The present disclosure relates to the field of electronic technology applications, and in particular, to a functional panel, a method for manufacturing the same, and a terminal.
The display device may generally comprise a display panel and a panel driving circuit for driving the display panel. The panel driving circuit may comprise a timing controller (T/CON), a gate driving circuit, and a source driving circuit. The gate driving circuit comprises a plurality of gate driver chips, and the source driving circuit comprises a plurality of source driver chips.
With the improvement of the resolution of the display panel, the amount of data to be transmitted also increases significantly. In a panel driving circuit, a high-speed differential signal is usually transmitted through a differential signal line group (also called a high-speed differential signal line group). A differential signal line group is actually a signal line group consisting of two signal lines, and its data transmission rate is relatively high.
According to a first aspect of the embodiments of the disclosure, there is provided a functional panel, comprising: a base substrate; at least one bonding pad and at least one driver chip on the base substrate; at least one differential signal line group connecting the at least one bonding pad and the at least one driver chip, and each differential signal line group of the at least one differential signal line group comprising two signal lines; at least one ground line group connecting the at least one bonding pad and the at least one driver chip, and each ground line group of the at least one ground line group comprising two ground lines; wherein the at least one ground line group and the at least one differential signal line group are on a same side of the base substrate, orthographic projections of the two ground lines in each ground line group on the base substrate are on both sides of an orthographic projection of a corresponding differential signal line group on the base substrate, and two ground lines in the ground line group are connected to a same reference ground.
In some embodiments, the two ground lines in each ground line group comprise a first ground line and a second ground line, and at least one end of the first ground line and at least one end of the second ground line are connected to each other and are connected to the same reference ground.
In some embodiments, each driver chip comprises: a first ground pad, a second ground pad, and two signal pads, and wherein the first ground pad and the second ground pad are on both sides of the two signal pads, respectively, the two signal pads are configured to be respectively connected to two signal lines in a corresponding differential signal line group, the first ground pad and the second ground pad are respectively connected to the first ground line and the second ground line in the corresponding ground line group, and the first ground pad and the second ground pad are connected to each other inside the driver chip and are connected to the same ground reference.
In some embodiments, a first end of the first ground line and a first end of the second ground line are connected to each other through the at least one driver chip and are connected to the same reference ground; a second end of the first ground line and a second end of the second ground line are connected to each other through the bonding pad and are connected to the same reference ground; the first end and the second end are opposite ends in an extending direction of the first ground line or the second ground line.
In some embodiments, the at least one differential signal line group comprises a plurality of differential signal line groups, and the at least one ground line group comprises a plurality of ground line groups, and two adjacent ground line groups of the plurality of ground line groups multiplex a same ground line.
In some embodiments, in each differential signal line group of the at least one differential signal line group, two signal lines each comprises a first segment and a second segment, a ratio of a distance between the first segment and the second segment to a line width at a corresponding position of the first segment equals to a ratio of a distance between the first segment and the second segment to a line width at a corresponding position of the second segment, and the ratio is constant in extending directions of the first segment and the second segment.
In some embodiments, the distance between the first segment and the second segment has a constant value in an extending direction of the differential signal line group.
In some embodiments, a distance between any ground line and a differential signal line immediately adjacent to the ground line is equal to the distance between the first segment and the second segment.
In some embodiments, a plurality of differential signal line groups are arranged between two ground lines of each ground line group, and orthographic projections of the two ground lines in each ground line group on the base substrate are on both sides of the orthographic projections of the corresponding plurality of differential signal line groups on the base substrate.
In some embodiments, the at least one differential signal line group and the at least one ground line group are in a same layer on the base substrate.
In some embodiments, the at least one differential signal line group and the at least one ground line group are in different layers on the base substrate.
In some embodiments, the base substrate is made of glass or organic material; and the functional panel comprises a display panel, a touch panel, or an in-cell touch display panel.
According to a second aspect of the embodiments of the disclosure, there is provided a terminal comprising the functional panel described above.
According to a third aspect of the embodiments of the disclosure, there is provided a method for manufacturing a functional panel, comprising: providing a base substrate; forming at least one differential signal line group and at least one ground line group on a same side of the base substrate; arranging at least one bonding pad and at least one driver chip on the base substrate; wherein the at least one differential signal line group and the at least one ground line group connect the at least one bonding pad and the at least one driver chip, each differential signal line group of the at least one differential signal line group comprises two signal lines, each ground line group of the at least one ground line group comprises two ground lines, and orthographic projections of the two ground lines in each ground line group on the base substrate are on both sides of an orthographic projection of a corresponding differential signal line group on the base substrate, and two ground lines in the ground line group are connected to a same reference ground.
In the functional panel, the method for manufacturing the functional panel, and the terminal provided in the embodiments of the present disclosure, each ground line group includes two ground lines, the orthographic projections of the two ground lines in each ground line group on the substrate are on both sides of the orthographic projection of the corresponding differential signal line group on the base substrate, the two ends of each ground line group and each differential signal line group are respectively connected to the bonding pad and the chip, and two ground lines of each ground line group are connected by the bonding pad or the structures inside the chip, thereby forming a loop around the differential signal line group. The ground lines are used to shield the signal interference of the differential signal line group. In this way, external signal interference can be effectively reduced, thereby improving the signal transmission reliability of the differential signal line group.
It should be understood that the above general description and the following detailed description are merely exemplary, and should not limit the present disclosure.
In order to explain the embodiments of the present disclosure more clearly, the drawings used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present disclosure. For a person having ordinary skill in the art, other drawings can be obtained based on these drawings without paying creative work.
The drawings herein are incorporated in and constitute a part of this description. The drawings illustrate embodiments consistent with the present disclosure, and together with the description serve to explain the principles of the present disclosure.
In order to make the objectives, technical solutions, and advantages of the present disclosure more clear, the present disclosure will be described in further detail below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present disclosure, but not all the embodiments. Based on the embodiments in the present disclosure, all other embodiments obtained by a person having ordinary skill in the art without making creative efforts fall within the protection scope of the present disclosure.
As the demand for signal transmission continues to increase, the application of differential signal line groups is becoming more and more widespread. Current differential signal line groups are mainly used in display devices for transmitting signals between two elements in the display device. At present, a part of the differential signal line group between the timing controller and the source driver chip is located in a bonding area (also called a wiring area) of a base substrate (usually a glass material) of a display panel. The limitation of the manufacturing process of the base substrate causes the signals transmitted on this part of the differential signal line group to be easily interfered by external signals, thereby reducing the signal transmission reliability.
A common display device comprises a functional panel and a control circuit of the functional panel. A differential signal line group is used to transmit a corresponding control signal or a feedback signal (also called a response signal, that is, a response signal to the control signal).
In a first optional implementation, the functional panel is a display panel, and the corresponding control circuit is a panel driving circuit that drives the display panel. The display panel may be an organic light-emitting Diode (OLED) display panel or liquid crystal display (LCD, also referred to as liquid crystal display array) display panel. The panel driving circuit may comprise a controller, a gate driving circuit, and a source driving circuit. The gate driving circuit comprises a plurality of gate driver chips, and the source driving circuit comprises a plurality of source driver chips. Please refer to
It should be noted that the above controller may be any of a timing controller, a system on chip (SOC), and a microcontroller unit (MCU) integrated in the timing controller. The above driver chip may be a source driver chip.
In a second optional implementation, the functional panel is an in-cell touch display panel, and the in-cell touch panel is a display panel integrated with a touch function layer (referred to as a touch layer). That is, the in-cell touch panel is a structure in which the touch function layer is embedded in the pixels of the display panel. The display panel may be an OLED display panel or an LCD display panel.
On the one hand, for the connection relationship between the display panel and the controller in the in-cell touch display panel, reference may be made to the first optional implementation described above. A segment of the differential signal line group between the controller and each driver chip is located on the base substrate of the display panel. For example, a segment of the differential signal line group between the timing controller and each source driver chip is located on the base substrate of the display panel.
On the other hand, the touch function layer of the in-cell touch display panel is divided into a mutual-capacitive touch function layer and a self-capacitive touch function layer according to different touch principles. As shown in
In the case where the mutual-capacitive touch function layer implements the touch function, touch scanning signals are sequentially input to respective Txs in the mutual-capacitive touch function layer, and the sensing signals on each Rx are collected. The position of a touch point can be determined according to the sensing signals on each Rx. The above touch function can be implemented by a touch driving integrated circuit (IC), that is, the touch drive IC can be used to input a touch scanning signal and collect a sensing signal, and determine the position of the touch point. Optionally, differential signal line groups may be respectively provided between the touch drive IC and Tx and between the touch drive IC and Rx for transmitting touch data, and a part of the differential signal line group may pass through the base substrate of the display panel.
For the above-mentioned mutual-capacitive touch function layer, in an optional implementation, another differential signal line group may be provided between the controller and the designated driver chip, and each designated driver chip may have a backhaul function, which refers to the function of transmitting the data obtained by the designated driver chip to the controller. The designated driver chip can be connected to at least one touch sensing line Rx (e.g., each designated driver chip with the backhaul function can be connected to a group of touch sensing lines, each group of touch sensing lines comprises at least two adjacent touch sensing lines). The designated driver chip shares some of the functions of the touch drive IC. In another optional implementation, each designated driver chip with the backhaul function can be connected to the touch drive IC. In this case, the designated driver chip realizes the fast backhaul of the data of the touch drive IC to the controller. The designated driver chip may be a source driver chip or a gate driver chip. A part of another differential signal line group described above may pass through the base substrate of the display panel.
As shown in
In the case where the self-capacitive touch function layer implements a touch function, touch scanning signals can be input to each Mx in the self-capacitive touch function layer at the same time, and a sensing signal on each Mx is collected. The position of a touch point can be determined depending on whether the sensing signal on each Mx is the same as the normal sensing signal. The above touch function may be implemented by a touch drive IC, that is, the above touch drive IC may be used to input a touch scanning signal and collect a sensing signal, and determine the position of the touch point. Optionally, a differential signal line group may be provided between the touch drive IC and each Mx for transmission of touch data, and a part of the differential signal line group may pass through the base substrate of the display panel.
For the above-mentioned self-capacitive touch function layer, in an optional implementation, another differential signal line group may be provided between the controller and the designated driver chip, and each designated driver chip may have a backhaul function. Each designated driver chip with the backhaul function can be connected to at least one touch line Mx (e.g., each designated driver chip with the backhaul function can be connected to a group of touch lines, each group of touch lines comprises at least two adjacent touch lines). In this case, the driver chip shares some of the functions of the touch drive IC. In another optional implementation, each designated driver chip with the backhaul function can be connected to the touch drive IC. In this case, the designated driver chip realizes a fast backhaul of data between the controller and the touch drive IC.
It should be noted that the touch function layer in the above-mentioned in-cell touch display panel and the display function layer in the display panel can be a same layer. For example, In the case where the display panel is an OLED display panel, i.e. the display function layer of the display panel is realized based on OLED, when the touch function layer is a mutual-capacitive touch function layer, at least one of the layer where the touch sensing line is located and the layer where the touch driving line is located may be a same layer as an electrode layer of the OLED. The electrode layer may be one of a cathode layer and an anode layer. When the touch function layer is a self-capacitive touch function layer, at least one of the layer where the touch line is located and the layer where the touch driving line is located may be a same layer as an electrode layer of the OLED. The electrode layer may be one of a cathode layer and an anode layer. In the case where the display panel is an LCD display panel, that is, the display function layer of the display panel is realized based on a liquid crystal layer as well as a pixel electrode layer and a common electrode layer for controlling the liquid crystal layer, when the touch function layer is a mutual-capacitive touch function layer, at least one of the layer where the touch sensing line is located and the layer where the touch driving line is located may be a same layer as an electrode layer in the display function layer. The electrode layer may be one of the pixel electrode layer and the common electrode layer. When the control function layer is a self-capacitive touch function layer, at least one of the layer where the touch line is located and the layer where the touch driving line is located may be a same layer as an electrode layer of the LCD. The electrode layer may be one of the pixel electrode layer and the common electrode layer.
It is noted that, when the touch function layer in the above-mentioned in-cell touch display panel is the same layer as the display function layer in the display panel, the touch function layer and the display function layer are driven in a time-sharing manner, which can ensure that these two functional layers do not interfere with each other.
In a third optional implementation, the functional panel is a touch panel. The touch panel is divided into a mutual-capacitive touch panel and a self-capacitive touch panel according to different touch principles. The structure of a mutual-capacitive touch panel can refer to the structure of the mutual-capacitive touch function layer in the second optional implementation described above. Differential signal line groups can be respectively provided between the touch drive IC and TX and between the touch drive IC and Rx for transmitting touch data, and a part of the differential signal line group may pass through the base substrate of the touch panel. The structure of the self-capacitive touch panel can refer to the structure of the self-capacitive touch function layer in the second optional implementation described above. A differential signal line group may be provided between the touch drive IC and each Mx for transmitting touch data, and a part of the differential signal line group may pass through the base substrate of the touch panel.
The above three optional implementations are only a schematic description of a scenario in which the differential signal line group is located on the base substrate of the functional panel. The differential signal line group can also be provided on the base substrate of the functional panel in other ways. However, due to the limitation of the manufacturing process on the base substrate, the signal transmission in the differential signal line group on the base substrate may be easily interfered by external signals, thereby reducing the signal transmission reliability.
An embodiment of the present disclosure provides a functional panel 400. The functional panel may be any of the above functional panels or another functional panel provided with a differential signal line group on its base substrate.
“Reference ground” is also called “ground”, which is a common reference potential point in the functional panel. In the functional panel of the embodiment of the present disclosure, a metal layer is usually provided on the base substrate, and the metal layer is used as a reference ground. Two ground lines in each ground line group are connected to the metal layer. Of course, the reference ground can also be provided in other ways, as long as the two ground lines in a ground line group are connected to the same reference ground. The potential of the reference ground usually approaches zero. In practical applications, the potential of the reference ground can be regarded as zero.
In the functional panel provided in the embodiments of the present disclosure, at least one ground line group and at least one differential signal line group are provided on the base substrate, respective one of the at least one ground line group corresponds to respective one of the at least one differential signal line group. Each ground line group comprises two ground lines, the orthographic projections of the two ground lines in each ground line group on the base substrate are respectively located on both sides of the orthographic projection of the corresponding differential signal line group on the base substrate, and the ground signal is used to shield the signal interference on the differential signal line group. When there are a plurality of differential signal line groups, crosstalk between the differential signal line groups can also be effectively shielded. In this way, external signal interference can be effectively reduced, thereby improving the signal transmission reliability of the differential signal line groups.
If two ground lines in a ground line group are respectively connected to different reference grounds, each ground line can be regarded as an isolated ground line which is prone to generate additional noise and interference. In the embodiment of the present disclosure, the two ground lines in the ground line group are connected to the same reference ground, which can avoid the appearance of isolated ground lines and improve the anti-interference ability of the ground lines in the ground line group.
As shown in
As shown in
Please refer to
Referring back to
Further, as shown in
In the embodiments of the present disclosure, at least one differential signal line group 402 and at least one ground line group 403 are located at the same layer on the base substrate 401. In this way, the ground line group and the differential signal line group are located on the same horizontal plane, thereby the interference signals can be effectively shielded when the ground line group can actually enclose the corresponding differential signal line group at the physical position. For example, if the differential signal line group provided on the base substrate is an entire segment of the differential signal line group, each ground line in the corresponding ground line group is an entire segment of ground line. If the differential signal line groups provided on the base substrate comprises multiple segments of differential signal line groups located at different layers, each ground line in the corresponding ground line group also comprises multiple segments of ground lines located at different layers, and respective one of the multiple segments of differential signal line groups corresponds to respective one of the multiple segments of ground lines. The differential signal line group and ground line of the corresponding segment are located at the same layer.
As mentioned above, there are multiple implementations of the reference ground in the function panel. Optionally, the embodiment of the present disclosure implements the reference ground function by providing a reference ground layer on the base substrate. The manufacturing material of the reference ground layer may be conductive materials such as metal or carbon. Please refer to
Further, please refer to
Each of the aforementioned ground lines 4031 is provided with a via 4033. The vias 4033 in the ground line 4031 in
It should be noted that if at least one ends of two ground lines in the ground line group are connected by a lead, the ground line group and the lead can be formed through one patterning process. If the lead is connected to the ground line layer through a via, the manufacturing process of the vias in the lead can refer to the manufacturing process of the vias of the above ground line, and the vias of both can be manufactured simultaneously.
As before, the structure of the above-mentioned functional panel provided by the embodiment of the present disclosure can be applied to various types of functional panels, as long as the differential signal line group is located on the base substrate. The differential signal line group is usually located in a bonding area of the functional panel. Of course, it can also be located in other areas of the functional panel. To facilitate the reader's understanding, the embodiment of the present disclosure takes an optional functional panel in which the differential signal line group is located in the bonding area of the functional panel as an example. The functional panel may be a display panel. Please refer to
In a first optional implementation, as shown in
The third lead x is located on a side of the two signal lines 4021 away from the base substrate 401, and laps over the two signal lines 4021. An insulating spacer is provided at a lap-joint between the third lead x and the two signal lines 4021. This can ensure that the third lead x does not affect the signal transmission on the two signal lines 4021. Alternatively, the third lead x and the ground line group 403 are located at different layers, and an isolation layer for insulating is provided between the third lead x and the ground line group 403. One end of the third lead x is connected to a target end of a ground line through a via in the isolation layer, and the other end of the third lead x is connected to a target end of another ground line through a via in the isolation layer. The target end is the end of the ground line closer to the ground pad.
In a second optional implementation, as shown in
Of course, in addition to the above two optional implementations, the ground line of the ground line group can also be connected to the driver chip in other ways. For example, in the first optional implementation described above, the source driver chip has a ground pad. The lead is connected to the ground pad at the other side of the driver chip, and the orthographic projection of the lead on the base substrate does not cross the orthographic projections of the two signal lines on the base substrate.
It should be noted that
In the above
In some embodiments, as shown in
Based on this, by adjusting the values of W, D, and S, as shown in
Therefore, when the differential signal line group 402 is actually designed, the value of S/D can be determined to be a constant according to different frame requirements. That is, in each differential signal line groups 402, two signal lines 4021 comprise a first signal line and a second signal line, each of the first signal line and the second signal line comprises a first segment and a second segment, the first segment of the first signal line is parallel to the first segment of the second signal line, and the second segment of the first signal line is parallel to the second segment of the second signal line. A ratio of a distance between the first segment of the first signal line and the first segment of the second signal line to a line width at a corresponding position of the first segment of the first signal line or the first segment of the second signal line equals to a ratio of a distance between the second segment of the first signal line and the second segment of the second signal line to a line width at a corresponding position of the second segment of the first signal line or the second segment of the second signal line. The ratio is constant in extending directions of the first segment and the second segment. That is, referring to
For ease of explanation, the above-mentioned
In summary, in the functional panel provided in the embodiments of the present disclosure, at least one ground line group and at least one differential signal line group are provided on the base substrate, respective one of the at least one ground line group corresponds to respective one of the at least one differential signal line group. Each ground line group comprises two ground lines, the orthographic projections of the two ground lines in each ground line group on the base substrate are respectively located on both sides of the orthographic projection of the corresponding differential signal line group on the base substrate, and the ground signal is used to shield the signal interference for the differential signal line group. In this way, external signal interference can be effectively reduced and the integrity of the signals transmitted on the differential signal line group can be ensured, thereby improving the signal transmission reliability of the differential signal line group.
An embodiment of the present disclosure provides a terminal comprising the functional panel of any of the foregoing embodiments of the present disclosure. The terminal can be a mobile phone, television, electronic paper, computer, digital broadcasting terminal, messaging device, game console, tablet device, medical device, fitness equipment, personal digital assistant, display, notebook computer, digital photo frame or navigator.
An embodiment of the present disclosure provides a method for manufacturing a functional panel, as shown in
step 501: providing a base substrate; and
step 502: forming at least one differential signal line group and at least one ground line group on a same side of the base substrate.
Respective one of the at least one ground line group corresponds to respective one of the at least one differential signal line group. Each differential signal line group comprises two signal lines, each ground line group comprises two ground lines, orthographic projections of the two ground lines in each ground line group on the base substrate are respectively on both sides of an orthographic projection of a corresponding differential signal line group on the base substrate, and two ground lines in the ground line group are connected to a same reference ground.
In the method for manufacturing a functional panel and the terminal provided in the embodiments of the present disclosure, at least one ground line group and at least one differential signal line group are provided on the base substrate, respective one of the at least one ground line group corresponds to respective one of the at least one differential signal line group. Each ground line group comprises two ground lines, the orthographic projections of the two ground lines in each ground line group on the base substrate are respectively located on both sides of the orthographic projection of the corresponding differential signal line group on the base substrate, and the ground signal is used to shield the signal interference for the differential signal line group. In this way, external signal interference can be effectively reduced, thereby improving the signal transmission reliability of the differential signal line group.
There may be multiple implementations about the above step 502. As described above, at least one differential signal line group and at least one ground line group are located at the same layer on the base substrate.
If the differential signal line group and the ground line group located on the base substrate are not segmented, that is, the differential signal line group provided on the base substrate is an entire segment of the differential signal line group, each ground line in the corresponding ground line group is an entire segment of ground line. In a case where the manufacturing materials of the two are the same, a conductive material layer can be formed on the base substrate, and one patterning process is performed to the conductive material layer to form the at least one differential signal line group and at least one ground line group. In another case where the manufacturing materials of the two are different, a first conductive material layer can be formed on the base substrate, one patterning process is performed to the first conductive material layer to form the at least one differential signal line group. Then a second conductive material layer is formed on the base substrate, and one patterning process is performed to the second conductive material layer to form the at least one ground line group. Alternatively, a second conductive material layer can be formed on the base substrate, one patterning process is performed to the second conductive material layer to form the at least one ground line group, and then a first conductive material layer is formed on the base substrate, and one patterning process is performed to the first conductive material layer to form the at least one differential signal line group.
In some embodiments, the differential signal line group and the ground line group located on the base substrate are both segmented. For example, the differential signal line group provided on the base substrate comprises multiple segments of differential signal line groups located at different layers, each ground line in the corresponding ground line group also comprises multiple segments of ground lines located at different layers, and respective one of the multiple segments of differential signal line groups corresponds to respective one of the multiple segments of ground lines. The differential signal line group and ground line of the corresponding segment are located at the same layer. For a method of manufacturing the differential signal line group and the corresponding ground line group in each layer, please refer to the foregoing method of manufacturing the differential signal line group and the ground line of the same layer.
Since there are various structures of the functional panel, please refer to
step 601: providing a base substrate, optionally the base substrate being made of glass or organic material; and
step 602: forming a reference ground layer and an insulation layer on the base substrate sequentially.
In an optional implementation, the reference ground layer is a whole-layer structure, and the reference ground layer can be formed on the base substrate through a process such as coating or sputtering. In another optional implementation, the reference ground layer is a patterned structure, a conductive film layer can be formed on the base substrate through a process such as coating or sputtering, and one patterning process is performed to the conductive film layer to obtain the reference ground layer. The manufacturing material of the reference ground layer can be a conductive material such as metal or carbon.
After the reference ground layer is formed, an insulation layer may be formed on the reference ground layer through a process such as coating or sputtering. The insulation layer may be made of an inorganic material.
The method may further comprise a step 603: forming at least one differential signal line group and at least one ground line group on the insulation layer.
In an optional implementation, after a plurality of vias are formed in the insulation layer (the plurality of vias correspond to the positions of the ground line groups to be formed), the plurality of vias in the insulation layer are filled with a conductive material. The conductive material may be the same as or different from the manufacturing material of the ground line. Then a conductive material layer is formed on the insulation layer, and one patterning process is performed to the conductive material layer to form a ground line group with vias. That is, the ground line groups and vias are manufactured through one patterning process.
In another optional implementation, after forming a plurality of vias in the insulation layer, a conductive ground layer can be formed on the insulation layer. Since the ground layer is directly covered on the insulation layer, the ground layer covering the plurality of vias described above is provided with a plurality of vias, respective one of which corresponds to respective one of the plurality of vias in the insulation layer. Then one patterning process is performed to the ground layer to form a ground line group. The finally formed at least one ground line group is connected to the reference ground layer through a plurality of vias in the insulation layer.
It should be noted that, in the above manufacturing method, one patterning process may comprise photoresist coating, exposure, development, etching, and photoresist stripping.
It is noted that, for the method of manufacturing other structures of the functional panel, reference may be made to the above manufacturing method, and for the relevant structures in the manufacturing method in the embodiment of the present disclosure, reference may be made to the foregoing device embodiments, which are not described in the embodiment of the present disclosure.
According to other embodiments of the present disclosure, a functional panel 400 is provided. The functional panel can be any of the above functional panels or a functional panel provided with differential signal line groups on other substrates.
In the functional panel provided by the embodiment of the present disclosure, each ground line group includes two ground lines, the orthographic projections of the two ground lines in each ground line group on the substrate are on both sides of the orthographic projection of the corresponding differential signal line group on the base substrate. The ground lines are used to shield the signal interference of the differential signal line group. In this way, external signal interference can be effectively reduced, thereby improving the signal transmission reliability of the differential signal line group.
If two ground lines in a ground line group are respectively connected to different reference grounds, each ground line can be regarded as an isolated ground line which is prone to generate additional noise and interference. In the embodiment of the present disclosure, the two ground lines in the ground line group are connected to the same reference ground, which can avoid the appearance of isolated ground lines and improve the anti-interference ability of the ground lines in the ground line group.
In order to further reduce the interference of external signals on the signal transmission of the differential signal line group, at least one end of the two ground lines in each ground line group are connected to each other and are connected to the same reference ground.
In one embodiment, as shown in
The internal structure of the chip is not shown in
In one embodiment, in addition to connecting the first ends of the two ground lines through the chip, the second ends of the two ground lines can also be connected through a bonding pad, and the first end and the second end of any ground line are the two opposite ends of any ground line in its extending direction. As shown in
Referring to
In the functional panel, the at least one differential signal line group includes a plurality of differential signal line groups, and the at least one ground line group includes a plurality of ground line groups. In an optional implementation, please refer to
In the functional panel provided by the embodiments of the present disclosure, each ground line group includes two ground lines, the orthographic projections of the two ground lines in each ground line group on the substrate are on both sides of the orthographic projection of the corresponding differential signal line group on the base substrate, the two ends of each ground line group and each differential signal line group are respectively connected to the bonding pad and the chip, and two ground lines of each ground line group are connected by the bonding pad or the structures inside the chip, thereby forming a loop around the differential signal line group. The ground lines are used to shield the signal interference of the differential signal line group. In this way, external signal interference can be effectively reduced, thereby improving the signal transmission reliability of the differential signal line group.
In some embodiments, as shown in
Therefore, when the differential signal line group 402 is actually designed, the value of S/D can be determined to be a constant according to different frame requirements. That is, in each differential signal line groups, two signal lines comprise a first signal line and a second signal line, each of the first signal line and the second signal line comprises a first segment and a second segment, the first segment of the first signal line is parallel to the first segment of the second signal line, and the second segment of the first signal line is parallel to the second segment of the second signal line. A ratio of a distance between the first segment of the first signal line and the first segment of the second signal line to a line width at a corresponding position of the first segment of the first signal line or the first segment of the second signal line equals to a ratio of a distance between the second segment of the first signal line and the second segment of the second signal line to a line width at a corresponding position of the second segment of the first signal line or the second segment of the second signal line. The ratio is constant in extending directions of the first segment and the second segment. That is, referring to
In actual implementation, due to the need to avoid other structures, the signal lines in the differential signal line group and the ground lines in the ground line group may have turning points.
In some embodiments, as shown in
In the embodiments of the present disclosure, at least one differential signal line group and at least one ground line group are located at the same layer on the base substrate 401. In this way, the ground line group and the differential signal line group are located on the same horizontal plane, thereby the interference signals can be effectively shielded when the ground line group can actually enclose the corresponding differential signal line group at the physical position. For example, if the differential signal line group provided on the base substrate is an entire segment of the differential signal line group, each ground line in the corresponding ground line group is an entire segment of ground line. If the differential signal line groups provided on the base substrate comprises multiple segments of differential signal line groups located at different layers, each ground line in the corresponding ground line group also comprises multiple segments of ground lines located at different layers, and respective one of the multiple segments of differential signal line groups corresponds to respective one of the multiple segments of ground lines. The differential signal line group and ground line of the corresponding segment are located at the same layer.
An embodiment of the present disclosure provides a terminal comprising the functional panel of any of the foregoing embodiments of the present disclosure. The terminal can be a mobile phone, television, electronic paper, computer, digital broadcasting terminal, messaging device, game console, tablet device, medical device, fitness equipment, personal digital assistant, display, notebook computer, digital photo frame or navigator.
An embodiment of the present disclosure provides a method for manufacturing a functional panel, as shown in
step 701: providing a base substrate;
step 702: forming at least one differential signal line group and at least one ground line group on a same side of the base substrate;
step 703: arranging at least one bonding pad and at least one driver chip on the base substrate;
wherein the at least one differential signal line group and the at least one ground line group connect the at least one bonding pad and the at least one driver chip, each differential signal line group of the at least one differential signal line group comprises two signal lines, each ground line group of the at least one ground line group comprises two ground lines, and orthographic projections of the two ground lines in each ground line group on the base substrate are on both sides of an orthographic projection of a corresponding differential signal line group on the base substrate, and two ground lines in the ground line group are connected to a same reference ground.
In the functional panel, the method for manufacturing the functional panel, and the terminal provided in the embodiments of the present disclosure, each ground line group includes two ground lines, the orthographic projections of the two ground lines in each ground line group on the substrate are on both sides of the orthographic projection of the corresponding differential signal line group on the base substrate, the two ends of each ground line group and each differential signal line group are respectively connected to the bonding pad and the chip, and two ground lines of each ground line group are connected by the bonding pad or the structures inside the chip, thereby forming a loop around the differential signal line group. The ground lines are used to shield the signal interference of the differential signal line group. In this way, external signal interference can be effectively reduced, thereby improving the signal transmission reliability of the differential signal line group.
It should be noted that in the drawings, the dimensions of layers and regions may be exaggerated for clarity of illustration. It will also be understood that when an element or layer is referred to as being “on” another element or layer, it can be directly on the other element or layer or intervening layers may be present. In addition, it can be understood that when a layer or element is referred to as being “between” two layers or two elements, it can be the only layer or element between the two layers or two elements, or one or more intervening layers or elements may also be present. Similar reference numerals indicate similar elements throughout.
Those skilled in the art will readily contemplate other embodiments of the present disclosure after considering the description and practicing the invention disclosed herein. This application is intended to cover any variations, uses, or adaptations of this disclosure that conform to the general principles of this disclosure and comprise the common general knowledge or conventional technical means in the technical field not disclosed by this disclosure. It is intended that the description and embodiments are considered as exemplary only, and a true scope and spirit of the disclosure are indicated by the following claims.
It should be understood that the present disclosure is not limited to the precise structures that have been described above and illustrated in the accompanying drawings, and various modifications and changes may be made without departing from the scope thereof. The scope of the disclosure is limited only by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
201810848255.1 | Jul 2018 | CN | national |
201811415511.4 | Nov 2018 | CN | national |
The present application is a Continuing-in-part application of Ser. No. 16/642,044, filed on Feb. 26, 2020 and entitled “FUNCTIONAL PANEL, METHOD FOR MANUFACTURING THE SAME AND TERMINAL”, which is the U.S. national stage entry of International Application No. PCT/CN2019/097879, filed on Jul. 26, 2019, which claims priority to Chinese Application No. 201810848255.1, filed on Jul. 27, 2018 and 201811415511.4, filed on Nov. 26, 2018, the entire disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 16642044 | Feb 2020 | US |
Child | 17855144 | US |