This patent application is related to co-pending, commonly-owned U.S. patent application Ser. No. 11/467,108 entitled “Exercise Assemblies Having Foot-Retaining Apparatus” filed concurrently herewith on Aug. 24, 2006; U.S. patent application Ser. No. 11/467,094 entitled “Exercise Assemblies Having Self-Adjusting Pad Devices” filed concurrently herewith on Aug. 24, 2006; and U.S. patent application Ser. No. 11/467,066 entitled “Exercise Bench Assemblies Having Wheels With Integral Brakes” filed concurrently herewith on Aug. 24, 2006, which applications are hereby incorporated by reference.
This invention relates generally to exercise apparatus and methods having adjustable frame members that enable a user to perform exercises using functional training movements, that is, movements that more closely approximate the movements associated with daily living, including sports, hobbies, work, and therapeutic activities.
The advantages of weight-training exercise machines are widely recognized. Conventional weight-training exercise machines may feature single or multiple stations which enable a user to perform one or a variety of exercises for developing and toning different muscle groups. For example, the various stations of such exercise machines may include one or more stations that enable a user to exercise muscles of the arms and upper body using “press,” “shrug,” or “curl” types of movements, and one or more stations for exercising muscles of the legs using “squat,” “press,” or “extension” types of movements. Such weight machines provide the desired muscle training capability in a convenient, safe, and efficient manner.
Although prior art exercise apparatus and methods have achieved desirable results, there is room for improvement. For example, some users may desire to enhance their ability to perform certain movements, such as those movements associated with a particular sport. More specifically, the user may wish to strengthen muscles associated with swinging a sporting apparatus, such as a bat, racquet, stick, golf club, or other sporting apparatus. Similarly, the user may wish to strengthen muscles used in throwing or tossing a sporting device, such as a baseball, shot put, discus, football, or other sporting device. Although prior art apparatus enable a user to exercise a variety of different muscle groups using a variety of different movements, the standard movements afforded by such apparatus (e.g. press, shrug, curl, squat, extension, etc.) may not resemble the actual movements associated with the user's sport of choice. Therefore, apparatus and methods that more closely approximate the movements associated with the user's chosen sporting event would have utility.
The present invention is directed to exercise apparatus and methods having adjustable frame members that enable a user to perform exercises using functional training movements, that is, movements that more closely approximate the movements associated with a particular sporting event. Embodiments of the invention may advantageously provide improved capability to enable a user to develop muscles associated with the user's chosen sporting event, including, for example, swinging a sporting apparatus, throwing or tossing a sporting device, or any other desired functional training movements.
In one embodiment, an exercise assembly includes a load, and a support assembly operatively positioned relative to the load, the support assembly including an upwardly projecting portion and a pair of outwardly extending frame members coupled to the upwardly projecting portion by a coupling assembly, each frame member having a proximal end portion coupled to the coupling assembly, and a distal end portion spaced apart from the proximal end portion. The coupling assembly is configured to enable controllable adjustment of a height of the distal ends of the outwardly extending frame members relative to a support surface. A force-transferring assembly is operatively coupled to the load and to the support assembly and includes first and second portions coupled to and extending at least partially along each of the outwardly extending frame members. The force-transferring assembly is configured such that a training force applied to at least one of the first and second portions induces an associated force on the load.
In further embodiments, the coupling assembly is further configured to permit an angle between the outwardly extending frame members to vary. The angle may freely vary during application of the training force to the at least one of the first and second portions. Alternately, the angle may remain fixed during application of the training force. In still other embodiments, the angle may be varied by controllable adjusting the positions of the frame members independently, or dependently.
Embodiments of the present invention are described in detail below with reference to the following drawings:
Many specific details of certain embodiments of the invention are set forth in the following description and in
In general, embodiments of apparatus and methods in accordance with the present invention enable a user to perform exercises using functional training movements. As used in this disclosure, the term functional training movements refers to movements for training the body the way it will be used in activities of daily living, including movements associated with sports, or movements associated with a user's work, hobby, or therapeutic activities. Examples of functional training movements include, but are not limited to, torso bending and twisting movements, pushing and pulling movements, and sporting movements such as swinging a sporting apparatus (e.g. a bat, racquet, stick, golf club, etc.), throwing or tossing a sporting device (e.g. a baseball, shot put, discus, football, etc.), or any other desired functional training movements.
A second exercise station 130 is coupled to the upright support member 112 and the shield member 114 by an adjustable coupling assembly 140 (shown in
As best shown in
In some embodiments, the frame members 132 are separate components that are coupled together by the cross member 134, and in other embodiments, the frame members 132 and the cross member 134 are different portions of a single, unitary member. In further embodiments, the assembly including the frame members 132 and the cross member 134 may be formed from two pieces (e.g. two “L”-shaped members), or any other suitable number of pieces. In general, each frame member 132 projects outwardly from the cross member at an angle having a corresponding vertex such that the assembly including the frame members 132 and the cross member 132 generally forms an angled member having a pair of angles and a pair of vertices.
More specifically, in some embodiments, the frame members 132 are rigidly coupled to the cross member 134 at a fixed angle α. Alternately, the proximal end portions 133 may be pivotably (or hingeably) coupled to the cross member 134 by pivotable coupling assemblies 131 to enable the angle α to be adjusted as desired by the user. After adjustment to a desired value, the angle α may remain fixed during the exercise, such as by providing the user with a locking pin 141 selectively engageable through one or more suitable portions of the pivotable coupling assembly 131 (and the frame and cross members 132, 134) to lock the frame member 132 in a fixed position relative to the cross member 134. Alternately, the locking pin 141 may be disengaged to enable the angle α to vary freely during an exercise.
Furthermore, for some functional training exercises, it may be desirable for the user to allow the angle α to vary freely during the exercise to enable the user to perform the desired functional training movements using one or both of the second handles 138 of the second exercise station 130. In some embodiments, as shown in
As best shown in
In operation, a user may adjust the positions of the frame members 132 of the second exercise station 130 to any desired height h relative to the base assembly 102. More specifically, the user may actuate the release lever 162 to cause the retractable portion 158 of the locking assembly 156 to disengage from the indexing portion 150 of the plate 148, enabling the frame members 132 to be raised and lowered to the desired height h. The user may then perform functional training exercises using the second exercise station 130, as described more fully below.
As further shown in
A second cable 183 engages a lower pulley 179 of the first double-floating pulley 178 and extends downwardly to engage with fifth and sixth fixed pulleys 184, 185. One possible structural arrangement of the cable and pulley assembly 170 and the lower portion of the exercise assembly 100 is shown in
With continued reference to
Similarly, a fourth cable 194 engages the second single floating pulley 187 and extends upwardly to a twelfth fixed pulley 195 positioned proximate an upper portion of the upright support member 112, and to a thirteenth fixed pulley 196 coupled to the lateral support member 116. A first end of the fourth cable 188 terminates at the first exercise station 120, and may be coupled to one of the first handles 122 (
As best shown in
In operation, a user may select one of the exercise stations 120, 130, 105 and a suitable number of plates 171 to serve as a training load 174. For example, using the first exercise station 120, the user may apply a training force on one or both of the first handles 122 (e.g. by pulling downwardly on the handles 122), causing tension in the cable and pulley assembly 170 and applying a lifting force on the training load 174. Similarly, using the third exercise station 105, the user may apply a training force on the end of the second cable 172 (e.g. by pulling upwardly on a handle or bar, not shown), causing tension in the cable and pulley assembly 170 and applying a lifting force on the training load 174.
When using the second exercise station 130, the user may adjust the height h of the frame members 132 relative to the base assembly 102 as described above. The user may then apply a training force on one or both of the second handles 138, causing tension in the cable and pulley assembly 170 and applying a lifting force on the training load 174. For those embodiments having pivotable coupling assemblies 131 that allow adjustment of the angle α between the frame members 132, the user may adjust the angle α to a desired value for performing an exercise. The angle α may remain fixed during the exercise, or alternately, may vary freely during the exercise, allowing the user considerable freedom to perform functional training movements during the exercise using the second exercise station 130.
Embodiments of apparatus and methods having adjustable frame members in accordance with the present invention may advantageously provide improved capability to enable a user to develop muscles associated with the user's every day life, such as a chosen sporting event, a hobby, or work or therapeutic activities, thereby enabling the user to perform exercises using functional training movements. More specifically, because the frame members are variably adjustable in both height h and angle α, the user may more readily perform movements intended to develop muscles associated with the user's chosen sporting event, including, for example, swinging a sporting apparatus, throwing or tossing a sporting device, or any other desired functional training movements.
In accordance with further embodiments of the invention, bench assemblies for exercise machines may be equipped with integral brakes. Such exercise machine bench assemblies may automatically engage to lock or brake the wheels to prevent movement of the bench assembly when a user positions herself on the bench for use of the exercise machine, and may automatically disengage when the bench assembly is not in use user to allow the user to freely and easily move the bench assembly to another location.
The wheel assembly 220 includes a biasing mechanism 230 that engages the axle 224. In this embodiment, the biasing mechanism 230 includes a slide rod 232 that is slideably engaged through a first aperture 233 disposed in a retaining portion 234 of the main housing 218, and through a second aperture 235 disposed in the axle housing 219. A spring 236 is disposed about the slide rod 232 and is captured between the retaining portion 234 and a retaining washer 238. A retaining pin 237 is engaged through a retaining aperture 239 in the slide rod 232 and retains the retaining washer 238 on the slide rod 232. Thus, the spring 236 may be compressed between the retaining washer 238 and the retaining portion 234, thereby biasing the slide rod 232 in the downward direction 229.
As further shown in
In an initial position, when the user is not yet positioned on the bench assembly 200, the biasing mechanism 230 biases the axle 224 and the wheels 222 in the downward direction 229 within the slots 228. In this position, the brake rod 240 is not engaged with the detent features 252 of the wheels 222, and therefore, the wheels 222 and axle 224 are free to rotate, allowing the wheels 222 to roll on the support surface. Thus, the user may lift a non-wheeled end portion 254 of the bench assembly 200 (
With the bench assembly 200 in the desired position, the user may position themselves onto the bench assembly 200. The weight of the user compresses the spring 236 of the biasing mechanism 230 and causes the axle 224 to slide in the upward direction 227 within the slots 228. As the biasing mechanism 230 is compressed, the brake rod 240 engages into one of the detent features 252 of the wheels 222, thereby locking the wheels 222 into a fixed, non-rotating position. The bench assembly 200 then remains in a non-rolling, fixed position on the support surface as the user performs an exercise using, for example, the second exercise station 130. After the user has performed the exercise and gets off of the bench assembly 200, the spring 236 of the biasing mechanism 230 automatically re-expands, biasing the axle 224 and wheels 222 in the downward direction 229, disengaging the brake rod 240 from the detent features 252 and allowing the wheels 222 to roll freely on the support surface.
It will be appreciated that a variety of alternate embodiments of biasing mechanisms 230 may be conceived, and that the invention is not limited to the particular embodiment described above and shown in the accompanying figures. For example, in alternate embodiments, the spring 236 may be replaced or augmented with other forms of biasing devices, including leaf springs, hydraulic or pneumatic cylinders, compressible resilient biasing materials, or any other suitable biasing devices. Similarly, the slide rod 232 may be replaced or augmented with additional rods or members that engage the axle to provide the desired downward biasing of the wheels 222. Furthermore, in alternate embodiments, different shapes, sizes, and spacings of the detent features 252 may be employed.
Embodiments of bench assemblies in accordance with the present disclosure may provide significant advantages over the prior art. For example, because the integral braking features of the wheel assembly automatically engages and disengages as the user gets on and off the bench assembly, the bench assembly provides the desired braking of the wheels in a highly convenient manner. The user is not required to stoop to actuate any manual brake mechanism, and instances wherein the user forgets to apply a manual brake mechanism before beginning an exercise are eliminated. Therefore, embodiments of bench assemblies in accordance with the invention may improve the user's satisfaction with the exercise experience.
In accordance with still other embodiments of the invention, exercise assemblies may include apparatus for retaining the feet of a user during the performance of an exercise. Such exercise assemblies may advantageously provide improved control to a user during the performance of an exercise, particularly during those exercises that tend to lift the user upwardly during the performance of the exercise. Thus, embodiments of the invention may improve the user's exercise experience.
For example,
It will be appreciated that a variety of alternate embodiments of foot-retaining assemblies 300 may be conceived, and that the invention is not limited to the particular embodiment described above and shown in the accompanying figures. For example, in alternate embodiments, the retaining braces 302 and foot pads 304 may have a variety of shapes and configurations that sufficiently provide the desired foot-retaining spaces 306 for the user's feet 310. The retaining braces 302 may, in alternate embodiments, be positioned along the outer lateral portions of the user's feet. Alternately, the braces and pads 302, 304 may be integrally formed into a single foot-retaining unit. In still further embodiments, the foot pads 304 may be eliminated, and the user's feet may be engaged directly with the retaining braces 302 or other suitable retaining members to maintain the desired position of the user's feet proximate the base assembly 102.
Embodiments of exercise methods and apparatus having foot-retaining assemblies may provide significant advantages over the prior art. For example, because the foot-retaining assembly reduces or eliminates vertical movement of the user's foot, the user may prevent vertical movement of his body during exercises. The user may thereby receive an improved workout, and a more satisfying exercise experience.
The pad assembly 410 includes a pair of pad members 412 slideably positioned on the opposing lateral ends of the cross support 406. Each pad member 412 includes a contoured portion 413 that is configured to receive and engage with a portion of a user's body during an exercise. As best shown in
Of course, the invention is not limited to the particular embodiment described above, and a variety of alternate embodiments of self-adjusting pad devices may be conceived. For example, in alternate embodiments, a variety of different exercise stations may be equipped with self-adjusting pad assemblies in accordance with the present disclosure, including exercise stations that are configured for exercising a user's arms, abdominals, or any other suitable portion of the user's body. Also, the pad members may have a variety of suitable shapes. In one particular embodiment, as shown in
Embodiments of pad assemblies in accordance with the present disclosure may provide significant advantages over the prior art. Embodiments of the invention may advantageously provide improved positioning of pad devices to meet the needs of different users in a convenient, efficient, and cost-effective manner. Thus, because pad assemblies in accordance with the present invention may adjust with little or no effort from the user, the user may have a more comfortable and satisfactory exercise experience.
While preferred and alternate embodiments of the invention have been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of these preferred and alternate embodiments. Instead, the invention should be determined entirely by reference to the claims that follow.
Number | Name | Date | Kind |
---|---|---|---|
2942698 | Bolinger | Jun 1960 | A |
3102298 | Sheahan | Sep 1963 | A |
4821369 | Daniels | Apr 1989 | A |
5421636 | Gamble | Jun 1995 | A |
5788614 | Simonson | Aug 1998 | A |
5799366 | Zocco et al. | Sep 1998 | A |
5916072 | Webber | Jun 1999 | A |
6090020 | Webber | Jul 2000 | A |
6905446 | Greenland | Jun 2005 | B2 |
6988977 | Webber et al. | Jan 2006 | B2 |
7029427 | Vuurmans et al. | Apr 2006 | B2 |
7094185 | Greenland | Aug 2006 | B2 |
7096533 | Griepentrog | Aug 2006 | B2 |
7101327 | Baumler et al. | Sep 2006 | B1 |
7223213 | Golesh | May 2007 | B2 |
7396319 | Ellis | Jul 2008 | B1 |
7476184 | Batca | Jan 2009 | B1 |
7695418 | Ish, III et al. | Apr 2010 | B2 |
20020013200 | Sechrest et al. | Jan 2002 | A1 |
20020193214 | Ish, III | Dec 2002 | A1 |
20030027697 | Baumler | Feb 2003 | A1 |
20030032530 | Sechrest et al. | Feb 2003 | A1 |
20030045406 | Stone | Mar 2003 | A1 |
20030078141 | Webber | Apr 2003 | A1 |
20030092541 | Giannelli | May 2003 | A1 |
20030100413 | Huang | May 2003 | A1 |
20030134722 | Greenland | Jul 2003 | A1 |
20030176261 | Simonson et al. | Sep 2003 | A1 |
20030195091 | Webber et al. | Oct 2003 | A1 |
20040029688 | Webber et al. | Feb 2004 | A1 |
20040214697 | Gerschefske et al. | Oct 2004 | A1 |
20050124470 | Schopf | Jun 2005 | A1 |
20060100069 | Dibble et al. | May 2006 | A1 |
20060189457 | Ripley | Aug 2006 | A1 |
20060247097 | La Voie et al. | Nov 2006 | A1 |
20060264304 | Habing | Nov 2006 | A1 |
20080026919 | Lundquist et al. | Jan 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20080051267 A1 | Feb 2008 | US |