This application claims priority to Switzerland Patent Application No. 00942/13 filed May 13, 2013, the disclosure of which is hereby incorporated in its entirety by reference.
1. Field of the Invention
The present invention relates to a process for producing a multifunctional functional support, for example a console structure for a vehicle or a device, with a rigid support structure, in which operating elements and/or display elements are arranged behind a transparent surface layer which is continuous over substantially the entire functional support. The invention also relates to functional supports produced in this way.
2. Description of Related Art
Today, operating elements and display devices as well as buttons of all types are incorporated in automobile interiors in clearances in a large panel. This results in gaps and material transitions.
The solutions known today can be summarized as follows:
Membrane keypads with embossings or coating application: Membrane keypads meet the requirements of a continuous surface and, through embossings or selective coating or silicone application, formed-on button geometries, but are always restricted to a flat basic geometry. See for example DE 20 2005 012 021 U1.
Thermoformed film: Thermoforming allows films to be brought into a three-dimensional form and also allows button geometries to be formed on. Limitations are set by the necessary bending radii (no sharp edges are possible), the minimum distance between buttons (there must be sufficient material between the buttons for the thermoforming). The functional actuation of such a button is also not simple to achieve, since the deformed film also has to follow the travel of the button when it is depressed. Such films also have a strong tendency to fail quickly in an actuation endurance test.
Silicone surface: Freely formed functional operator interfaces can be produced from silicone. This solution is distinguished by a soft surface and limited brilliance of the silicone colours. For this reason, this solution is often not chosen specifically for large-area applications.
One of the aims of this invention is to produce a continuous three-dimensionally formed panel with integrated operating and/or display elements from a plastic with a high-quality appearance. In this respect, the operating elements/buttons preferably have tactile feedback, which is of key importance for operating reliability.
Consequently, the present invention relates firstly to a process and also to a correspondingly produced multifunctional functional support.
Specifically, the invention relates on the one hand to a process for producing a multifunctional functional support with a rigid support structure, in which operating elements and/or display elements are arranged behind a transparent surface layer which is continuous over substantially the entire functional support. The process is in this case characterized in particular in that at least the following steps are performed:
A first preferred embodiment of this process is characterized in that, before, during or after step i), the plastic film is printed and/or decorated preferably on the first and/or the second side, preferably in a screen printing process, a laser printing process, a stamp printing process, a spray printing process, an offset printing process or a digital printing process. —When the roll is being drawn through the injection mould, it is positioned by printed-on positioning marks. On the (TPU) roll there is for example for each image a positioning mark printed on respectively to the left and right in a black colour. To the left for the longitudinal alignment for example a square box, to the right for the lateral alignment an oblong bar. These positioning marks are detected by a respective optical sensor in the injection mould and then the roll is automatically positioned correctly for each individual image by means of advancement and lateral correction. These marks may be applied in this printing step. The positioning may be additionally performed with previously punched positioning holes.
Alternatively or in addition, it is possible according to a further preferred embodiment to print the blank at least in places after step ii), preferably using one of the aforementioned processes, and/or to decorate it. Alternatively, it is possible to subject the blank to laser marking. The marking is particularly advantageous in this phase of the production process if it cannot be ensured in the course of the backmoulding that the position of the film is arranged exactly precisely over the future positions of the switching elements/display elements.
A further preferred embodiment is characterized in that, by step ii), the plastic film is transformed at least in places into a three-dimensional surface form and stabilized in it. In other words, in the course of step ii), the film may either remain in its flat position, or else it may be brought into a three-dimensional surface form, either by being placed into the injection mould in a correspondingly formed way or by the actual process of the backmoulding.
The operating element is preferably at least one switch with tactile feedback.
A further preferred embodiment is characterized in that the display element is an LCD display, preferably a (resistive or capacitive) touch-sensitive display.
A further preferred embodiment is characterized in that the functional support has both at least one operating element in the form of a switch with tactile feedback and at least one display element, preferably a resistive or capacitive touch-sensitive display element.
A further preferred embodiment is characterized in that the plastic film is a plastic film of TPE, TPU (thermoplastic polyurethane elastomers) or of polyamide, preferably of polyamide 6 or polyamide 12, or of TPU. A preferred embodiment is generally characterized in that the plastic film has a thickness in the range of 150-300 μm, preferably in the range of 150-225 μm.
A further preferred embodiment is characterized in that the casting compound for forming the surface layer is a transparent polyurethane resin that cures in the presence of a curing agent, is self-curing and/or thermosetting, said resin having at least in the region of the operating elements and the membrane regions arranged at least partially around them a thickness of no more than 0.4 mm, and the surface layer preferably having in these regions a thickness of at least 0.2 mm.
According to a preferred embodiment, it generally proves to be advantageous if the production process that is used is characterized in that the plastic film is supplied from a roll, preferably in a form in which it is already printed on the front side and/or the rear side, is also removed again to a roll (apart from the cut-out regions) and, in a first processing step, is backmoulded in a first injection mould to form the hard plastic support. Preferably, before the closing of the mould, the plastic film is stretched over convex regions of the mould, covering them, and/or brought to bear against concave regions of the mould by using negative pressure (in that corresponding vacuum channels are provided in the mould), and is subsequently clamped in the edge region, preferably around the periphery, and then the mould is closed.
It may in this respect be advantageous if, when closing and/or opening the mould, the plastic film is automatically cut right away to a peripheral contour.
After the first processing step, the resultant blank may be flooded on the side of the plastic film that is opposite from the hard plastic support with the transparent curing casting compound, the blank preferably being removed from the first injection mould, preferably with the aid of an ejector, and placed into a second mould, and the curing casting compound being moulded on in this mould to form the transparent surface layer. In this respect, the blank is preferably subsequently cut to the peripheral final component contour to form the component.
The component may subsequently be completed by adding further functional elements, in particular snap domes, printed circuit boards or lighting elements.
The present invention also relates to a multifunctional functional support with at least one operating element and preferably at least one display element, characterized by a plastic film of a thickness in the range of 0.05-0.4 or 0.1-0.4 mm, directly backmoulded on a first side with a hard plastic support which is continuous apart from at least one or two clearances, which film has on the opposite, second side a direct, substantially continuous transparent surface layer of a cured casting compound. In this case there is arranged in at least one of the clearances at least one operating element in the form of a switch, preferably with tactile feedback, around which there is a flexible membrane region, around at least part of the periphery, to allow the travel of the button, in which region the flexible layered structure consists only of the optionally printed plastic film and the surface layer.
A first preferred embodiment of such a functional support is characterized in that it is produced in a process such as that described above.
A further preferred embodiment of the functional support is characterized in that it also has at least one display element, and in that the at least one operating element and the at least one display element are preferably secured on a common printed circuit board, which is in particular preferably secured to the hard plastic support. In this case, preferably all of the operating elements and display elements of the entire functional support are arranged in a single common printed circuit board.
According to a further preferred embodiment, regions that at least partially protrude above the surface are formed from the casting compound on the surface, in particular in the regions of the operating elements. However, in the membrane regions mentioned, the thicknesses specified above of the surface layer remain, in order to ensure sufficient mobility for the tactile feedback of the switches.
The hard plastic support and/or the printed circuit board on which operating elements and/or display elements are arranged may have light guides, light sources and/or light shields.
Such a functional support may be an integral console element or part of a console element for a vehicle, a steering wheel for a vehicle, a medical device, a computer mouse, a games console or an interface for a mobile phone or a desktop phone.
Preferred embodiments of the invention are described hereinafter with reference to the drawings, which merely serve for the purpose of explanation and should not be interpreted as restrictive. In the drawings:
Step 1 from
The film 3 is then positioned by being oriented at the positioning marks 12 in the course of step 2 from
The film 3 on the plastic support 5 may then be decorated once again (or for the first time) in the course of step 3 from
Transparent casting compound 1 with formed-on raised button portions 2 or decorative elements: The casting compound for creating the surface layer 1 is the most important material of this invention. It serves on the one hand for generating substantially any desired three-dimensional surface structure (impression of the mould surface). On the other hand, substantially any desired structures, such as forms of button or decorative ridges, etc., may be provided on the surface with the casting compound. This typically takes place within a minimum thickness at the thinnest point of 0.1-2.0 mm. This surface layer 1 may be continuous over the entire surface or else only in sub-regions. The surface layer 1 has the following properties:
The casting compound normally has in the membrane region 6 of the buttons a thickness of 0.1 mm to 0.3 mm, in order to allow the actuation of the button with tactile feedback. In the other regions, the surface feels hard because of the hard plastic backmoulding 5, the hard underlying display elements 9, or the thick button regions 2.
The hardness of the casting compound can be set by the mixing ratio of curing agent to coating composition. It is normally preferred that the hardness lies in the range of 70-100 Shore A, or in the range of 80-100 Shore D, preferably 80-85 Shore D. In particular preferably in the range of 80 Shore A.
This membrane 6 in the button region allows tactile feedback of the buttons 7, and this in the case of a three-dimensional surface 1 which is continuous over the entire component.
Polyurethane has proven to be a highly suitable casting compound material. The polyurethane is applied to the panel by means of high-pressure or low-pressure reaction injection moulding (RIM), an intimate bond between the plastic film 3 and the surface layer 2 automatically forming. There are three possible procedures in this respect:
A mould release agent may be advantageous.
After the flooding, the panel is preferably further processed, for example cut to size (film and sprue). It may also be necessary for the transparent casting compound still to be subsequently polished.
Plastic film 3: The film should have the following properties:
The film 3 preferably consists of a 50-300 μm thick TPU film. The TPU may in this case be aliphatic or non-aliphatic. 200 μm is a preferred thickness.
Similar to the casting compound, the hardness of the film 3 is preferably in the range of 70-100 Shore A, or 80-100 Shore D, preferably 80-85 Shore D. In particular preferably in the range of 80 Shore A.
In order to achieve better adhesion with respect to the backmoulding 5, the film 3 may be cleaned with alcohol, preheated with plasma, corona or flame or include a co-extruded olefin layer.
Alternatively, other materials are also conceivable, such as polyamide PA or a TPE, etc.
Decoration 4: The film 3 may be printed on the front side or on the rear side (for example screen printing). Symbols may already be applied on the film. However, uncontrollable distortion of the symbols and their position may occur during the backmoulding of the soft film 3, so that the following procedure is preferred:
The process can also be used with the film 3 printed on the rear side, but then printing is only performed with surface colour and the symbols are lasered from behind and if necessary also filled with symbol colour by pad printing. Hard plastic support 5: The support 5 must perform the following functions:
For the backmoulding of the TPU film 3, preferably ABS/PC plastic is used, but PA 6 or ABS/PA or similar systems may also be used.
The wall thickness is substantially dependent on the component size and the installation depth.
Flexible membrane region without plastic backmoulding 6: In order to allow tactile feedback in the case of the operating elements 7 or to actuate a resistive display 9, a membrane 6 is required. This membrane 6 consists only of the decorated film 3 and the casting compound of the surface layer 1. The thickness of the membrane 6 results from the thickness of the film 3 and the thickness of the casting compound of the surface layer 1 in the membrane region. This total thickness should not exceed 600 μm, because otherwise a sharp tactile switching feeling is normally no longer possible.
In this membrane region 6, the film 3 is not backmoulded (window/clearance).
The length of the membrane (distance from edge of the formed-on button 2 to the backmoulding 5) should be in the range of 2-10 mm, preferably in the range of 4-6 mm, typically about 5 mm, but is dependent on the button geometry and the switching feeling to be achieved.
Microswitches/snap domes 7: In order to obtain tactile feedback of the button actuation, a microswitch 7 or a snap dome is provided under the button 2. The actuating force and the snap can be influenced by the choice of the snap dome.
It is one of the very great advantages and unique features of this invention that a tactile button feeling can be produced in a continuous panel surface.
However, resistive buttons (silicone switching mat instead of microswitch) and capacitive buttons can also be achieved, or a combination of these technologies.
Backlighting 8: The backlighting of the buttons or illumination of individual areas or functional lighting may be achieved by means of normal LEDs and/or light guides. However, it is also possible to use a light guiding film or EL films in the case of flat structures.
Display elements/displays 9: Displays may be secured to the plastic support. Thanks to the thin and flexible layer 1/3 over the display 9, it is possible also to use resistive touchscreens as well as capacitive touchscreens.
Printed circuit board 10: The printed circuit board serves as a receptacle for the operating elements 7 and display elements 9. A rigid, flexible or rigid-flexible printed circuit board 10 may be used for this. In the case of extreme surface curvatures, 3D MID technology and the like are also possible.
The printed circuit board 10 may be secured directly to the panel by means of screws, adhesive bonding, or snap-on connections on the plastic backmoulding.
A production process for such a component is presented in detail on the basis of
Specifically, in
Provided underneath is a peripheral clamping frame 31. Provided underneath still further is the lower injection mould 29, which has a convex form corresponding to the concave form in the injection mould 28, and which has in this case the supply line 34 for the hard plastic. Also provided in this mould is a peripheral groove 32 for receiving the clamping frame.
As shown in
Then, according to
This blank 35 is then placed into a second mould, as it is shown in the open state in
It still has in its edge region widely overhanging regions and, in particular, typically a sprue surplus 38. This is then detached at the intended peripheral cutting points 37, so as to produce, as represented in
A possible such component is shown in the upper region of
A further somewhat different type of construction is shown in
In a second step, the film, as is shown in
In the third step, the first mould is closed and, preferably in parallel, the film is cut from the roll, and is backmoulded with the hard plastic material in the mould.
In the following step, the blank is removed and placed into a second mould, a flooding mould. In the then following fifth step, this second mould is closed and flooded on the side opposite from the hard plastic material with the transparent casting compound material, which is also cured in the mould. Subsequently, still in the mould or after removal of the blank from the mould, the peripheral pressing edge is cut and the sprue is thereby likewise cut off right away.
In a final step, the component may be assembled by appropriately adding further functional elements such as snap domes, printed circuit boards, etc. to form the final component.
General advantages of an options component according to the invention:
A three-dimensionally curved panel is provided, with
Correspondingly, the invention relates to a panel comprising a backmoulded film which on the upper side is coated at least in places, preferably all over, with a clear casting compound. Operating and display elements are integrated in this panel. Moreover, the surface layer additionally has formed-on structures. The operating elements are buttons with tactile feedback. The display elements may be resistive or capacitive touch displays. The panel comprises a backmoulded and decorated soft TPU film, which is flooded with polyurethane by the RIM process. Provided on the underside of the buttons are snap domes or contact pills, which produce button haptics and establish electrical contact. The support has a clearance around the periphery of the button geometry, in order to allow the travel of the button when it is depressed. A microswitch or other contact technology may be used on the underside of the buttons. The support may have light guides or light shields, in order to achieve functional lighting. The surface layer may be applied substantially in any desired thickness, form and structure; it may be provided as a continuous surface area or only in individual regions, but then at least in the region of the functional elements and covering them completely without gaps. Typically, the entire surface is provided with a transparent surface layer in the manner of a protective layer, for example to increase scratch resistance. A lens structure may be incorporated in the surface, in order to achieve optical lens effects. The casting compound may in this case also not cure reactively, but by means of heat or other external energy sources.
Number | Date | Country | Kind |
---|---|---|---|
00942/13 | May 2013 | CH | national |