12:61-65 (2006). |
Park et al., “The M2 Ectodomain Is Important for Its Incorporation into Influenza A Virions,” J. Virol. 72(3):2449-2455 (1998). |
Park, Man-Seong, et al., “Engineered Viral Vaccine Constructs with Dual Specificity: Avian Influenza and Newcastle Disease,” Proc. Natl. Acad. Sci. USA 103:8203-8208 (2006). |
Pattnaik et al., “Formation of Influenza Virus particles Lacking Hemagglutinin on the Viral Envelope,” J. Virol. 60:994-1001 (1986). |
Peiris et al., “Cocirculation of Avian H-N2 and Contemporary “Human” H3N2 Influenza A Viruses in Pigs in Southeastern China: Potential for Genetic Reassortment?” J. Virol. 75:9679-9686 (2001). |
Peradze et al., “Anti-influenza prophylactic formulations,” 1986, Moscow, Meditsina, pp. 218-225. |
Piedra et al., “Herd Immunity in Adults Against Influenza-Related Illnesses with use of the Trivalent-Live Attenuated Influenza Vaccine (CAIV-T) in Children,” Vaccine 23:1540-1548 (2005). |
Pleschka et al., “A Plasmid-Based Reverse Genetics System for Influenza A Virus,” J. Virol. 70:4188-4192 (1996). |
Pumpens and Grens, “Artificial Genes for Chimeric Virus-Like Particles,” Artificial DNA (Khudyakov, Y.E., and Fields, H.A., Eds.) pp. 249-327, CRC Press, New York (2003). |
Pushko et al., “Influenza Virus-Like Particles Comprised of the Ha, Na, and M1 proteins of H9N2 Influenza Virus Induce Protective Immune Responses in BALB/c Mice,” Vaccine 23:5751-5759 (2005). |
Pushko et al., “Replicon-Helper Systems from Attenuated Venezuelan Equine Encephalitis Virus: Expression of Heterologous Genes in Vitro and Immunization Against Heterologous Pathogens in Vivo,” Virology 239:389-401 (1997). |
Saito et al., “Characterization of a human H9N2 influenza virus isolated in Hong Kong,” Vaccine 20:125-133 (2001). |
Slepushkin et al., “Protection of Mice Against Influenza A Virus Challenge by Vaccination With Baculovirus-Expressed M2 Protein,” Vaccine 13:1399-1402 (1995). |
Smith et al., U.S. Appl. No. 12/558,844, filed Sep. 14, 2009. |
Smith et al., U.S. Appl. No. 12/832,657, filed Jul. 8, 2010. |
St. Angelo et al., “Two of the Three Influenza Viral Polymerase Proteins Expressed by Using Baculovirus Vectors Form a Complex in Insect Cells,” J. Virol. 61:361-365 (1987). |
The Patent Office of the People's Republic of China, “The Decision of Final Rejection of the Application,” 4 pages, from China Patent Appl. No. 200480026152.3 (issued May 20, 2010). |
Tian et al., “Study and Use of Avian Flu H5 and H9 Bivalent Inactivated Vaccines (Strains H5N1 Re-1 and H9N2 Re-2),” Symposia of the 6th Symposium of the Branch of Biotechnology of Veterinary and Animal Husbandry of Chinese Association of Animal Science and Veterinary Medicine and the Branch of Veterinary Immunology of Chinese Society for Immunologypp. 42-47 (2005). |
Tobita et al., “Spontaneous Excretion of Virus from MDCK Cells Persistently Infected with Influenza Virus A/PR/8/34,” J. Gen. Virol. 78:563-566 (1997). |
Treanor et al., “Evaluation of a Recombinant Hemagglutinin Expressed in Insect Cells as an Influenza Vaccine in Young an Elderly Adults,” J. Infect. Dis. 173:1467-1470 (1996). |
Treanor et al., “Safety and Immunogenicity of an Inactivated Subvirion Influenza A (H5N1) Vaccine,” N. Engl. J. Med. 354:1343-1351 (2006). |
Tsuji et al, “Recombinant Sindbis Viruses Expressing a Cytotoxic T-Lymphocyte Epitope of a Malaria Parasite or of Influenza Virus Elicit Protection Against the Corresponding Pathogen in Mice,” J. Virol. 72:6907-6910 (1998). |
Ulmer et al., “Heterologous Protection Against Influenza by Injection of DNA Encoding a Viral Protein,” Science 259:1745-1749 (1993). |
Ulmer et al., “Protective CD4+ and CD8+ T Cells against Influenza Virus Induced by Vaccination with Nucleoprotein DNA,” J. Virol. 72:5648-5653 (1998). |
Unknown, Rinsho to Kenkyuu 81:1899-1903 (2004). |
Watanabe et al., “Immunogenicity and Protective Efficacy of Replication-Incompetent Influenza Virus-Like Particles,” J. Virol. 76:767-773 (2002). |
Watatabe et al., “Influenza A Virus Can Undergo Multiple Cycles of Replication without M2 Ion Channel Activity,” J. Virol. 75(12):5656-5662 (2001). |
Welsh, “Examiner's first report on patent application No. 2004268510,” 3 pages, from Australian Patent Appl. No. 2004268510 (dated Feb. 5, 2010). |
Wiebke, “Communication pursuant to Article 94(3) EPC,” 4 pages, from EP Appl. No. 04786052.3, European Patent Office, Munich, Germany (mailed Mar. 19, 2010). |
Wiebke, “Communication pursuant to Article 94(3) EPC,” 7 pages, from EP Appl. No. 04786052.3, European Patent Office, Munich, Germany (mailed Sep. 15, 2008). |
Wiebke, “European Search Report,” 8 pages, from EP Appl. No. 10010286.2, European Patent Office, Munich, Germany (mailed May 23, 2011). |
Wiebke, “Supplementary European Search Report,” 6 pages, from EP Appl. No. 04786052.3, European Patent Office, Munich, Germany (mailed Mar. 26, 2008). |
Wood et al., “Preparation of Vaccines Against H5N1 Influenza,” Vaccine, 20:S84-S87 (2002). |
Yasuda et al., “Growth Control of Influenza A Virus by MI Protein: Analysis of Transfectant Viruses Carrying the Chimeric M Gene,” J. Virol. 68:8141-8146 (1994). |
Ye et al., “Nucleus-Targeting Domain of the Matrix Protein (MI) of Influenza Virus,” J. Virol. 69:1964-1970 (1995). |
Zhang and Lamb, “Characterization of the Membrane Association of the Influenza Virus Matrix Protein in Living Cells,” Virol. 225:225-266 (1996). |
Zhao et al., “The M1 and NP Proteins of Influenza A Virus Form Homo- but not Heterooligomeric Complexes when Coexpressed in BHK-21 Cells,” J. Gen. Virol. 79:2435-2446 (1998). |
Zhou et al., “Generation of Cytotoxic and Humoral Immune-Responses by Non-replicative Recombinant Semlike Forest Virus,” Proc. Natl. Acad. Sci. USA 92:3009-3013 (1995). |
Zitzow et al., “Pathogenesis of Avian Influenza A (H5N1) Viruses in Ferrets,” J. Virol. 76(9):4420-4439 (2002). |
“New Strain of Avian Influenza Now Found to Infect Humans,” Medscape [online] (Mar. 22, 2006) htttp://www.medscape.com/viewarticle/528258—print. |
Hatta and Kawaoka, “A clue to the molecular mechanism of virulence of highly pathogenic H5N1 avian influenza viruses isolated in 2004,” Virus 55:55-62 (2005). |
Number | Date | Country | |
---|---|---|---|
20130177587 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10617569 | Jul 2003 | US |
Child | 13796125 | US |