The increasing miniaturization of biotechnology devices requires an increased resolution for deposition of materials on such devices. A variety of known techniques allow for medium to high resolution patterning on surfaces. However, such techniques present disadvantages such as material incompatibility or contamination.
Provided herein are methods for surface patterning, the methods comprising: applying a first set of molecules to a surface of a structure, wherein each of the first set of molecules binds to the surface and lacks a reactive group capable of binding to a nucleoside; applying electromagnetic radiation (EMR) to predetermined regions of the surface, wherein the EMR comprises a wavelength from about 100 nm to about 300 nm, wherein application of the EMR results in removal of the first set of molecules at the predetermined regions, thereby defining different loci for oligonucleic acid extension; and synthesizing a plurality of oligonucleic acids, wherein each oligonucleic acid extends from a different locus, and wherein the different loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Further provided are methods wherein greater than about 90% of the first set of molecules are removed at the predetermined regions of the surface following application of EMR. Further provided are methods wherein about 100% of the first set of molecules are removed at the predetermined regions of the surface following application of EMR. Further provided are methods wherein the predetermined regions have a width of about 1 to about 500 um. Further provided are methods wherein the predetermined regions have a width of about 1 to about 100 um. Further provided are methods wherein the predetermined regions have a width of about 3 um to about 60 um. Further provided are methods wherein the predetermined regions have a width of at least 3 um. Further provided are methods wherein the predetermined regions have a perimeter that is a circle or a rectangle in shape. Further provided are methods wherein the first set of molecules comprises a fluorosilane. Further provided are methods wherein the first set of molecules comprises perfluorooctyltrichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane. Further provided are methods further comprising applying a second set of molecules to the surface after application of the EMR, wherein each of the second set of molecules binds to the predetermined regions of the surface and comprises the reactive group capable of binding to a nucleoside. Further provided are methods wherein the second set of molecules comprises an aminosilane. Further provided are methods wherein the second set of molecules comprises N-(3-triethoxysilylpropyl)-4-hydroxybutyramide (HAPS), 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, 3-glycidoxypropyltrimethoxysilane (GOP S), or 3-iodo-propyltrimethoxysilane. Further provided are methods wherein each of the oligonucleic acids comprises about 25 bases to about 2 kb in length. Further provided are methods wherein each of the oligonucleic acids comprises about 25 bases to about 150 bases in length. Further provided are methods wherein the oligonucleic acids extending from each locus are about 80% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Further provided are methods wherein the oligonucleic acids extending from the different loci collectively encode sequence for a preselected gene. Further provided are methods wherein the EMR comprises a wavelength from about 150 to about 200 nm. Further provided are methods wherein the EMR has a wavelength of about 172 nm. Further provided are methods wherein the surface is substantially planar. Further provided are methods wherein the surface comprises microstructures. Further provided are methods wherein the microstructures comprise channels or wells. Further provided are methods wherein the EMR is emitted from a lamp or a laser. Further provided are methods wherein the lamp comprises an emission source in the shape of a cylinder or a flat panel. Further provided are methods wherein the flat panel has a surface area that is at least 36 inches squared. Further provided are methods wherein the structure is a plate, tape, or belt.
Provided herein are methods for surface patterning, the methods comprising: applying a first set of molecules to a surface of a structure, wherein each of the first set of molecules comprises a reactive group capable of binding to a nucleoside; applying electromagnetic radiation (EMR) to predetermined regions of the surface, wherein the EMR comprises a wavelength from about 100 nm to about 300 nm, wherein application of the EMR results in removal of the first set of molecules at the predetermined regions, thereby defining different loci for oligonucleic acid extension; and synthesizing a plurality of oligonucleic acids, wherein each oligonucleic acid extends from a different locus, and wherein the different loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Further provided are methods wherein greater than about 90% of the first set of molecules are removed at the predetermined regions of the surface following application of EMR. Further provided are methods wherein about 100% of the first set of molecules are removed at the predetermined regions of the surface following application of EMR. Further provided are methods wherein the predetermined regions have a width of about 1 to about 500 um. Further provided are methods wherein the predetermined regions have a width of about 1 to about 100 um. Further provided are methods wherein the predetermined regions have a width of about 3 um to about 60 um. Further provided are methods wherein the predetermined regions have a width of at least 3 um. Further provided are methods wherein the predetermined regions have a perimeter that is a circle or a rectangle in shape. Further provided are methods wherein the structure is a plate, tape, or belt. Further provided are methods wherein the first set of molecules comprises an aminosilane. Further provided are methods wherein the first set of molecules comprises N-(3-triethoxysilylpropyl)-4-hydroxybutyramide (HAPS), 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, 3-glycidoxypropyltrimethoxysilane (GOPS), or 3-iodo-propyltrimethoxysilane. Further provided are methods further comprising applying a second set of molecules to the surface after application of the EMR, wherein each of the second set of molecules binds to the predetermined regions of the surface and lacks the reactive group capable of binding to a nucleoside. Further provided are methods wherein the second set of molecules comprises a fluorosilane. Further provided are methods wherein the second set of molecules comprises perfluorooctyltrichlorosilane, octylchlorosilane, octadecyltrichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane. Further provided are methods wherein each of the oligonucleic acids comprises about 25 bases to about 2 kb in length. Further provided are methods wherein each of the oligonucleic acids comprises about 25 bases to about 150 bases in length. Further provided are methods wherein each locus comprises a population of oligonucleic acids about 80% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Further provided are methods wherein the oligonucleic acids extending from the different loci collectively encode sequence for a preselected gene. Further provided are methods wherein the EMR comprises a wavelength from about 150 to about 200 nm. Further provided are methods wherein the EMR has a wavelength of about 172 nm. Further provided are methods wherein the surface is substantially planar. Further provided are methods wherein the microstructures comprise channels or wells.
Provided herein are methods for surface patterning, the methods comprising: applying a first set of molecules to a surface of a structure, wherein each of the first set of molecules binds to the surface and comprises a reactive group capable of binding to a nucleoside; synthesizing a first layer of oligonucleic acids, wherein each oligonucleic acid in the first layer of oligonucleic acids comprises about 10 to about 100 bases in length and extends from the surface; applying electromagnetic radiation (EMR) to a predetermined region of the surface to selectively remove a portion of the layer of oligonucleic acids, wherein the EMR comprises a wavelength from about 100 nm to about 300 nm; and synthesizing a second layer of oligonucleic acids, wherein each oligonucleic acid in the second layer of oligonucleic extends acids from the remaining portion of the first layer of layer of oligonucleic acids. Further provided are methods wherein the first set of molecules comprises an aminosilane. Further provided are methods wherein the first set of molecules comprises N-(3-triethoxysilylpropyl)-4-hydroxybutyramide (HAPS), 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, 3-glycidoxypropyltrimethoxysilane (GOPS), or 3-iodo-propyltrimethoxysilane. Further provided are methods further comprising applying a second set of molecules to the surface after application of the EMR, wherein each of the second set of molecules binds to the predetermined region of the surface and lacks the reactive group capable of binding to a nucleoside. Further provided are methods wherein the second set of molecules comprises a fluorosilane. Further provided are methods wherein the second set of molecules comprises perfluorooctyltrichlorosilane octylchlorosilane, octadecyltrichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane. Further provided are methods wherein the second layer of oligonucleic acids comprises about 25 bases to about 2 kb in length. Further provided are methods wherein the second layer of oligonucleic acids comprises about 25 bases to about 500 bases in length. Further provided are methods wherein the first layer of oligonucleic acids comprises a homopolymeric nucleic acid sequence. Further provided are methods wherein the homopolymeric nucleic acid sequence is about 50 bases in length. Further provided are methods wherein the EMR comprises a wavelength from about 150 to about 200 nm. Further provided are methods wherein the EMR comprises wavelength of about 172 nm. Further provided are methods wherein the EMR is emitted from a lamp or a laser. Further provided are methods wherein the lamp comprises an emission source in the shape of a cylinder or a flat panel. Further provided are methods wherein the flat panel has a surface area that is at least 36 inches squared. Further provided are methods wherein the structure is a plate, tape, or belt. Further provided are methods wherein the surface comprises a plurality of loci for oligonucleic acid extension, and wherein the loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Further provided are methods wherein the surface is substantially planar. Further provided are methods wherein the surface comprises microstructures. Further provided are methods wherein the microstructures comprise channels or wells. Further provided are methods further comprising releasing the plurality of oligonucleic acids and assembling a plurality of genes.
Provided herein is a library of synthesized oligonucleic acids, comprising a plurality of different oligonucleic acids, each different oligonucleic acid extending from a structure at a different loci, wherein the different loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Further provided is a library wherein the plurality of different oligonucleic acids comprises at least 20,000 different oligonucleic acids. Further provided is a library wherein the oligonucleic acids extending from each locus are about 80% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope.
Provided herein is are methods for gene synthesis, comprising providing predetermined sequences for a plurality of oligonucleic acids, wherein the plurality of oligonucleic acids collectively encode for a plurality of genes; providing a surface for oligonucleic acid synthesis; synthesizing the plurality of oligonucleic acids from the surface, wherein each oligonucleic acid extends from a different locus, and wherein the different loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope; and assembling the plurality of genes from the plurality of oligonucleic acids. Further provided herein are methods further comprising, prior to synthesizing: providing the surface for oligonucleic acid synthesis, wherein the surface comprises a first set of molecules, wherein each of the first set of molecules lacks a reactive group capable of binding to a nucleoside; applying electromagnetic radiation (EMR) to predetermined regions of the surface, wherein the EMR comprises a wavelength from about 100 nm to about 300 nm, wherein application of the EMR results in removal of the first set of molecules at the predetermined regions, thereby defining loci for oligonucleic acid extension. Provided herein are methods for gene synthesis, the methods comprising: providing predetermined sequences for a plurality of oligonucleic acids, wherein the plurality of oligonucleic acids collectively encode for a plurality of genes; providing a surface for oligonucleic acid synthesis, wherein the surface comprises a first set of molecules, wherein each of the first set of molecules lacks a reactive group capable of binding to a nucleoside; applying electromagnetic radiation (EMR) to predetermined regions of the surface, wherein the EMR comprises a wavelength from about 100 nm to about 300 nm, wherein application of the EMR results in removal of the first set of molecules at the predetermined regions, thereby defining loci for oligonucleic acid extension; synthesizing a plurality of oligonucleic acids from the surface, wherein each oligonucleic acid extends from a different locus, and wherein the different loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope; and assembling the plurality of genes from the plurality of oligonucleic acids. Further provided are methods wherein greater than about 90% of the first set of molecules are removed at the predetermined regions of the surface following application of EMR. Further provided are methods wherein about 100% of the first set of molecules are removed at the predetermined regions of the surface following application of EMR. Further provided are methods wherein the predetermined regions have a width of about 1 to about 500 um. Further provided are methods wherein the predetermined regions have a width of about 1 to about 100 um. Further provided are methods wherein the predetermined regions have a width of about 3 um to about 60 um. Further provided are methods wherein the predetermined regions have a width of at least 3 um. Further provided are methods wherein the predetermined regions have a perimeter that is a circle or a rectangle in shape. Further provided are methods wherein the first set of molecules comprises a fluorosilane. Further provided are methods wherein the first set of molecules comprises perfluorooctyltrichlorosilane, octylchlorosilane, octadecyltrichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane. Further provided are methods further comprising applying a second set of molecules to the surface after application of the EMR, wherein each of the second set of molecules binds to the predetermined regions of the surface and comprises a reactive group capable of binding to a nucleoside. Further provided are methods wherein the second set of molecules comprises an aminosilane. Further provided are methods wherein the second set of molecules comprises N-(3-triethoxysilylpropyl)-4-hydroxybutyramide (HAPS), 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, 3-glycidoxypropyltrimethoxysilane (GOP S), or 3-iodo-propyltrimethoxysilane. Further provided are methods wherein each of the oligonucleic acids comprises about 25 bases to about 2 kb in length. Further provided are methods wherein each of the oligonucleic acids comprises about 25 bases to about 150 bases in length. Further provided are methods wherein each locus comprises a population of oligonucleic acids about 80% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Further provided are methods wherein the oligonucleic acids extending from the different loci collectively encode sequence for a preselected gene. Further provided are methods wherein the EMR comprises a wavelength from about 150 nm to about 200 nm. Further provided are methods wherein the EMR has a wavelength of about 172 nm. Further provided are methods wherein the surface is substantially planar. Further provided are methods wherein the surface comprises microstructures. Further provided are methods wherein the microstructures comprise channels or wells. Further provided are methods wherein the EMR is emitted from a lamp or a laser. Further provided are methods wherein the lamp comprises an emission source in the shape of a cylinder or a flat panel. Further provided are methods wherein the flat panel has a surface area that is at least 36 inches squared. Further provided are methods wherein the plurality of oligonucleic acids synthesized on the surface are arranged in clusters of the different loci, wherein each cluster comprises oligonucleic acids encoding sequence for a single gene. Further provided are methods wherein the plurality of genes comprises at least 50, 240, or 5000 genes.
All publications, patents, and patent applications disclosed herein are incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference. In the event of a conflict between a term disclosed herein and a term in an incorporated reference, the term herein controls.
The present disclosure provides for devices, compositions, methods and systems related the patterning of the surface of a structure utilizing electromagnetic radiation (EMR) to remove a material bound to a surface of the structure at select regions to generate a desired pattern of the material on the surface. Methods described herein provide for the generation of surfaces having differential chemical coatings in a timeframe that is faster than conventional methods. In addition, described herein are methods where the resultant populations extending from sites for nucleic acid extension (loci) provide for highly uniform nucleic acid populations. Methods described herein provide for the generation of a library of synthesized oligonucleic acids, comprising a plurality of different oligonucleic acids, each different oligonucleic acid extending from a structure at a different loci, wherein the different loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. Synthesized nucleic acid populations synthesized by methods described herein can be used for downstream applications, such as gene assembly or PCR mutagenesis. For example, Further provided herein are methods for gene synthesis, the methods comprising providing predetermined sequences for a plurality of oligonucleic acids, wherein the plurality of oligonucleic acids collectively encode for a plurality of genes; synthesizing a plurality of oligonucleic acids from the surface, wherein each oligonucleic acid extends from a different locus, and wherein the different loci are at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope; and assembling the plurality of genes from the plurality of oligonucleic acids.
Throughout this disclosure, various embodiments are presented in a range format. It should be understood that the description in range format is merely for convenience and brevity and should not be construed as an inflexible limitation on the scope of any embodiments. Accordingly, the description of a range should be considered to have specifically disclosed all the possible subranges as well as individual numerical values within that range to the tenth of the unit of the lower limit unless the context clearly dictates otherwise. For example, description of a range such as from 1 to 6 should be considered to have specifically disclosed subranges such as from 1 to 3, from 1 to 4, from 1 to 5, from 2 to 4, from 2 to 6, from 3 to 6 etc., as well as individual values within that range, for example, 1.1, 2, 2.3, 5, and 5.9. This applies regardless of the breadth of the range. The upper and lower limits of these intervening ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included, unless the context clearly dictates otherwise.
The terminology used herein is for the purpose of describing particular instances only and is not intended to be limiting of any embodiment. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Unless specifically stated or obvious from context, as used herein, the term “about” in reference to a number or range of numbers is understood to mean the stated number and numbers +/−10% thereof, or 10% below the lower listed limit and 10% above the higher listed limit for the values listed for a range.
Surface Functionalization with EMR
Generally, patterned regions on the surface of a structure are prepared by exposing a coated region of the surface to EMR through a patterned shadow mask. In such cases, the material coated on the surface is removed in exposed areas and not removed in the mask-protected area. As a result, the pattern of the shadow mask is transferred onto the surface chemistry of the structure. In some instances, EMR removes a material coated on a surface by cleaving the chemical bonds between the surface and the bound coating material by photolysis. In some cases, EMR is deep UV light. Without wishing to be bound by theory, in some instances, for surfaces with organic molecules bound thereto, ozone generated from deep UV light in the presence of oxygen facilitates the removal of the organic molecules from the surface. Alternatively, patterned regions on the surface of a structure are prepared by exposing a coated surface to a laser beam. In such cases, the material coated on the surface is removed in the exposed areas and not removed in the non-exposed areas. As a result, the pattern as defined by the laser exposed areas is transferred onto the surface chemistry of the structure.
In some instances, patterning results in differential functionalization of a surface, where two or more different regions of the surface are functionalized to have a chemistry different from one another. In such cases, a surface is patterned by applying a first set of molecules having a first chemistry to the surface, followed by removal of select regions of the first set of molecules via exposure to EMR through a shadow mask. The surface is subsequently coated with a second set of molecules having a second chemistry at the select regions lacking the first set of molecules. The first and second set of molecules have different affinities for binding to biopolymers, and therefore provide for a surface with a patterned coating are predetermined regions for biopolymer extension. In some cases, the biopolymer is an oligonucleic acid.
In some instances, a surface is patterned so that one or more regions is coated with an active agent and one or more regions of its surface is coated with a passive agent, wherein the active agent comprises a functional group that binds to a target molecule and the passive agent lacks a functional group capable of binding to the target molecule. In the context of surfaces for biopolymer extension, a region comprising an active agent (i.e. an active functionalization area) is one that provides support for the coupling of a first monomer in an extension reaction. In some instances, the first monomer is a phosphoramidite nucleoside an oligonucleic acid extension reaction.
Provided herein are methods where a functionalized surface is patterned by application of EMR to specific regions of the surface to selectively remove bound functionalization agent via photolytic cleavage. Cleavage of a bound agent from a surface at specific regions is achieved, in some instances, by applying EMR to the surface through a shadow mask. A shadow mask protects areas of a surface from EMR so that bound agents at those areas are not subject to photolysis by EMR. Masks are comprised of any suitable material that does not transmit EMR. In some instances, a shadow mask comprises chrome on quartz. In some instances, a shadow mask comprises chrome on high UV transmission quartz. In some instances, a shadow mask comprises a dielectric layer on high UV transmission quartz. In some instances, a shadow mask comprises a dielectric layer on High UV transmission LiF or MgF2. In some instances, a pattern of a functionalization agent on a surface is defined by a pattern of a shadow mask. For example, a shadow mask comprises a plurality of openings that correspond to desired features of a surface. In such instances, dimensions of a shadow mask openings used in the functionalization methods described herein correspond to dimensions of a surface feature as described elsewhere herein.
In some instances, patterning a surface bound with a functionalization agent comprises overlaying a shadow mask onto the surface and applying EMR through open regions of the mask. In some instances, a shadow mask is positioned directly on top of a surface for patterning, minimizing exposure of unintended surface regions to applied light. In some cases, the distance between an EMR source and a shadow mask is less than about 100 mm, 10 mm, 5 mm, 1 mm, or 0.5 mm.
In various aspects, a functionalized surface is patterned by application of EMR via a laser to specific regions of the surface to selectively remove bound functionalization agent via photolytic cleavage. Cleavage of a bound agent from a surface at specific regions is achieved by beam deflection and/or by moving the sample (e.g., with an X-Y or an X-Y-Z-stage, capable of moving in two or three dimensions, respectively) and use of the laser shutter to turn laser on and off using a specific exposure time or dose in a controlled environment along the optical path of the laser and around the substrate. In some instances a substrate is introduced into a guiding system which is contained within a controlled environment. In some instances, the substrate is aligned to a reference for exposure to the laser beam and a controlled atmosphere is created at the substrate to be exposed and in the laser path. In some instances, the substrate is moved in a synchronized way with laser pulses and deflection and a pattern is thereby created on the substrate.
In some instances, exposure of a surface to EMR is performed in an oxygen controlled environment. In some cases, the environment is devoid of oxygen. Ozone generated from oxygen during EMR exposure assists with photolysis of bound agents. However, oxygen also absorbs light and therefore also reduces cleavage efficiency. Therefore, in some instances, oxygen is maintained at a controlled level, or removed, during surface patterning with EMR exposure. In some cases, oxygen is removed in the area located between the EMR source and the shadow mask.
In some instances, EMR is applied towards a surface at a wavelength from about 100 nm to about 400 nm, from about 100 nm to about 300 nm, or from about 100 nm to about 200 nm. For example, EMR is applied at an ultraviolet (UV) wavelength, or a deep UV wavelength. In some instances, deep UV light is applied to a surface at a wavelength of about 172 nm to cleave a bound agent from the surface. In some instances, EMR is applied with a xenon lamp. Exposure distance is a measurement between the lamp and the surface. In some instances, the exposure distance is about 0.1 to 5 cm. In some instances, the exposure distance is about 0.5 to 2 cm. In some instances, the exposure distance is about 0.5, 1, 2, 3, 4, or 5 cm. In some instances, EMR is applied with a laser. Exemplary lasers and their wavelengths include but are not limited to Ar2 (126 nm), Kr2 (146 nm), F2 (157 nm), Xe2 (172 and 175 nm), ArF (193 nm).
In some instances, processes described herein provide for generation of patterned surfaces with loci (sites for oligonucleic acid extension) providing a support for synthesis of oligonucleic acid populations, wherein a measurement across multiple loci show that the oligonucleic acid populations have at least about 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 95 or greater percent (%) uniformity, when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope. In some instances, uniformity is measured using a camera capable of recording white light emissions, e.g., a Nikon DS Fi2 camera. White light illumination may fall in the range of about 400 nm to about 700 nm. In some instances, the camera has sensitivity for wavelengths in the range of about 450 nm to about 620 nm. In some instances, the camera has sensitivity for wavelengths in the range of about 480 nm to about 550 nm. In some instances, the camera has sensitivity for wavelengths in the range of about 500 nm to about 530 nm. In some instances, the percent uniformity is about 77%. In some instances, the percent uniformity is at least about 75%. In some instances, the percent uniformity is about 80%. In some instances, processes described herein provide for light-based removal of at least about 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95 or greater percent (%) of functionalization agent deposited at a preselected region following exposure to EMR.
In some instances, photolysis by EMR removes at least about 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99% or virtually all of a bound agent exposed to the EMR during a surface patterning process described herein. In some instances, photolysis by EMR removes at least about 90% of a bound agent exposed to the EMR during the surface patterning process. In some instances, photolysis by EMR removes about 100% of a bound agent exposed to the EMR during the surface patterning process. Different parameters of an EMR application method are adjustable according to the requirements for cleaving the bond between a functionalization agent and a reactive group of a surface. In some instances, EMR is applied as deep UV light at an intensity between 10 and 200 mW/cm2, 10 and 100 mW/cm2, 10 and 50 mW/cm2, or 10 and 50 mW/cm2. In some instances, EMR is applied to a surface between 30 seconds and 300 seconds, 30 seconds and 240 seconds, 30 seconds and 180 seconds, 30 seconds and 120 seconds, or 30 seconds and 60 seconds.
Lamps
Provided herein are methods for functionalizing a surface with one or more chemistries in a desired pattern using electromagnetic radiation (EMR). Exemplary workflows for differentially functionalizing surfaces on structures described herein a described in the following paragraphs. A first process workflow provides for functionalization of a surface with two coating materials having different chemistries (
In the first stage of the first process workflow, a structure 100 is provided having a surface 101 comprising a layer of reactive functional groups that bind with a subsequently applied coating material. In this case, a surface 101 comprises a layer of silicon dioxide that is reactive with both a first and a second set of molecules. The surface 101 is optionally cleaned in a wet and/or dry process to remove organic contaminants. In some instances, the surface is cleaned with plasma, wherein oxygen plasma is applied to the surface. In some instances, the surface is cleaned by applying an oxidizing agent to the surface to both clean and hydroxylate the surface. An exemplary oxidizing agent is a piranha solution comprising a mixture of sulfuric acid and hydrogen peroxide.
The prepared surface 100 is deposited with a first set of molecules 102 comprising an agent reactive with the functional groups of surface 101, generating a surface bound with a layer of the first set of molecules (
After the surface 101 is patterned with a first set of molecules via EMR, functional groups of the surface exposed distinct regions 103 lacking the first set of molecules are reacted with a second set of molecules 107 deposited onto the surface (
In a second process workflow, a structure 201 having a surface 202 comprising a reactive layer of organo-silane (—O—Si—C) is coated with a layer of a first set of molecules, R (
Surfaces illustrated in
In a third process workflow (
In some instances, a patterning process disclosed herein comprises sequentially applying a first material comprising a passive agent to a surface, and applying a second set of molecules comprising an active agent to a surface. In some instances, a patterning process exemplified by any of
In some cases, a material deposited on the surface comprises both an active and a passive agent. In some cases, both a first material and a second material comprise an active agent. In some cases, both a first material and a second material comprise a passive agent. In some instances, a material deposited on the surface comprises an active agent that is deactivated or not reactive to chemistries with a biomolecule (i.e. a non-activated, active agent).
In a fourth process workflow, a surface is patterned with regions of active functionalization in a method that comprises: depositing a non-activated, active agent to a surface, patterning with EMR, and activating the active agent (
In this workflow, a structure 401 comprises a surface 402. The surface 402 is optionally cleaned in a wet and/or dry process to remove organic contaminants. A first set of molecules 403 comprising a non-activated, active agent is deposited onto surface 402, where it binds with the reactive functional groups of the surface to produce a non-activated, active layer across the surface (
In some instances, the fourth process workflow for a patterning method is applied to a surface comprising three-dimensional features. In some cases, three-dimensional features include channels 503 providing fluid communication between two or more surfaces of a structure 501. In a first step, a surface is bound with a layer of a first set of molecules 502 comprising a non-activated, active agent (
In in a fifth process workflow, a surface of a structure is patterned to comprise region(s) functionalized with an active agent and different region(s) functionalized with a passive agent, wherein an actively functionalized region is bound to an oligonucleic acid layer. In some cases, this oligonucleic acid layer is a platform onto which an oligonucleic acid of predetermined sequence is extended from during an oligonucleic acid synthesis reaction. In some cases, oligonucleic acids of the platform comprise from about 10 to about 100 nucleobases having a shared oligonucleic acid sequence or a plurality of different sequences. The length and identity of the oligonucleic acid platform is tunable depending on the needs of the surface and/or identity of the oligonucleic acids to be extended from said platform. This workflow is divided generally into the following processes: (A) surface preparation; (B) deposition of a first set of molecules comprising an active agent to the surface to bind with the surface; (C) extension of an oligonucleic acid platform from a layer of bound active agent; (D) patterning the surface by cleaving the active agent and oligonucleic acid platform layers from the surface at regions exposed to EMR applied through a shadow mask; (E) deposition of a second set of molecules to the regions where the active layer was removed; and (F) extension of a predetermined oligonucleic acid sequence from the platform oligonucleic acid (
Referring to
Lasers
Provided herein are methods for surface functionalization where EMR is provided by a laser, which does not require use of a shadow mask. Generally the process steps comprise: (A) surface preparation; (B) deposition of a first set of molecules on the surface; (C) patterning by cleaving the first set of molecules from the surface at regions exposed to EMR applied by a laser; (D) removal of the cleaved first set of molecules; and, optionally, (E) deposition of a second set of molecules to the regions where the first set of molecules was removed.
A benefit of using a laser is that EMR is applied to the surface at specific locations and does not require a shadow mask. In contrast to a lamp, a shutter is used to regulate ERM exposure while the substrate structure (e.g., a plate or flexible surface) moves. In this arrangement, the speed and direction of movement for the substrate structure, in combination with the angle and position of the laser, are factors in determining surface patterning.
Referring to
Exemplary active agents for inclusion in a set of molecules described herein include, without limitation, N-(3-triethoxysilylpropyl)-4-hydroxybutyramide (HAPS), 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, 3-glycidoxypropyltrimethoxysilane (GOPS), 3-iodo-propyltrimethoxysilane, butyl-aldehydr-trimethoxysilane, dimeric secondary aminoalkyl siloxanes, (3-aminopropyl)-diethoxy-methylsilane, (3-aminopropyl)-dimethyl-ethoxysilane, and (3-aminopropyl)-trimethoxysilane, (3-glycidoxypropyl)-dimethyl-ethoxysilane, glycidoxy-trimethoxysilane, (3-mercaptopropyl)-trimethoxysilane, 3-4 epoxycyclohexyl-ethyltrimethoxysilane, and (3-mercaptopropyl)-methyl-dimethoxysilane, allyl trichlorochlorosilane, 7-oct-1-enyl trichlorochlorosilane, or bis (3-trimethoxysilylpropyl) amine. A passive agent for inclusion in a set of molecules described herein includes, without limitation, perfluorooctyltrichlorosilane; tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane; tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane; 1H, 1H, 2H, 2H-fluorooctyltriethoxysilane (FOS); trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane; tert-butyl-[5-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indol-1-yl]-dimethyl-silane; CYTOP™; Fluorinert™; perfluoroctyltrichlorosilane (PFOTCS); perfluorooctyldimethylchlorosilane (PFODCS); perfluorodecyltriethoxysilane (PFDTES); pentafluorophenyl-dimethylpropylchloro-silane (PFPTES); perfluorooctyltriethoxysilane; perfluorooctyltrimethoxysilane; octylchlorosilane; dimethylchloro-octodecyl-silane; methyldichloro-octodecyl-silane; trichloro-octodecyl-silane; trimethyl-octodecyl-silane; triethyl-octodecyl-silane; or octadecyltrichlorosilane.
In some instances, a region of active functionalization comprises a combination of active and passive agents so that the actively functionalized region comprises a lower density of active functionalization agent than a region reacted with just an active agent. Similarly, in some instances, two or more active agents are combined to modulate the surface properties of the actively functionalized area. In some instances, an actively functionalized surface is prepared for oligonucleic acid synthesis, and by modulating the density of the active agents on a surface of a structure, the density of oligonucleic acids extending from said surface is modulated.
In any of the surfaces disclosed here, oligonucleic acid extension steps include extension of at least about 10, 25, 50, 75, 100, 125, 150, 200, 500, 1000, 2000 or more bases in length. In some instances, oligonucleic acid of about 25 bases to 2 kb, 25 bases to 150 bases, or 25 bases to 500 bases, in length are synthesized.
Microcontact Printing
Provided herein are methods for surface functionalization to directly apply an active agent and/or a passive agent to a selected surface using microcontact printing of an active agent and/or a passive agent onto the selected surface, such as a plate (e.g., a silicon plate), at the specific areas of the surface that require the active agent and/or the passive agent. Active functionalization of a surface involves microcontact printing of an active functionalization agent, or active agent, to the surface, where the agent binds to a functional group of the surface. Passive functionalization of a surface involves microcontact printing of a passive functionalization agent, or passive agent, to the surface, where the agent binds to a functional group of the surface. In some instances, an active functionalization agent binds to a reactive group on a surface and comprises a functional group that is reactive with a specific biomolecule, thereby supporting a coupling reaction to the surface. As used herein, “inking” a stamp for microcontact printing refers to depositing on a stamp an agent to be applied to a surface, such as an active agent or a passive agent as described herein. In an alternative arrangement, a similar method of microcontact printing is performed on a flexible surface, e.g., a tape or conveyor belt.
In an exemplary workflow of patterning a passive agent on a plate (e.g., a silicon plate), polydimethylsiloxane (PDMS) stamps are made using a UV photolithography process. A silicon wafer coated with photoresist is exposed to UV light through a mask, creating a pattern on the silicon wafer. The exposed wafer is then exposed to a solution of developer creating a master which is used to cast the PDMS stamp. The PDMS prepolymer is mixed with a curing agent and poured onto the prepared master. The cured stamp is then peeled from the template and is ready for inking. The finished stamp is about 100 μm to about 1 cm thick and the raised portions of the stamp range from about 1 μm to about 500 μm. In an alternative arrangement, a similar method of microcontact printing is performed on a flexible surface, e.g., a tape or conveyor belt.
Stamps are inked with a solution containing a passive agent, for example, tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane. After inking, the passive agent solution is transferred to a plate. Care is taken to not deform the stamp while stamping the microchip. Each inked stamp is used to pattern three microchips before reloading the stamp. Alternatively, ink is continuously applied to a patterned roller stamp and the ink is transferred from the roller to a moving belt. In an alternative arrangement, a similar method of microcontact printing is performed on a flexible surface, e.g., a tape or conveyor belt. The active agent is then deposited on the non-treated areas using CVD.
In an alternative workflow of patterning an active agent onto a silicon plate, polydimethylsiloxane (PDMS) stamps are made using a UV photolithography process. A silicon wafer coated with photoresist is exposed to UV light through a mask, creating a pattern on the silicon wafer. The exposed wafer is then exposed to a solution of developer creating a master which is used to cast the PDMS stamp. The PDMS prepolymer is mixed with a curing agent and poured onto the prepared master. The cured stamp is then peeled from the template and is ready for inking. The finished stamp is about 100 μm to about 1 cm thick and the raised portions of the stamp range from about 1 μm to about 500 μm. In an alternative arrangement, a similar method of microcontact printing is performed on a flexible surface, e.g., a tape or conveyor belt.
Stamps are inked with a solution containing an active agent, for example, 3-glycidoxypropyltrimethoxysilane (GOPS). After inking, the active agent solution is transferred to the surface of a structure. Care is taken to not deform the stamp while stamping the microchip. Each inked stamp is used to pattern three microchips before reloading the stamp. The active agent is then deposited on the non-treated areas using CVD
In another workflow of patterning an active agent and a passive agent onto a silicon plate, polydimethylsiloxane (PDMS) stamps are made using a UV photolithography process. Two silicon wafers coated with photoresist are exposed to UV light through complementary masks, creating complementary patterns on each silicon wafer. The exposed wafers are then exposed to a solution of developer creating a master which is used to cast the PDMS stamps. The PDMS prepolymer is mixed with a curing agent and poured onto the prepared masters. The cured stamps are then peeled from the template and are ready for inking. The finished stamp is about 100 μm to about 1 cm thick and the raised portions of the stamp range from about 1 μm to about 500 μm.
The first stamp is inked with a solution containing an active agent, such as 3-glycidoxypropyltrimethoxysilane (GOPS). After inking, the active agent solution is transferred to a silicon plate. The second stamp is inked with a solution containing a passive agent, such as tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane. After inking, the passive agent solution is transferred to a silicon plate that has been printed with the active agent. Care is taken to not deform the stamps while stamping the microchip. Each inked stamp is used to pattern three microchips before reloading the stamp. In an alternative arrangement, a similar method of microcontact printing is performed on a flexible surface, e.g., a tape or conveyor belt.
Structural and Materials
Methods for controlled chemical surface patterning described herein may be applied to a variety of structures. In some instances, the structure is about the size of a standard 96 well plate, for example between about 100 and 200 mm by between about 50 and 150 mm. In some instances, a substrate has a diameter less than or equal to about 1000 mm, 500 mm, 450 mm, 400 mm, 300 mm, 250 nm, 200 mm, 150 mm, 100 mm or 50 mm. In some instances, the diameter of a structure is between about 25 mm and 1000 mm, between about 25 mm and about 800 mm, between about 25 mm and about 600 mm, between about 25 mm and about 500 mm, between about 25 mm and about 400 mm, between about 25 mm and about 300 mm, or between about 25 mm and about 200. Non-limiting examples of structure size include about 300 mm, 200 mm, 150 mm, 130 mm, 100 mm, 76 mm, 51 mm and 25 mm. In some instances, a substrate has a planar surface area of at least about 100 mm2; 200 mm2; 500 mm2; 1,000 mm2; 2,000 mm2; 5,000 mm2; 10,000 mm2; 12,000 mm2; 15,000 mm2; 20,000 mm2; 30,000 mm2; 40,000 mm2; 50,000 mm2 or more. In some cases, the structure is at least about 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 6, 8, 10, 16, 24, 39, 50, 100 or more feet in length in a first dimension, and at least about 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 6, 8, 10, 16, 24, 39, 50, 100 or more feet in length in a second dimension. For larger structures, a material such as glass, metal or plastic may be used. In some instances, the structure for chemical surface patterning is a flexible material, such as a tape or belt.
In some instances, the thickness of a structure is between about 50 mm and about 2000 mm, between about 50 mm and about 1000 mm, between about 100 mm and about 1000 mm, between about 200 mm and about 1000 mm, or between about 250 mm and about 1000 mm. Non-limiting examples of structure thickness include about 0.1 mm, 0.2, 0.3 mm, 0.4 mm, 0.5 mm, 1 mm, 5 mm, 10 mm, 50 mm, 100 mm, 200 mm, 250 mm, 275 mm, 375 mm, 525 mm, 625 mm, 675 mm, 725 mm, 775 mm and 925 mm. In some cases, the thickness of a substrate varies with diameter and depends on the composition of the substrate. For example, a structure comprising materials other than silicon may have a different thickness than a silicon substrate of the same diameter. Structure thickness may be determined by the mechanical strength of the material used and the substrate must be thick enough to support its own weight without cracking during handling.
In some instances, a structure described herein comprises a plurality of smaller regions, for example, at least about 2, 4, 6, 8, 10, 16, 24, 39, 50, 100, 200, 250, 500, 1000, 5000, 6000, 7500, 9000, 10000, 20000, 30000, 50000, 100000, 500000, 1000000, or more regions, wherein each region may be used independently from another region. In some cases, regions of a structure are sub-fields or chips of a substrate. In some instances, reference to a substrate includes a region of a substrate.
Surfaces for patterning on a structure described herein using methods and systems described herein are fabricated from any material suitable for downstream applications of a patterned surface. As an example, a surface comprises a material resistant to chemicals and/or heat applied to the surface during a chemical reaction, for instance, an oligonucleic acid synthesis reaction. In some instances, a surface comprises a material transparent to visible and/or UV light. In some instances, a surface comprises a conductive material. In some instances, a surface comprises a flexible and/or rigid material. A rigid material includes, without limitation, glass; fused silica; silicon such as silicon dioxide or silicon nitride; metals such as gold or platinum; plastics such as polytetrafluoroethylene, polypropylene, polystyrene, polycarbonate, and any combination thereof. A rigid surface can be fabricated from a material selected from the group consisting of silicon, polystyrene, agarose, dextran, cellulosic polymers, polyacrylamides, polydimethylsiloxane (PDMS), and glass. The substrates/solid supports or the microstructures, reactors therein may be manufactured with a combination of materials listed herein or any other suitable material known in the art.
The term “flexible” is used herein to refer to a structure that is capable of being bent, folded or similarly manipulated without breakage. In some cases, a flexible surface is bent at least 30 degrees around a roller. In some cases, a flexible surface is bent at least 180 degrees around a roller. In some cases, a flexible surface is bent at least 270 degrees around a roller. In some instances, a flexible surface is bent about 360 degrees around a roller. In some cases, the roller is less than about 10 cm, 5 cm, 3 cm, 2 cm or 1 cm in radius. In some instances, the flexible surface is bent and straightened repeatedly in either direction at least 100 times without failure (for example, cracking) or deformation at 20° C. In some instances, a flexible surface described herein has a thickness that is amenable to rolling. In some cases, the thickness of the flexible surface described herein is less than about 50 mm, 10 mm, 1 mm, or 0.5 mm.
Exemplary flexible materials include, without limitation, nylon (unmodified nylon, modified nylon, clear nylon), nitrocellulose, polypropylene, polycarbonate, polyethylene, polyurethane, polystyrene, acetal, acrylic, acrylonitrile, butadiene styrene (ABS), polyester films such as polyethylene terephthalate, polymethyl methacrylate or other acrylics, polyvinyl chloride or other vinyl resin, transparent PVC foil, transparent foil for printers, Poly(methyl methacrylate) (PMMA), methacrylate copolymers, styrenic polymers, high refractive index polymers, fluorine-containing polymers, polyethersulfone, polyimides containing an alicyclic structure, rubber, fabric, metal foils, and any combination thereof. Nylon and PMAA surfaces herein, in some instances, are provided as a sheet or alternatively provided as a layer that is coated over another material, such as silicon. Various plasticizers and modifiers may be used with polymeric substrate materials to achieve selected flexibility characteristics.
Surfaces described herein may comprise a plurality of loci, discrete predetermined locations for oligonucleic acid extension. In some instances, a locus of a surface physically defines an area of the surface as a region for functionalization. In some instances, a functionalized region of a surface defines a locus of the surface. For example, regions of a surface bound with an active functionalization agent are loci of the surface. In some instances, a surface described herein comprises a plurality of clusters, wherein each cluster optionally comprises a plurality of loci. In some instances, a surface comprises a plurality of three-dimensional raised and/or lowered features, wherein a raised and/or lowered feature optionally corresponds to a cluster and/or a locus. A three-dimension feature includes, without limitation, a well, nanowell, channel, and post. In some instances, a three-dimensional feature corresponds to a cluster, wherein the three-dimensional feature optionally comprises a plurality of loci. In some instances, a surface comprises a plurality of channels corresponding to a plurality of loci within a well.
In some cases, a surface described herein is patterned by binding a functionalization agent of a set of molecules to one or more defined regions of the surface. In some cases, the surface is differentially functionalized by binding a functionalization agent of a different set of molecules to one or more regions outside of the defined regions. In some instances, an active functionalization agent is bound to and/or defines a feature of a surface, wherein the active agent is chemically reactive with a biomolecule. In some cases, the biomolecule is a nucleic acid monomer and the actively functionalized area supports nucleic acid monomer attachment and synthesis. In some cases, the reactive agent is an adhesion promoter that binds to both surface and functionalization agent. In some instances, a surface comprises a layer of a reactive agent at a thickness of at least or at least about 0.1 nm, 0.5 nm, 1 nm, 2 nm, 5 nm, 10 nm, or 25 nm. In some instances, an adhesion promoter is a chemical with a high surface energy. In some instances, a surface comprises a surface having a high surface energy and a surface having a low surface energy at different regions or features of the surface. In such instances, the proximity of features and/or area of fluid contact at a feature is controlled by the patterning arrangement of the high and low energy regions.
In some instances, a surface is functionalized by binding a functionalization agent to a reactive agent of a surface. In some instances, a surface is differentially functionalized by binding different functionalization agents to different areas of a surface. Differential functionalization refers to a process that produces two or more distinct areas on a surface, wherein at least one area has a different surface or chemical property than another area of the same surface. Such properties include, without limitation, surface energy, chemical termination, hydrophilicity, hydrophobicity, and surface concentration of a chemical moiety.
Surface functionalization is achieved by any suitable process that results in a change in a chemical property of a surface. In some instances, functionalization comprises application (e.g., deposition) of a functionalization agent to a surface, where the functionalization agent binds to a functional group on the surface. Typically, this results in the deposition of a self-assembled monolayer (SAM) of the functionalization agent. In some instances, a functionalization agent is bound to a structure at a thickness greater than about 0.5 nm, 1 nm, 2 nm, 3 nm, 5 nm, 10 nm, 20 nm, or 50 nm. In some instances, functionalization comprises deposition of a functionalization agent to a structure by any deposition technique, including, but not limiting to, chemical vapor deposition (CVD), atomic layer deposition (ALD), plasma enhanced CVD (PECVD), plasma enhanced ALD (PEALD), metal organic CVD (MOCVD), hot wire CVD (HWCVD), initiated CVD (iCVD), modified CVD (MCVD), vapor axial deposition (VAD), outside vapor deposition (OVD), physical vapor deposition (e.g., sputter deposition, evaporative deposition), and molecular layer deposition (MLD).
In some instances, a surface is functionalized at a region to be more hydrophilic or hydrophobic as compared to the region prior to functionalization or as compared to other regions of the surface. In some cases, a surface is modified to have a difference in water contact angle of greater than 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° as measured on one or more uncurved, smooth or planar equivalent surfaces. In some cases, a three-dimensional feature is modified to have a differential hydrophobicity corresponding to a difference in water contact angle that is greater than 90°, 85°, 80°, 75°, 70°, 65°, 60°, 55°, 50°, 45°, 40°, 35°, 30°, 25°, 20°, 15° or 10° as measured on uncurved, smooth or planar equivalent surfaces. Unless otherwise stated, water contact angles mentioned herein correspond to measurements performed on uncurved, smooth or planar equivalents of the surfaces in question. In some instances, a surface is differentially functionalized with a hydrophilic region and a hydrophobic region. In some cases, a hydrophilic surface is functionalized with a pattern of a hydrophobic agent. In some cases, a hydrophobic surface is functionalized with a pattern of a hydrophilic agent.
In some instances, a surface is prepared for functionalization by cleaning it to remove particulates that could interfere with surface binding to a functionalization agent. Surface cleaning includes wet and/or dry processes. In some instances, a surface is wet cleaned with a piranha solution (90% H2SO4, 10% H2O2) at an elevated temperature (e.g., 120° C.). The surface is then washed with a suitable solvent such as water, and dried (e.g., nitrogen gas). A post piranha treatment is optional, which comprises soaking the piranha treated surface in a basic solution (e.g., NH4OH) followed by an aqueous wash (e.g., water). In some instances, a surface is plasma cleaned, optionally following a piranha wash and optional post piranha treatment. An example of a plasma cleaning process comprises an oxygen plasma etch.
In some instances, a surface is functionalized with an active and/or passive agent. Active functionalization of a surface involves deposition of an active functionalization agent, or active agent, to the surface, where the agent binds to a functional group of the surface. Passive functionalization of a surface involves deposition of a passive functionalization agent, or passive agent, to the surface, where the agent binds to a functional group of the surface. In some instances, an active functionalization agent binds to a reactive group on a surface and comprises a functional group that is reactive with a specific biomolecule, thereby supporting a coupling reaction to the surface. In some cases, an active functionalization agent comprises a carboxyl, thiol, or hydroxyl functional group capable of binding to a nucleoside in a coupling reaction. In some instances, a passive agent is bound at a region of a surface having high surface energy. In some instances, a passive functionalization agent binds to a reactive group on a surface, but lacks an available functional group to bind to a specific biomolecule. In cases wherein the biomolecule is a nucleoside, a passive agent does not efficiently bind to a nucleoside, thereby preventing nucleic acid attachment and synthesis. In some instances, both active and passive functionalization agents are mixed and bound to a particular region of a surface. Such a mixture provides a diluted region of active functionalization agent and therefore lowers the density of any biomolecules bound to the active agent at that particular region. In some instances, functionalization of certain surfaces, such as nylon and PMMA, allows for a one step process, which eliminates the need for deposition of a layer of active agent.
In some instances, functionalization of a surface comprises deposition of a functionalization agent to the surface, where the agent self-assembles as a layer on the surface. Non-limiting examples of self-assembly agents include n-octadecyltrichlorosilane, 11-bromo undecyltrichlorosilane, 1H,1H,2H,2H-perfluoro-decyltrichlorosilane, N-[3-(trimethoxysilyl)propyl]-ethylenediamine, (3-aminopropyl)trimethoxy-silane, (3-aminopropyl)triethoxysilane, (3-mercaptpropyl)trimethoxysilane, PEG silanes (having a trichlorosiloxane, trimethoxysiloxane, or triethoxysiloxane functional group), N-(6-aminohexyl)-3-aminopropyltrimethoxysilane, phenyltrichlorosilane, benzyltrichlorosilane, n-octadecyltrimethoxysilane, heptadecafluoro-1,1,2,2-tetrahydro-decyl-1-trimethoxy-silane, 3,3,3-trifluoropropyltrimethoxysilane, (4-chloromethyl)phenyltrimethoxysilane, 18-nonadecenyltrichlorosilane, and 2,2,2-trifluoroethyl undec-10-enoate.
In some instances, an active functionalization agent comprises a silane group that binds to a surface of a structure, while the rest of the molecule provides a distance from the surface and a free hydroxyl group at the end to which a biomolecule attaches. Non-limiting examples of silanes include N-(3-triethoxysilylpropyl)-4-hydroxybutyramide (HAPS), 11-acetoxyundecyltriethoxysilane, n-decyltriethoxysilane, (3-aminopropyl)trimethoxysilane, (3-aminopropyl)triethoxysilane, 3-glycidoxypropyltrimethoxysilane (GOPS), 3-iodo-propyltrimethoxysilane. In some instances, a silane is an amino silane. In some instances, a silane is an organofunctional alkoxysilane molecule. Non-limiting examples of organofunctional alkoxysilane molecules include butyl-aldehydr-trimethoxysilane; dimeric secondary aminoalkyl siloxanes; aminosilanes such as (3-aminopropyl)-triethoxysilane, (3-aminopropyl)-diethoxy-methylsilane, (3-aminopropyl)-dimethyl-ethoxysilane, and (3-aminopropyl)-trimethoxysilane; glycidoxysilanes such as (3-glycidoxypropyl)-dimethyl-ethoxysilane and glycidoxy-trimethoxysilane; and mercaptosilanes such as (3-mercaptopropyl)-trimethoxysilane, 3-4 epoxycyclohexyl-ethyltrimethoxysilane and (3-mercaptopropyl)-methyl-dimethoxysilane. Organofunctional silanes include siloxanes such as hydroxyalkyl siloxanes, including allyl trichlorochlorosilane as a precursor for 3-hydroxypropyl and 7-oct-1-enyl trichlorochlorosilane as a precursor for 8-hydroxyoctyl; diol (dihydroxyalkyl) siloxanes including glycidyl trimethoxysilane-derived (2,3-dihydroxypropyloxy)propyl (GOPS); aminoalkyl siloxanes, including 3-aminopropyl trimethoxysilane; and dimeric secondary aminoalkyl siloxanes, including bis (3-trimethoxysilylpropyl) amine as a precursor for bis(silyloxylpropyl)amine.
In some instances, a passive functionalization agent comprises a silane group, for example, perfluorooctyltrichlorosilane, (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane, or tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane. In some instances, a passive functionalization agent comprises perfluorooctyltriethoxysilane. In some instances, a passive functionalization agent comprises perfluorooctyltrimethoxysilane. In some instances, a passive functionalization agent comprises a hydrocarbon silane, such as octadecyltrichlorosilane or similar. In some instances, a passive functionalization agent comprises a fluorosilane. In some cases, a passive functionalization agent comprises a mixture of a hydrocarbon silane and a fluorosilane. Non-limiting examples of fluorosilanes include 1H, 1H, 2H, 2H-fluorooctyltriethoxysilane (FOS), trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane, tert-Butyl-[5-fluoro-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)indol-1-yl]-dimethyl-silane, CYTOP™, Fluorinert™, and precursors perfluoroctyltrichlorosilane (PFOTCS), perfluorooctyldimethylchlorosilane (PFODCS), perfluorodecyltriethoxysilane (PFDTES), and pentafluorophenyl-dimethylpropylchloro-silane (PFPTES). In some instances, a passive functionalization agent comprises an organofunctional alkoxysilane molecule. Non-limiting examples of an organofunctional alkoxysilane molecule include dimethylchloro-octodecyl-silane; methyldichloro-octodecyl-silane; trichloro-octodecyl-silane; trimethyl-octodecyl-silane; and triethyl-octodecyl-silane.
In some instances, surface functionalization molecules described herein include a cross-linking agent to allow for the coupling f two different molecular entities. Exemplary cross-linking agents include, N-hydroxysuccinimide esters (NHS esters) which react with primary amines to yield stable amide bonds, sulfo-NHS esters (which additionally contain a sulfonate (—SO3) group on the N-hydroxysuccinimide ring), imidoesters, and sulfhydryl reactive cross linkers (e.g., maleimides, haloacetyls, and pyridyl disulfides).
Surface described herein are, in some instances, patterned with a mixture of agents. In some instances, a mixture comprises at least 2, 3, 4, 5 or more different types of functionalization agents. In some cases, the ratio of the at least two types of surface functionalization agents in a mixture is about 1:1, 1:2, 1:5, 1:9, 1:10, 2:10, 3:10, 4:10, 5:10, 6:10, 7:10, 8:10, 9:10, 5:95, 1:100, 1:150, 1:200, or any other ratio to achieve a desired surface representation of two groups. In some instances, desired surface tensions, wettabilities, water contact angles, and/or contact angles for other suitable solvents are achieved by providing a surface with a suitable ratio of functionalization agents. In some instances, the agents in a mixture are chosen from suitable reactive and inert moieties, thus diluting the surface density of reactive groups to a desired level for downstream reactions. In some instances, the mixture of functionalization reagents comprises one or more reagents that bind to a biomolecule and one or more reagents that do not bind to a biomolecule. Therefore, modulation of the reagents allows for the control of the amount of biomolecule binding that occurs at a distinct area of functionalization.
In some instances, a surface is functionalized with a set of molecules comprising a mixture of silanes, under reaction conditions effective to couple the silanes to the surface, typically via reactive hydrophilic moieties present on the surface. In some instances, active functionalization areas comprise one or more different species of silanes, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more silanes. In some cases, one of the one or more silanes is present in the functionalization composition in an amount greater than another silane. For example, a mixed silane solution having two silanes comprises a 99:1, 98:2, 97:3, 96:4, 95:5, 94:6, 93:7, 92:8, 91:9, 90:10, 89:11, 88:12, 87:13, 86:14, 85:15, 84:16, 83:17, 82:18, 81:19, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45 ratio of one silane to another silane. In some instances, an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane. In some instances, an active functionalization agent comprises 11-acetoxyundecyltriethoxysilane and n-decyltriethoxysilane in a ratio from about 20:80 to about 1:99, or about 10:90 to about 2:98, or about 5:95.
In some instances, a functionalization agent is modified with a protecting group that protects the agent during a process step of a functionalization method. For example, an active agent is bound to a surface, where an oligonucleic acid platform is grown. The oligonucleic acids of the platform are protected with a trityl protecting group, rendering the oligonucleic acids unreactive during subsequent patterning process steps. The protecting group is then removed, or deprotected, to allow for continued oligonucleic acid synthesis. Exemplary protecting groups include, without limitation, acetyl, benzoyl, benzyl, β-methoxyethoxymethyl ether, dimethoxytrityl, [bis-(4-methoxyphenyl)phenylmethyl], methoxymethyl ether, methoxytrityl [(4-methoxyphenyl)diphenylmethyl, p-methoxybenzyl ether, methylthiomethyl ether, pivaloyl, tetrahydropyranyl (removed by acid), tetrahydrofuran, trityl (triphenylmethyl, removed by acid and hydrogenolysis), silyl ether (trimethylsilyl, tert-butyldimethylsilyl, tri-iso-propylsilyloxymethyl, and triisopropylsilyl ethers, methyl ethers, and ethoxyethyl ethers. Exemplary agents for removing such protecting groups are known by one of skill in the art.
In some instances, a surface described herein comprises a plurality of clusters, wells, or clusters and wells, wherein a well optionally corresponds to one or more clusters. In some instances, the diameter or width of a cluster is from about 0.05 mm to about 10 mm, from about 0.1 mm to about 10 mm, from about 0.5 mm to about 10 mm, from about 0.5 mm to about 5 mm, from about 0.5 mm to about 2 mm, from about 0.8 mm to about 2 mm, from about 1 mm to about 2 mm, from about 1 mm to about 1.5 mm, or from about 0.8 mm to about 1.5 mm. In some instances, the diameter of a cluster and/or well is about 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.15, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, or 2.0 mm. In some instances, the diameter or width of a cluster is less than or about 5 mm, 2, 1.5, 1 mm, 0.5 mm, 0.1 mm, or 0.05 mm. In some instances, a surface comprises a three-dimensional feature, such as a well or post, having a height from about 20 um to about 1,000 um; from about 100 um to about 1,000 um; or from about 500 um to about 1,000 um. In some cases, the height of a three-dimensional feature is less than about 1,000 um; less than about 800 um; or less than about 600 um. In some instances, the cluster is within a well. In some instances, a surface comprises a textured surface. Exemplary textured surfaces include an array of recesses (e.g., wells) or protrusions (e.g., posts) having a height or depth from the surface of about 1 to about 1000 nm, about 250 to about 1000 nm, about 250 to about 750 nm, or about 100 to about 500 nm. In some instances, each feature of the textures surface has a pitch that is about 0.5 to about 5 times the distance of the height or depth from the surface. In some instances, each feature of the textures surface has a pitch that is about 0.5 times to about twice the distance of the height or depth from the surface.
In some instances, a surface comprises a plurality of loci. The loci may correspond to defined planar areas on the surface (e.g., a circle or square), channels, or microwells. In some cases, the height or depth of a channel and/or microwell is from about 5 um to about 500 um, from about 5 um to about 200 um, from about 5 um to about 50 um, or from about 10 um to about 50 um. In some cases, the height of a channel and/or microwell is less than 100 um, less than 50 um, less than 30 um or less than 20 um. In some instances, the height or depth of a channel and/or microwell is about 1, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or more um. In some instances, the width of a locus, channel, and/or microwell is from about 1 um to about 1000 um, or about 0.1 um to about 500 um. In some instances, the width of a locus, channel, and/or microwell from about 0.5 um to about 500 um, from about 3 um to about 60 um, or from about 1 um to about 100 um. In some instances, the width of a locus is about 100 um, 80 um, 60 um, 40 um, 20 um, 10 um, 5 um, 1 um, or 0.5 um. In some instances, the width of a locus is about 0.5 to about 60 um. In some instances, the width of a locus is about 0.5 to about 20 um. In some instances, the diameter of a locus is about 0.5 to about 10 um. In some instances, the width of a locus is about 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, or 40 um. In some instances, the width of a locus, channel, and/or microwell is less than about 100 um, 80 um, 50 um, 20 um or 10 um, or 1 um. In some instances, the distance between the center of two adjacent loci, channels, and/or microwells is from about 0.1 um to about 50 um, from about 0.1 um to about 10 um, from about 1 um to about 500 um, from about 1 um to about 100 um, or from about 5 um to about 50 um, for example, about 20 um. In some instances, the width of a locus, channel, and/or microwell is about 10 urn, 20 urn, 30 urn, 40 um, 50 um, 60 um, 70 um, 80 um, 90 um, or 100 um. Loci described herein may be in a shape that includes, without limitation, circles, squares, rectangles, ovals, and triangles. The term “microwell” as used herein refers to a feature that holds a liquid. The predetermined regions which are exposed to a light source form areas defining a locus for nucleic acid extension. In some instances, the predetermined regions for nucleic acid extension have a perimeter that is, without limitation, a circle, oval, rectangle, a rectangle in shape.
The microchannels or microwells can have an aspect ratio of less than 1. As used herein, the term “aspect ratio,” refers to the ratio of a channel's width to that channel's depth. Thus, a channel having an aspect ratio of less than 1, is deeper than it is wide, while a channel having an aspect ratio greater than 1 is wider than it is deep. In some aspects, the aspect ratio of the microchannels or microwells can be less than or equal to about 0.5, about 0.2, about 0.1, about 0.05 or less. In some instances, the aspect ratio of the microchannels or microwells can be about 0.1. In some instances, the aspect ratio of the microchannels or channels can be about 0.05. The microstructures described herein, e.g., microchannels or microwells having aspect ratios less than 1, 0.1 or 0.05, may include channels having one, two, three, four, five, six or more corners, turns, and the like. The microstructures described herein may include the aspect ratios described, e.g., less than 1, 0.1 or 0.05, with respect to all microchannels or microwells contained within a particular resolved locus, e.g., one or more intersecting channels, some of these channels, a single channel and even a portion or portions of one or more microchannels or microwells. In some instances the wells have an aspect ratio of about 1:1 to 1:15. In some instances the wells have an aspect ratio of about 1:10. In some instances the microchannels have an aspect ratio of about 1:1 to 1:15. In some instances the microchannels have an aspect ratio of about 1:10.
In some instances, a surface comprises more than about 500; 2,000; 20,000; 100,000; 4000,000; 500,000; 8,000,000; 1,000,000; 3,000,000; 5,000,000; or 10,000,000 features. In some cases, a surface comprises features at a density of at least about 1, 5, 10, 20, 50, 100, 150, 200, 300, 400 or 500 features per mm2. In some instances, a surface comprises at least about 10; 500; 1,000; 5,000; 6,000; 8,000; 10,000; 15,000; 20,000; 30,000; 50,000 or more clusters. In some cases, a cluster comprises from about 1 to about 10,000 loci. In some instances, a surface comprises more than about 500; 2,000; 20,000; 100,000; 4000,000; 500,000; 8,000,000; 1,000,000; 3,000,000; 5,000,000; or 10,000,000 loci.
In various aspects, a surface comprises one or more clusters, wherein a cluster comprises a plurality of loci. In some instances, the density of loci within a cluster of a surface is at least or about 1 locus per mm2, 10 loci per mm2, 100 loci per mm2, 500 loci per mm2, 1,000 loci per mm2 or more. In some cases, a surface comprises from about 10 loci per mm2 to about 500 mm2 or from about 50 loci per mm2 to about 200 mm2. In some instances, the distance between the centers of two adjacent loci within a cluster is from about 10 um to about 500 um, from about 10 um to about 200 um, or from about 10 um to about 100 um. In some cases, the distance between the centers of two adjacent loci within a cluster is less than about 200 um, 150 um, 100 um, 50 um, 20 um or 10 um. In some cases, about 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500 or more loci are located within a single cluster. In some cases, about 50 to about 500 loci are located within a single cluster. In some cases, about 100 to about 150 loci are located within a single cluster. In some cases, about 100, 110, 115, 120, 125, 130, 135, or 140 loci are located within a single cluster. In some cases, about 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 300, 400, 500 or more channels are located within a single well. In some cases, about 50 to about 500 loci are channels are located within a single well. In some cases, about 100 to about 150 loci are channels are located within a single well. In some cases, about 100, 110, 115, 120, 125, 130, 135, or 140 channels are located within a single well.
In some instances, the density of clusters within a surface is at least or about 1 cluster per 100 mm2, 1 cluster per 10 mm2, 1 cluster per 1 mm2, 10 clusters per 1 mm2, 50 clusters per 1 mm2 or more. In some instances, a surface comprises from about 1 cluster per 10 mm2 to about 10 clusters per 1 mm2. In some instances, the distance between the centers of two adjacent clusters is less than about 50 um, 100 um, 200 um, 500 um, 1000 um, or 2000 um or 5000 um. In some cases, the distance between the centers of two adjacent clusters is between about 50 um and about 100 um, between about 50 um and about 500 um, or between about 100 um to about 2000 um.
In some instances, a structure is about the size of a standard 96 well plate, for example, between about 100 and 200 mm by between about 50 and 150 mm. In some instances, the surface is about 140 mm by about 90 mm. In some instances, structures described herein are e over 1, 2, 5, 10, 30, 50 or more feet long in any dimension. In the case of a flexible structure, the flexible structure is optionally stored in a wound state, e.g., in a reel. In the case of a large rigid structure, e.g., greater than 1 foot in length, the rigid structure can be functionalized and stored while in a vertical or horizontal orientation.
In some instances, the surface comprises an array of wells or cluster that are in a 96 by 64 arrangement. In some instances, the pitch is about 1.125 mm in the printing direction. In some instances, a single cluster comprises about 50 to about 500 loci. In some instances, a single cluster comprises about 100 to about 200 loci. In some instances, a single cluster comprises about 100 to about 150 loci. In some instances, a single cluster comprises about 120 to 140 loci. In some instances, a single cluster comprises about 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, or 140 loci. In some instances, a surface comprises at least 500000, 600000, 700000, 800000, 900000, or 1000000 loci.
In some instances, a structure comprises a plurality of smaller regions, for example, at least about 2, 4, 6, 8, 10, 16, 24, 39, 50, 100 or more regions, wherein each region is optionally configured for use independent of another region. In some cases, regions of a surface are sub-fields or chips of a structure. In some instances, reference to a surface includes a region of a surface. In some instances, the structure is 140 mm×90 mm.
In some instances, a surface has a planar surface area of less than about 100 mm2; 200 mm2; 500 mm2; 1,000 mm2; 5,000 mm2; 10,000 mm2; 20,000 mm2; or 50,000 mm2. In some instances, the thickness of a structure is between about 50 mm and about 2000 mm, between about 100 mm and about 1000 mm, or between about 250 mm and about 1000 mm. Non-limiting examples of structure thickness include 275 mm, 375 mm, 525 mm, 625 mm, 675 mm, 725 mm, 775 mm and 925 mm. In some cases, the thickness of a structure varies with diameter and depends on the composition of the structure. In some cases, structure thickness is determined by the mechanical strength of the material used, wherein the structure must be thick enough to support its own weight without cracking during handling.
In some instances, a surface comprises a structure to align the surface with a device during surface modification. For example, dicing marks, shadow mask alignment marks, fiducials or a combination thereof. In some instances, a surface is labeled. In some cases, a surface comprises a structure to facilitate alignment with a reagent deposition device.
In various aspects, a structure described herein comprises a three-dimensional feature prepared by an etching method. An exemplary etching method comprises: (1) oxidizing a silicon structure on a surface that will be designed with a three-dimensional feature; (2) application of photolithography to the oxidized surface to create a mask of photoresist; (3) etching at locations of the structure devoid of photoresist, in many cases, beyond the oxidized layer, to create a feature; and (4) photoresist is stripping. In some examples, deep reactive-ion etching (DRIE) is used to etch vertical side walls to a prescribed depth to generate a well. In some instances, only one side of a structure is etched to create a three-dimensional feature. In some instances, two sides, e.g., device and handle sides, of a structure is etched to create three-dimensional features. In some processes, as an alternative or supplement to etching by DRIE, a SOI structure (silicon on insulator silicon wafer) is used and the handle layer is etched down to the buried oxide, where the buried oxide serves as an etch stop. Following photolithography on a second side of a structure, the photoresist is stripped to generate a desired three-dimensional pattern.
Light Sources
Light sources described herein provide EMR for the purpose of creating a functionalized, patterned surface via photolytic cleavage. EMR emitting lamps and lasers are known by those of skill in the art and include commercially available lamps and lasers as well as custom built lamps and lasers that provide DUV light at the various wavelengths.
Lamps
Lamps described herein include those having various light source arrangements, such as cylindrical lamps, flat lamps emitting light, and flat lamps with a large plane emitting light. In some instances, cylindrical lamps have a variable distance between areas of the lamp surface and the chip surface, which in some instances, results in decreased uniformity of the DUV exposure to the chip. Cylindrical lamps disclosed herein may be mounted in a rectangular shiny (reflective) housing. In some instances, lamps disclosed herein include excimer lamps. Lamps disclosed herein emit a DUV light at wavelengths including but not limited to 126 nm, 152 nm, and 172 nm. In some instances lamps herein emit a DUV light at 172 nm.
In some instances, lamps disclosed herein comprise flat light emitting panel portion that provides an even exposure of DUV light to the target surface. In some instances, even exposure of DUV provides for a more uniform surface exposure over the chip than lamps that are not flat. In some instances, lamps disclosed herein comprise flat lamps capable of providing DUV exposure to a larger work surface, providing for larger chips or a greater number of chips to be processed simultaneously. For example, the lamp may comprise a flat light emitting surface that is 6 inches×6 inches or more. In some instances, the flat light emitting surface has a surface areas of at least 4, 16, 36, 64, 144, or more inches squared.
Lasers
Lasers described herein provide ERM via a process of optical amplification providing light having a focused light emission, allowing precise application of EMR to the functionalized surface. Useful wavelengths for lasers herein include but are not limited to 152 nm, 172 nm, and 193 nm. Exemplary lasers and their wavelengths include but are not limited to Ar2 (126 nm), Kr2 (146 nm), F2 (157 nm), Xe2 (172 and 175 nm), ArF (193 nm). Lasers used in methods described herein include excimer lasers and liquid immersion techniques. Excimer lasers herein include an F2 excimer laser having a wavelength of 157 nm. In some instances, excimer lasers provide higher resolution, which is beneficial to certain applications. Liquid immersion techniques, also termed immersion lithography, enables use of optics with numerical apertures exceeding 1.0, and uses a liquid, such as ultra-pure, deionized water, to provide a refractive index above that of air.
Systems
Provided herein, in some instances, are systems for performing a surface functionalization method as described herein. In some instances, a surface functionalization system comprises a deposition device for application of one or more reagents to a surface. In some instances, a surface functionalization system comprises a device for treating a surface with a fluid, for example, a flow cell. In some instances, surface functionalization system comprises a device for moving a surface between a deposition device and a treatment device. In some instances, a surface functionalization system comprises a cleavage device comprising a source of EMR for cleaving a chemical bond at a surface and a shadow mask for positioning between the EMR source and a surface.
In some instances, surface functionalization methods described herein employ a system comprising a deposition device that deposits reagents necessary for surface functionalization. For example, active agents, passive agents, and/or wash solutions. In some instances, wherein a functionalized surface product provides a surface for oligonucleic acid synthesis, a deposition device deposits synthesis reagents. In some instances, a deposition device moves in the X-Y direction to align with a location of a surface and optionally moves in the Z direction to seal with a surface, forming a resolved reactor.
In some instances, a deposition device comprises a plurality of deposition heads, for example, from about 1 to about 50 deposition heads. In some instances, a deposition head deposits a reagent component that is different from another reagent deposited by another deposition head. In some cases, a deposition head comprises a plurality of nozzles, wherein each nozzle is optionally configured to correspond to a cluster on a surface. For example, for a surface having 256 clusters, a deposition head comprises 256 nozzles. In some cases, a nozzle deposits a reagent component that is different from another nozzle.
Further provided herein is an automated system for use with a functionalization method described herein that is capable of functionalizing one or more surfaces, comprising: a deposition device for spraying a microdroplet comprising a functionalization agent on a surface; a scanning transport for scanning the surface adjacent to the deposition device to selectively deposit the microdroplet at specified sites; a flow cell for treating the surface on which the microdroplet is deposited by exposing the surface to one or more selected fluids; a cleavage device comprising a source of EMR for cleaving a chemical bond at a surface and a shadow mask for positioning between the EMR source and a surface; and an alignment unit for aligning the surface correctly relative to the deposition device and cleavage device. In some instances, the source of EMR comprises a laser which does not require use of a shadow mask. In some instances, the system optionally comprises a treating transport for moving the surface between the deposition device and the flow cell for treatment in the flow cell, where the treating transport and said scanning transport are different elements. In other instances, the system does not comprise a treating transport.
In some instances, a deposition device deposits a functionalization agent onto a surface of a structure. In some instances, a deposition device deposits a functionalization agent to a resolved cluster, locus, well, post, and/or channel of a surface. In some cases, a deposition device deposits a drop having a diameter less than about 200 um, 100 um, or 50 um in a volume less than about 1000, 500, 100, 50, 40 or 20 pl. In some cases, a deposition device deposits between about 1 and 10000, 1 and 5000, 100 and 5000, or 1000 and 5000 droplets per second.
In some instances, during a functionalization method, a surface is positioned within or sealed within a flow cell. In some instances, a flow cell provides continuous or discontinuous flow of liquids such as those comprising reagents necessary for reactions within the surface, for example, wash solutions. In some instances, a flow cell provides continuous or discontinuous flow of a gas, such as nitrogen, for drying a surface typically through enhanced evaporation of a volatile substance. A variety of auxiliary devices are useful to improve drying and reduce residual moisture on a surface. Examples of such auxiliary drying devices include, without limitation, a vacuum source, depressurizing pump and a vacuum tank. In some cases, a surface functionalization system comprises one or more flow cells, such as 2, 3, 4, 5, 6, 7, 8, 9, 10, or 20 and one or more surfaces, such as 2, 3, 4, 5, 6, 7, 8, 9, 10 or 20. In some cases, a flow cell is configured to hold and provide reagents to a surface during one or more steps in a functionalization reaction. In some instances, a flowcell comprises a lid that slides over the top of a surface and is clamped into place to form a pressure tight seal around the edge of the surface. An adequate seal includes, without limitation, a seal that allows for about 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 atmospheres of pressure. In some cases, a flow cell lid is opened to allow for access to an application device such as a deposition device. In some cases, one or more steps of surface functionalization method are performed on a surface within a flow cell, without the transport of the surface.
In some instances, a surface functionalization system comprises one or more elements useful for downstream application of a functionalized surface. As an example, wherein a functionalized surface is prepared for oligonucleic acid synthesis support, a deposition device is configured to deposit oligonucleic acid reagents such as, nucleobases and coupling reagents.
Gene Synthesis
Provided herein are differentially functionalized surfaces configured to support the attachment and synthesis of oligonucleic acids. An example workflow is shown in
In an example workflow, a structure comprising a surface layer 801 is provided (
In first step of the workflow example, a device, such as an oligonucleic acid synthesizer, is designed to release reagents in a step wise fashion such that multiple oligonucleic acids extend from an actively functionalized surface region, in parallel, one residue at a time to generate oligomers with a predetermined nucleic acid sequence. In some cases, oligonucleic acids are cleaved from the surface at this stage. Cleavage includes gas cleavage, e.g., with ammonia or methylamine.
The generated oligonucleic acid libraries are placed in a reaction chamber. In this exemplary workflow, the reaction chamber (also referred to as “nanoreactor”) is a silicon coated well containing PCR reagents lowered onto the oligonucleic acid library 803. Prior to or after the sealing 804 of the oligonucleic acids, a reagent is added to release the oligonucleic acids from the surface. In the exemplary workflow, the oligonucleic acids are released subsequent to sealing of the nanoreactor 805. Once released, fragments of single-stranded oligonucleic acids hybridize in order to span an entire long range sequence of DNA. Partial hybridization 805 is possible because each synthesized oligonucleic acid is designed to have a small portion overlapping with at least one other oligonucleic acid in the pool.
After hybridization, oligonucleic acids are assembled in a PCA reaction. During the polymerase cycles of the PCA reaction, the oligonucleic acids anneal to complementary fragments and gaps are filled in by a polymerase. Each cycle increases the length of various fragments randomly depending on which oligonucleic acids find each other. Complementarity amongst the fragments allows for forming a complete large span of double-stranded DNA 806.
After PCA is complete, the nanoreactor is separated from the surface 807 and positioned for interaction with a surface having primers for PCR 808. After sealing, the nanoreactor is subject to PCR 809 and the larger nucleic acids are amplified. After PCR 810, the nanochamber is opened 811, error correction reagents are added 812, the chamber is sealed 813 and an error correction reaction occurs to remove mismatched base pairs and/or strands with poor complementarity from the double-stranded PCR amplification products 814. The nanoreactor is opened and separated 815. Error corrected product is next subject to additional processing steps, such as PCR, nucleic acid sorting, and/or molecular bar coding, and then packaged 822 for shipment 823.
In some cases, quality control measures are taken. After error correction, quality control steps include, for example, interaction with a wafer having sequencing primers for amplification of the error corrected product 816, sealing the wafer to a chamber containing error corrected amplification product 817, and performing an additional round of amplification 818. The nanoreactor is opened 819 and the products are pooled 820 and sequenced 821. In some cases, nucleic acid sorting is performed prior to sequencing. After an acceptable quality control determination is made, the packaged product 822 is approved for shipment 823.
In some instances, polymerase chain reaction (PCR)-based and non-polymerase-cycling-assembly (PCA)-based strategies can be used for chemical gene synthesis. In addition, non-PCA-based chemical gene synthesis using different strategies and methods, including enzymatic gene synthesis, annealing and ligation reaction, simultaneous synthesis of two genes via a hybrid gene, shotgun ligation and co-ligation, insertion gene synthesis, gene synthesis via one strand of DNA, template-directed ligation, ligase chain reaction, microarray-mediated gene synthesis, Blue Heron solid support technology, Sloning building block technology, RNA-mediated gene assembly, the PCR-based thermodynamically balanced inside-out (TBIO), two-step total gene synthesis method that combines dual asymmetrical PCR (DA-PCR), overlap extension PCR, PCR-based two-step DNA synthesis (PTDS), successive PCR method, or any other suitable method known in the art can be used in connection with the methods and compositions described herein, for the assembly of longer polynucleotides from shorter oligonucleotides.
In some instances, methods for the synthesis of oligonucleic acids on the surfaces described herein involve an iterative sequence of the following steps: application of a protected monomer to an actively functionalized surface of a surface feature to link with either the surface, a linker or with a previously deprotected monomer; deprotection of the applied monomer so that it can react with a subsequently applied protected monomer; and application of another protected monomer for linking. One or more intermediate steps include oxidation and/or sulfurization. In some cases, one or more wash steps precede or follow one or all of the steps. In particular, a method for oligonucleic acid synthesis on a functionalized surface of this disclosure is a phosphoramidite method comprising the controlled addition of a phosphoramidite building block, i.e. nucleoside phosphoramidite, to a growing oligonucleic acid chain in a coupling step that forms a phosphite triester linkage between the phosphoramidite building block and a nucleoside bound to the surface. In some instances, the nucleoside phosphoramidite is provided to the surface activated or with an activator. In some instances, nucleoside phosphoramidites are provided to the surface in a 1.5, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100-fold excess or more over the surface-bound nucleosides. In some instances, the addition of nucleoside phosphoramidite is performed in an anhydrous environment, for example, in anhydrous acetonitrile. Following addition and linkage of a nucleoside phosphoramidite in the coupling step, the surface is optionally washed. In some instances, the coupling step is repeated one or more additional times, optionally with a wash step between nucleoside phosphoramidite additions to the surface. In some instances, an oligonucleic acid synthesis method used herein comprises 1, 2, 3 or more sequential coupling steps. Prior to coupling, in many cases, the nucleoside bound to the surface is de-protected by removal of a protecting group, where the protecting group functions to prevent polymerization. A common protecting group is 4,4′-dimethoxytrityl (DMT).
Following coupling, phosphoramidite oligonucleic acid synthesis methods optionally comprise a capping step. In a capping step, a growing oligonucleic acid is treated with a capping agent. A capping step generally serves to block unreacted surface-bound 5′-OH groups after coupling from further chain elongation, preventing the formation of oligonucleic acids with internal base deletions. In some instances, inclusion of a capping step during oligonucleic acid synthesis decreases the error rate as compared to synthesis without capping. As an example, the capping step comprises treating the surface-bound oligonucleic acid with a mixture of acetic anhydride and 1-methylimidazole. Following a capping step, the surface is optionally washed.
In one aspect, systems and methods described herein are configured to synthesize a high density of oligonucleic acids on a substrate with a low error rate. In some cases, these bases are synthesized with a total average error rate of less than about 1 in 100; 200; 300; 400; 500; 1000; 1500; 2000; 5000; 10000; 15000; 20000 bases. In some instances, these error rates are for at least 50%, 60%, 70%, 80%, 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleic acids synthesized. In some instances, these at least 90%, 95%, 98%, 99%, 99.5%, or more of the oligonucleic acids synthesized do not differ from a predetermined sequence for which they encode. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 200. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 500. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 1,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 1,500. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 2,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 3,000. In some instances, the error rate for synthesized oligonucleic acids on a substrate using the methods and systems described herein is less than about 1 in 5,000. Individual types of error rates include mismatches, deletions, insertions, and/or substitutions for the oligonucleic acids synthesized on the substrate. The term “error rate” refers to a comparison of the collective amount of synthesized oligonucleic acid to an aggregate of predetermined oligonucleic acid sequences. In some cases, synthesized oligonucleic acids disclosed herein comprise a tether of 12 to 25 bases. In some instances, the tether comprises 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more bases.
Oligonucleic acid libraries synthesized by methods described herein may comprise at least about 100, 121, 200, 300, 400, 500, 600, 750, 1000, 5000, 6000, 15000, 20000, 30000, 40000, 50000, 60000, 75000, 100000, 200000, 300000, 400000, 500000, 600000, 700000, 750000, 1000000, 2000000, 3000000, 4000000, 5000000, or more different oligonucleic acids. The different oligonucleic acids or may be related to predetermined/preselected sequences. It is understood that the library may comprise of a plurality of different subsections, such as about 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 24 subsections or more. Compositions and methods of the invention further allow construction of the above mentioned large synthetic libraries of oligonucleic acids with low error rates described above in short time frames, such us in less than three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days or less. In some instances, oligonucleic acid libraries synthesized by methods described herein comprise loci, each having different oligonucleic acids than another loci, wherein each locus has a population at least about 75% uniform when measured by calculating amplitude of signal variation for oligonucleic acids extending from each locus divided by total signal intensity following white light illumination using an optical microscope.
Gene libraries synthesized by methods described herein may comprise at least about 50, 100, 200, 250, 300, 400, 500, 600, 750, 1000, 5000, 6000, 15000, 20000, 30000, 40000, 50000, 60000, 75000, 100000, 200000, 300000, 400000, 500000, 600000, 750000, 1000000, 2000000, 3000000, 4000000, 5000000, or more different genes. Compositions and methods of the invention further allow construction of the above mentioned large libraries of genes with low error rates described above in short time frames, such us in less than three months, two months, one month, three weeks, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 days or less. Genes of the above mentioned libraries may be synthesized by assembling de novo synthesized oligonucleic acids by suitable gene assembly methods further described in detail elsewhere herein or otherwise known in the art.
In some instances, following addition of a nucleoside phosphoramidite, and optionally after capping and one or more wash steps, the surface bound growing nucleic acid is oxidized. The oxidation step comprises oxidizing the phosphite triester into a tetracoordinated phosphate triester, a protected precursor of the naturally occurring phosphate diester internucleoside linkage. In some cases, oxidation of the growing oligonucleic acid is achieved by treatment with iodine and water, optionally in the presence of a weak base such as a pyridine, lutidine, or collidine. In some instances, oxidation is done under anhydrous conditions using tert-Butyl hydroperoxide or (1S)-(+)-(10-camphorsulfonyl)-oxaziridine (CSO). In some methods, a capping step is performed following oxidation. A second capping step allows for surface drying, as residual water from oxidation that may persist can inhibit subsequent coupling. Following oxidation, the surface and growing oligonucleic acid is optionally washed. In some instances, the oxidation step is substituted with a sulfurization step to obtain oligonucleotide phosphorothioates, wherein any capping steps can be performed after the sulfurization. Many reagents are capable of the efficient sulfur transfer, including, but not limited to, 3-(Dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-3-thione, DDTT, 3H-1,2-benzodithiol-3-one 1,1-dioxide, also known as Beaucage reagent, and N,N,N′N′-Tetraethylthiuram disulfide (TETD).
In order for a subsequent cycle of nucleoside incorporation to occur through coupling, a protected 5′ end of the surface bound growing oligonucleic acid must be removed so that the primary hydroxyl group can react with a next nucleoside phosphoramidite. In some instances, the protecting group is DMT and deblocking occurs with trichloroacetic acid in dichloromethane.
In some cases, following oligonucleic acid synthesis, oligonucleic acids are released from their bound surface and pooled. In some instances, the pooled oligonucleic acids are assembled into a larger nucleic acid, such as a gene. In some instances, larger oligonucleic acids are generated through ligation reactions to join the synthesized oligonucleic acids. One example of a ligation reaction is polymerase chain assembly (PCA).
In some instances, a surface is functionalized with a hydrophobic set of molecules, where the hydrophobic set of molecules is configured to hold an extracted oligonucleic acid molecule. In some cases, a hydrophobic feature corresponds to a well, and an oligonucleic acid molecule is held in the feature during an assembly process, for example, during PCA. In some cases, a hydrophobic feature corresponds to a well and an assembled oligonucleic acid is stored within the well.
In some instances, error correction is performed on synthesized oligonucleic acids and/or assembled products. An example strategy for error correction involves site-directed mutagenesis by overlap extension PCR to correct errors, which is optionally coupled with two or more rounds of cloning and sequencing. In certain instances, double-stranded nucleic acids with mismatches, bulges and small loops, chemically altered bases and/or other heteroduplexes are selectively removed from populations of correctly synthesized nucleic acids. In some instances, error correction is performed using proteins/enzymes that recognize and bind to or next to mismatched or unpaired bases within double-stranded nucleic acids to create a single or double-strand break or to initiate a strand transfer transposition event. Non-limiting examples of proteins/enzymes for error correction include endonucleases (T7 Endonuclease I, E. coli Endonuclease V, T4 Endonuclease VII, mung bean nuclease, Cell, E. coli Endonuclease IV, UVDE), restriction enzymes, glycosylases, ribonucleases, mismatch repair enzymes, resolvases, helicases, ligases, antibodies specific for mismatches, and their variants. Examples of specific error correction enzymes include T4 endonuclease 7, T7 endonuclease 1, S1, mung bean endonuclease, MutY, MutS, MutH, MutL, cleavase, CELI, and HINF1. In some cases, DNA mismatch-binding protein MutS (Thermus aquaticus) is used to remove failure products from a population of synthesized products. In some instances, error correction is performed using the enzyme Correctase. In some cases, error correction is performed using SURVEYOR endonuclease (Transgenomic), a mismatch-specific DNA endonuclease that scans for known and unknown mutations and polymorphisms for heteroduplex DNA.
Computer Systems
In various aspects, any of the systems described herein are operably linked to a computer and are optionally automated through a computer either locally or remotely. In various instances, the methods and systems of the invention further comprise software programs on computer systems and use thereof. Accordingly, computerized control for the synchronization of the dispense/vacuum/refill functions such as orchestrating and synchronizing the material deposition device movement, dispense action and vacuum actuation are within the bounds of the invention. In some instances, the computer systems are programmed to interface between the user specified base sequence and the position of a material deposition device to deliver the correct reagents to specified regions of the surface.
The computer system 900 illustrated in
As illustrated in
In some instances, the system 1000 includes an accelerator card 1022 attached to the peripheral bus 1018. The accelerator can include field programmable gate arrays (FPGAs) or other hardware for accelerating certain processing. For example, an accelerator can be used for adaptive data restructuring or to evaluate algebraic expressions used in extended set processing.
Software and data are stored in external storage 1024 and can be loaded into RAM 1010 and/or cache 1004 for use by the processor. The system 1000 includes an operating system for managing system resources; non-limiting examples of operating systems include: Linux, Windows™, MACOS™, BlackBerry OS™, iOS™, and other functionally-equivalent operating systems, as well as application software running on top of the operating system for managing data storage and optimization in accordance with example instances of the present invention.
In this example, the system 1000 also includes network interface cards (NICs) 1020 and 921 connected to the peripheral bus for providing network interfaces to external storage, such as Network Attached Storage (NAS) and other computer systems that can be used for distributed parallel processing.
In some example instances, processors can maintain separate memory spaces and transmit data through network interfaces, back plane or other connectors for parallel processing by other processors. In other instances, some or all of the processors can use a shared virtual address memory space.
The above computer architectures and systems are examples only, and a wide variety of other computer, cell phone, and personal data assistant architectures and systems can be used in connection with example instances, including systems using any combination of general processors, co-processors, FPGAs and other programmable logic devices, system on chips (SOCs), application specific integrated circuits (ASICs), and other processing and logic elements. In some instances, all or part of the computer system can be implemented in software or hardware. Any variety of data storage media can be used in connection with example instances, including random access memory, hard drives, flash memory, tape drives, disk arrays, Network Attached Storage (NAS) and other local or distributed data storage devices and systems.
In example instances, the computer system can be implemented using software modules executing on any of the above or other computer architectures and systems. In other instances, the functions of the system can be implemented partially or completely in firmware, programmable logic devices such as field programmable gate arrays (FPGAs) as referenced in
The following examples are set forth to illustrate more clearly the principle and practice of instances disclosed herein to those skilled in the art and are not to be construed as limiting the scope of any claimed instances. Unless otherwise stated, all parts and percentages are on a weight basis.
A structure comprising a 1000 Å layer of silicon dioxide on its top surface was differentially functionalized using a first set of molecules comprising a passive agent (an agent that lacks a reactive group for nucleoside coupling) and a second set of molecules comprising an active agent (an agent that includes an reactive group for nucleoside coupling). The top surface of the structure was coated with the first set of molecules comprising (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane using a YES-1224P vapor deposition oven system (Yield Engineering Systems) with the following parameters: 1 torr, 60 min, 70° C. vaporizer. The thickness of the first coated layer was measured using an ellipsometer (J. A. Woollam) to be about 8 Å. The contact angle was measured to be about 115 degrees using a Kruss GmbH instrument.
The passively coated surface was patterned by application of deep ultraviolet (DUV) light to the top surface of the surface through a quartz mask with chrome patterns, where the mask was positioned on top of the structure so that only distinct regions of the top surface of the surface were exposed to the DUV light. DUV light was applied using a Hamamatsu L12530 EX-mini Compact Excimer Lamp Light Source for a total of 60 seconds. The excimer lamp delivers 50 mW/cm2 power at 172 nm wavelength sufficient to cleave the fluoro-silane passive layer from the exposed region of the silicon surface. The contact angle was measured as before and was less than 10 degrees. Water was applied to the structure and only exposed areas were wetted, while the original fluoropolymer areas not exposed to deep UV light repelled the water.
The passively patterned surface was rinsed with water and subsequently coated with 3-glycidoxypropyltrimethoxysilane (GOPS) by vapor deposition as before (YES). The contact angle was measured at around 65 degrees.
The structure having a differentially functionalized surface of Example 1 was used as a support for the synthesis of 50-mer oligonucleic acids. The structure was assembled into a flow cell and connected to an Applied Biosystems ABI394 DNA Synthesizer. Synthesis of the 50-mer oligonucleic acids was performed using the methods of Table 2.
Synthesized oligonucleic acids were extracted from the surface and analyzed on a BioAnalyzer chip. Oligonucleic acid products were PCR amplified, cloned and Sanger sequenced.
A structure comprising a 1000 Å layer of silicon dioxide on its top surface was differentially functionalized using a first set of molecules comprising a passive agent (an agent that lacks a reactive group for nucleoside coupling) and a second set of molecules comprising an active agent (an agent that includes an reactive group for nucleoside coupling). The top surface of the silicon surface was coated with the first set of molecules comprising (tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane as described in Example 1. The passively coated surface was patterned by application of DUV light to the top surface of the structure through a quartz mask with chrome patterns, where the mask was positioned on top of the structure so that only distinct regions of the top surface of the structure were exposed to the DUV light. DUV light was applied using a Hamamatsu L12530 EX-mini Compact Excimer Lamp Light Source for a total of 60 seconds at about 1 cm distance with an nitrogen gas backfill. The surface was patterned to have a plurality of clusters, with each cluster having 121 reaction sites or loci for oligonucleic acid synthesis. The passively patterned surface was rinsed with water and subsequently deposited with 3-glycidoxypropyltrimethoxysilane (GOPS) by vapor deposition as before (YES) to coat each of the loci.
The differentially functionalized surface of Example 3 was used as a support for the synthesis of 50-mer oligonucleic acids. The structure was assembled into a flow cell and connected to an Applied Biosystems ABI394 DNA Synthesizer. Synthesis of the 50-mer oligonucleic acids was performed using the methods of Table 2. Synthesized oligonucleic acids were extracted from the surface and analyzed on a BioAnalyzer chip. Oligonucleic acid products were PCR amplified, cloned and Sanger sequenced.
Surfaces were differentially functionalized with an active and passive layer using a reverse photoresist process, a forward photoresist process, and a process employing deep UV light. The steps of each surface preparation method are listed in Table 3. For each method, the passive and active layers were deposited by chemical vapor deposition. Each prepared surface was used as a support for the synthesis of oligonucleic acids on areas of active functionalization.
DNA intensity profiles were generated oligonucleic acids synthesized on surfaces differentially functionalized by the various process steps outlined in Table 3.
In the forward resist process, the photoresist (PR) was coated prior to active layer coating. In the reverse process, PR was deposited after active layer coating and residues remaining on the surface created a non-homogeneous layer of synthesized oligonucleic acids. The surface patterned with deep UV had the highest percentage of uniformity among synthesized oligonucleic acid strands. The percentage of non-uniformity was about 31% for the reverse PR process, about 39% for the forward PR process, and about 23% for the deep UV process (and likewise the percent of uniformity was about 69% for the reverse PR process, about 61% for the forward PR process, and about 77% for the deep UV process). The non-uniformity was calculated by dividing the amplitude of signal variation by the total signal intensity. As shown in the trace highlighted in
A patterned functionalized surface was created on fluorinated silicon plates using a Ushio MinExcimer deep UV (DUV) lamp (
The apparatus used for patterning is shown in
Alignment of the loci was confirmed using fiducials 2201. (
In a separate run, surfaces were prepared using the cylinder UV lamp in pattern for extending oligonucleic acids in parallel lines on the surface. Oligonucleic acid extension was observed wherein each line was about 3 um in width, and having a 6 um pitch (image capture not shown). Measurements for line width in one image capture included 2.90 um, 3.08 um, and 2.71 um.
A patterned functionalized surface was created on a fluorinated silicon dioxide coated plate using a flat ultra violet lamp (Hamamatsu deep UV (DUV) lamp,
A TOF-SIMS analysis of an area 150 um×150 um was performed to analyze surface chemistry. Referring to
A SOI wafer is provided and prepared prior to application of a set of molecules by a wet or dry cleaning process. The wafer is deposited with 3-glycidoxypropyltrimethoxysilane (GOPS) and nucleotide extension reactions are performed to extend from the surface oligonucleic acids at least 20 bases in length. A protecting group having a trityl group is applied to the terminal end of the oligonucleic acids. The layer of active agent and oligonucleic acid platform is subsequently patterned by removing the layers from defined regions of the surface via exposure to EMR at 172 nm. A shadow mask is positioned over the surface so that only the defined regions are exposed to EMR through openings in the shadow mask. The layer of active agent and platform oligonucleic acids coated on the exposed regions of the surface is cleaved from the surface and washed away with a wash solution. After the surface is patterned, the exposed regions of the surface are exposed to tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane or tridecafluoro-1,1,2,2-tetrahydrooctyl)trimethoxysilane. The platform oligonucleic acids de-protected and extension of a predetermined sequence of oligonucleic acids 100 bases in length is performed. The resultant surface will comprise a cluster of loci within a diameter of 1.15 mm wherein each loci has a width of 10 um. The loci each comprise an oligonucleic acid which is different from that extending on another locus. Each cluster will comprise about 121 loci and the loci will collectively encode predetermined sequence for a single preselected nucleic acid, e.g., a gene.
A patterned functionalized surface is created on a fluorinated silicon plate using a flat ultra violet lamp (Quark deep UV (DUV) lamp) and quartz mask with a mask aligner. The quartz mask allows UV light to go through at 172 nm. A chrome or dielectric cover is used to create shadows on the chip. The lamp has a flat shape that allows the surface to be exposed to the DUV light with increased uniformity across the chip surface over an increased surface area. The mask is held in place by loading the mask into the mask aligner and the vision system is aligned on the alignment fiducial of the mask. The plate is loaded into the alignment system and the mask is aligned over the chip using screws on the mask aligner and visualizing the chip and the mask with a microscope. A controlled atmosphere is created between the mask and the substrate using a purge combined with a backfill of nitrogen gas. The mask is then brought into close contact with the chip. Once the mask is aligned correctly over the chip, the microscope is removed and the DUV lamp is moved into place over the mask. A controlled atmosphere is also created between the mask and the lamp using the purge and nitrogen backfill. DUV light is applied to activate the chip surface chemistry. The chip is exposed to DUV for about 35 seconds using the lamp, providing approximately 30 mW/cm2. Ozone created by the low wavelength light is purged using the nitrogen backfill and ozone exhaust. After DUV exposure, 3-glycidoxypropyltrimethoxysilane (GOPS) is deposited onto the surface of the chip and the surface is activated for DNA synthesis.
A patterned functionalized surface is created on a fluorinated silicon plate using a laser. The plate is aligned to a reference to guide the laser and a controlled atmosphere is created between the plate and the laser using a purge and nitrogen backfill system. The laser is applied using pulses while moving the chip synchronized with the laser pulses to create a pattern of exposed areas on the chip to activate the chip surface chemistry. After DUV exposure, 3-glycidoxypropyltrimethoxysilane (GOPS) is deposited onto the surface of the chip and the surface is activated for DNA synthesis.
A nylon surface is created using a molecular layer deposition of nylon for functionalization and nucleic acid synthesis. A nylon film is deposited on a tape made from another synthetic material. (Alternatively, a nylon tape or silicon wafer is used.) The surface is then dosed with glutaryl chloride for 10 seconds (room temperature ampoule, 10 sccm N2 carrier). The surface is purged 5 Torr N2 for 20 seconds, evacuated for 5 seconds, purged 5 Torr N2 for 20 seconds, and evacuated for 5 seconds. The surface is then dosed with ethylenediamine for 5 seconds (room temperature ampoule, 0 sccm N2 carrier). The surface is purged 5 Torr N2 for 20 seconds, evacuated for 5 seconds, purged 5 Torr N2 for 20 seconds, and evacuated for 5 seconds. These steps are repeated for 30 cycles.
A patterned functionalized nylon is exposed to emissions from a flat UV lamp, a Hamamatsu deep UV (DUV) lamp, and quartz mask with mask aligner. The quartz mask allows UV light to go through at 172 nm. A chrome or dielectric cover is used to create shadows on the tape. The Hamamatsu lamp has a flat shape that allows the surface to be exposed to the DUV light with increased uniformity across the chip surface. The mask is held in place by the mask aligner and aligned over the tape using screws on the mask aligner and visualizing the chip and the mask with a microscope. Once the mask is aligned correctly over the chip, the microscope is removed and the DUV lamp is moved into place over the mask. DUV light is applied to activate the chip surface chemistry. After DUV exposure, the surface is activated for DNA synthesis. Increased DNA yields are observed using the nylon surface than those observed using a two-layered surface.
A patterned functionalized surface is created on a nylon flexible surface using a laser. The nylon flexible surface is aligned to a reference to guide the laser and a controlled atmosphere was created between the tape and the laser using a purge and nitrogen backfill system. The laser is applied using pulses while moving the tape synchronized with the laser pulses to create a pattern of exposed areas on the tape to activate the chip surface chemistry. After DUV exposure, the surface is activated for DNA synthesis.
Polydimethylsiloxane (PDMS) stamps are made using a UV photolithography process. A silicon wafer coated with photoresist is exposed to UV light through a mask, creating a pattern on the silicon wafer. The exposed wafer is then exposed to a solution of developer creating a master which is used to cast the PDMS stamp. The PDMS prepolymer is mixed with a curing agent and poured onto the prepared master. The cured stamp is then peeled from the template and is ready for inking. The finished stamp is about 100 μm to about 1 cm thick and the raised portions of the stamp range from about 1 μm to about 500 μm.
Stamps are inked with a solution containing a passive agent, tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane. After inking, the passive agent solution is transferred to a silicon plate. Care is taken to not deform the stamp while stamping the microchip. Each inked stamp is used to pattern three microchips before reloading the stamp.
Polydimethylsiloxane (PDMS) stamps are made using a UV photolithography process. A silicon wafer coated with photoresist is exposed to UV light through a mask, creating a pattern on the silicon wafer. The exposed wafer is then exposed to a solution of developer creating a master which is used to cast the PDMS stamp. The PDMS prepolymer is mixed with a curing agent and poured onto the prepared master. The cured stamp is then peeled from the template and is ready for inking. The finished stamp is about 100 μm to about 1 cm thick and the raised portions of the stamp range from about 1 μm to about 500 μm. Stamps are inked with a solution containing an active agent, 3-glycidoxypropyltrimethoxysilane (GOPS). After inking, the active agent solution is transferred to a silicon plate. Care is taken to not deform the stamp while stamping the microchip. Each inked stamp is used to pattern three microchips before reloading the stamp.
A PCA reaction mixture is prepared as described in Table 4 using a population of oligonucleic acids synthesized using the protocol of Example 2 and surface preparation procedures consistent with EMR based protocols in Examples 3-14.
Drops of about 400 nL were dispensed using a Mantis dispenser (Formulatrix, MA) on top of a cluster of loci which have been cleaved from the surface. A nanoreactor is chip is manually mated with the oligonucleotide device to pick up the droplets having the PCA reaction mixture. The droplets are picked up into the individual nanoreactors in the nanoreactor chip by releasing the nanoreactor from the oligonucleotide synthesis device immediately after pick-up. The nanoreactors are sealed with a Heat Sealing Film/Tape cover (Eppendorf) and placed in a suitably configured thermocycler that is constructed using a thermocycler kit (OpenPCR).
Alternatively, a pin-based system is used to contact a cluster of loci which have been cleaved from the surface. In such an arrangement, a pin having water on the tip contacts a cluster, transfers it to a well in a plate, such as a 96 or 384 well plate having PCA buffer in each well.
The following temperature protocol is used on the thermocycler:
1 cycle: 98 C, 45 seconds
40 cycles: 98 C, 15 seconds; 63 C, 45 seconds; 72 C, 60 seconds;
1 cycle: 72 C, 5 minutes
1 cycle: 4 C, hold
An aliquot of 0.50 ul is collected from individual wells and the aliquots are amplified in plastic tubes, in a PCR reaction mixture (Table 5) and according to the following thermocycler program, using a forward and a reverse primer:
Thermocycler:
1 cycle: 98 C, 30 seconds
30 cycles: 98 C, 7 seconds; 63 C, 30 seconds; 72 C, 90 seconds
1 cycle: 72 C, 5 minutes
1 cycle: 4 C, hold
While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
This application is a Continuation of U.S. patent application Ser. No. 15/860,445, filed Jan. 2, 2018, which is a Continuation of U.S. patent application Ser. No. 15/365,826, filed on Nov. 30, 2016, now U.S. Pat. No. 9,895,673, issued Feb. 20, 2018, which claims the benefit of U.S. Provisional Application No. 62/261,753 filed on Dec. 1, 2015, which is incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3549368 | Robert et al. | Dec 1970 | A |
3920714 | Streck | Nov 1975 | A |
4123661 | Wolf et al. | Oct 1978 | A |
4415732 | Caruthers et al. | Nov 1983 | A |
4613398 | Chiong et al. | Sep 1986 | A |
4726877 | Fryd et al. | Feb 1988 | A |
4808511 | Holmes | Feb 1989 | A |
4837401 | Hirose et al. | Jun 1989 | A |
4863557 | Kokaku et al. | Sep 1989 | A |
4981797 | Jessee et al. | Jan 1991 | A |
4988617 | Landegren et al. | Jan 1991 | A |
5102797 | Tucker et al. | Apr 1992 | A |
5118605 | Urdea | Jun 1992 | A |
5137814 | Rashtchian et al. | Aug 1992 | A |
5143854 | Pirrung et al. | Sep 1992 | A |
5242794 | Whiteley et al. | Sep 1993 | A |
5242974 | Holmes | Sep 1993 | A |
5288514 | Ellman et al. | Feb 1994 | A |
5299491 | Kawada | Apr 1994 | A |
5384261 | Winkler et al. | Jan 1995 | A |
5387541 | Hodge et al. | Feb 1995 | A |
5395753 | Prakash | Mar 1995 | A |
5431720 | Nagai et al. | Jul 1995 | A |
5445934 | Fodor et al. | Aug 1995 | A |
5449754 | Nishioka | Sep 1995 | A |
5459039 | Modrich et al. | Oct 1995 | A |
5474796 | Brennan | Dec 1995 | A |
5476930 | Letsinger et al. | Dec 1995 | A |
5487993 | Herrnstadt et al. | Jan 1996 | A |
5494810 | Barany et al. | Feb 1996 | A |
5501893 | Laermer et al. | Mar 1996 | A |
5508169 | Deugau et al. | Apr 1996 | A |
5510270 | Fodor et al. | Apr 1996 | A |
5514789 | Kempe | May 1996 | A |
5527681 | Holmes et al. | Jun 1996 | A |
5530516 | Sheets | Jun 1996 | A |
5556750 | Modrich et al. | Sep 1996 | A |
5586211 | Dumitrou et al. | Dec 1996 | A |
5641658 | Adams et al. | Jun 1997 | A |
5677195 | Winkler et al. | Oct 1997 | A |
5679522 | Modrich et al. | Oct 1997 | A |
5683879 | Laney et al. | Nov 1997 | A |
5688642 | Chrisey et al. | Nov 1997 | A |
5700637 | Southern et al. | Dec 1997 | A |
5700642 | Monforte et al. | Dec 1997 | A |
5702894 | Modrich et al. | Dec 1997 | A |
5707806 | Shuber | Jan 1998 | A |
5712124 | Walker | Jan 1998 | A |
5739386 | Holmes | Apr 1998 | A |
5750672 | Kempe | May 1998 | A |
5780613 | Letsinger et al. | Jul 1998 | A |
5830643 | Yamamoto et al. | Nov 1998 | A |
5830655 | Monforte et al. | Nov 1998 | A |
5830662 | Soares et al. | Nov 1998 | A |
5834252 | Stemmer et al. | Nov 1998 | A |
5843669 | Kaiser et al. | Dec 1998 | A |
5843767 | Beattie | Dec 1998 | A |
5846717 | Brow et al. | Dec 1998 | A |
5854033 | Lizardi | Dec 1998 | A |
5858754 | Modrich et al. | Jan 1999 | A |
5861482 | Modrich et al. | Jan 1999 | A |
5863801 | Southgate et al. | Jan 1999 | A |
5869245 | Yeung | Feb 1999 | A |
5877280 | Wetmur | Mar 1999 | A |
5882496 | Northrup et al. | Mar 1999 | A |
5922539 | Modrich et al. | Jul 1999 | A |
5922593 | Livingston | Jul 1999 | A |
5928907 | Woudenberg et al. | Jul 1999 | A |
5962272 | Chenchik et al. | Oct 1999 | A |
5976842 | Wurst | Nov 1999 | A |
5976846 | Passmore et al. | Nov 1999 | A |
5989872 | Luo et al. | Nov 1999 | A |
5994069 | Hall et al. | Nov 1999 | A |
6001567 | Brow et al. | Dec 1999 | A |
6008031 | Modrich et al. | Dec 1999 | A |
6013440 | Lipshutz et al. | Jan 2000 | A |
6015674 | Woudenberg et al. | Jan 2000 | A |
6020481 | Benson et al. | Feb 2000 | A |
6027898 | Gjerde et al. | Feb 2000 | A |
6028189 | Blanchard | Feb 2000 | A |
6028198 | Liu et al. | Feb 2000 | A |
6040138 | Lockhart et al. | Mar 2000 | A |
6077674 | Schleifer et al. | Jun 2000 | A |
6087482 | Teng et al. | Jul 2000 | A |
6090543 | Prudent et al. | Jul 2000 | A |
6090606 | Kaiser et al. | Jul 2000 | A |
6103474 | Dellinger et al. | Aug 2000 | A |
6107038 | Choudhary et al. | Aug 2000 | A |
6110682 | Dellinger et al. | Aug 2000 | A |
6114115 | Wagner, Jr. | Sep 2000 | A |
6130045 | Wurst et al. | Oct 2000 | A |
6132997 | Shannon | Oct 2000 | A |
6136568 | Hiatt et al. | Oct 2000 | A |
6171797 | Perbost | Jan 2001 | B1 |
6180351 | Cattell | Jan 2001 | B1 |
6201112 | Ach | Mar 2001 | B1 |
6218118 | Sampson et al. | Apr 2001 | B1 |
6221653 | Caren et al. | Apr 2001 | B1 |
6222030 | Dellinger et al. | Apr 2001 | B1 |
6232072 | Fisher | May 2001 | B1 |
6235483 | Wolber et al. | May 2001 | B1 |
6242266 | Schleifer et al. | Jun 2001 | B1 |
6251588 | Shannon et al. | Jun 2001 | B1 |
6251595 | Gordon et al. | Jun 2001 | B1 |
6251685 | Dorsel et al. | Jun 2001 | B1 |
6258454 | Lefkowitz et al. | Jul 2001 | B1 |
6262490 | Hsu et al. | Jul 2001 | B1 |
6274725 | Sanghvi et al. | Aug 2001 | B1 |
6284465 | Wolber | Sep 2001 | B1 |
6287776 | Hefti | Sep 2001 | B1 |
6287824 | Lizardi | Sep 2001 | B1 |
6297017 | Schmidt et al. | Oct 2001 | B1 |
6300137 | Earhart et al. | Oct 2001 | B1 |
6306599 | Perbost | Oct 2001 | B1 |
6309822 | Fodor et al. | Oct 2001 | B1 |
6309828 | Schleifer et al. | Oct 2001 | B1 |
6312911 | Bancroft et al. | Nov 2001 | B1 |
6319674 | Fulcrand et al. | Nov 2001 | B1 |
6323043 | Caren et al. | Nov 2001 | B1 |
6329210 | Schleifer | Dec 2001 | B1 |
6346423 | Schembri | Feb 2002 | B1 |
6365355 | McCutchen-Maloney | Apr 2002 | B1 |
6372483 | Schleifer et al. | Apr 2002 | B2 |
6375903 | Cerrina et al. | Apr 2002 | B1 |
6376285 | Joyner et al. | Apr 2002 | B1 |
6384210 | Blanchard | May 2002 | B1 |
6387636 | Perbost et al. | May 2002 | B1 |
6399394 | Dahm et al. | Jun 2002 | B1 |
6399516 | Ayon | Jun 2002 | B1 |
6403314 | Lange et al. | Jun 2002 | B1 |
6406849 | Dorsel et al. | Jun 2002 | B1 |
6406851 | Bass | Jun 2002 | B1 |
6408308 | Maslyn et al. | Jun 2002 | B1 |
6419883 | Blanchard | Jul 2002 | B1 |
6428957 | Delenstarr | Aug 2002 | B1 |
6440669 | Bass et al. | Aug 2002 | B1 |
6444268 | Lefkowitz et al. | Sep 2002 | B2 |
6446642 | Caren et al. | Sep 2002 | B1 |
6446682 | Viken | Sep 2002 | B1 |
6451998 | Perbost | Sep 2002 | B1 |
6458526 | Schembri et al. | Oct 2002 | B1 |
6458535 | Hall et al. | Oct 2002 | B1 |
6458583 | Bruhn et al. | Oct 2002 | B1 |
6461812 | Barth et al. | Oct 2002 | B2 |
6461816 | Wolber et al. | Oct 2002 | B1 |
6469156 | Schafer et al. | Oct 2002 | B1 |
6472147 | Janda et al. | Oct 2002 | B1 |
6492107 | Kauffman et al. | Dec 2002 | B1 |
6518056 | Schembri et al. | Feb 2003 | B2 |
6521427 | Evans | Feb 2003 | B1 |
6521453 | Crameri et al. | Feb 2003 | B1 |
6555357 | Kaiser et al. | Apr 2003 | B1 |
6558908 | Wolber et al. | May 2003 | B2 |
6562611 | Kaiser et al. | May 2003 | B1 |
6566495 | Fodor et al. | May 2003 | B1 |
6582908 | Fodor et al. | Jun 2003 | B2 |
6582938 | Su et al. | Jun 2003 | B1 |
6586211 | Staehler et al. | Jul 2003 | B1 |
6587579 | Bass | Jul 2003 | B1 |
6589739 | Fisher | Jul 2003 | B2 |
6599693 | Webb | Jul 2003 | B1 |
6602472 | Zimmermann et al. | Aug 2003 | B1 |
6610978 | Yin et al. | Aug 2003 | B2 |
6613513 | Parce et al. | Sep 2003 | B1 |
6613523 | Fischer | Sep 2003 | B2 |
6613560 | Tso et al. | Sep 2003 | B1 |
6613893 | Webb | Sep 2003 | B1 |
6621076 | Van et al. | Sep 2003 | B1 |
6630581 | Dellinger et al. | Oct 2003 | B2 |
6632641 | Brennan et al. | Oct 2003 | B1 |
6635226 | Tso et al. | Oct 2003 | B1 |
6642373 | Manoharan et al. | Nov 2003 | B2 |
6649348 | Bass et al. | Nov 2003 | B2 |
6660338 | Hargreaves | Dec 2003 | B1 |
6664112 | Mulligan et al. | Dec 2003 | B2 |
6670127 | Evans | Dec 2003 | B2 |
6670461 | Wengel et al. | Dec 2003 | B1 |
6673552 | Frey | Jan 2004 | B2 |
6682702 | Barth et al. | Jan 2004 | B2 |
6689319 | Fisher et al. | Feb 2004 | B1 |
6692917 | Neri et al. | Feb 2004 | B2 |
6702256 | Killeen et al. | Mar 2004 | B2 |
6706471 | Brow et al. | Mar 2004 | B1 |
6706875 | Goldberg et al. | Mar 2004 | B1 |
6709852 | Bloom et al. | Mar 2004 | B1 |
6709854 | Donahue et al. | Mar 2004 | B2 |
6713262 | Gillibolian et al. | Mar 2004 | B2 |
6716629 | Hess et al. | Apr 2004 | B2 |
6716634 | Myerson | Apr 2004 | B1 |
6723509 | Ach | Apr 2004 | B2 |
6728129 | Lindsey et al. | Apr 2004 | B2 |
6743585 | Dellinger et al. | Jun 2004 | B2 |
6753145 | Holcomb et al. | Jun 2004 | B2 |
6768005 | Mellor et al. | Jul 2004 | B2 |
6770748 | Imanishi et al. | Aug 2004 | B2 |
6770892 | Corson et al. | Aug 2004 | B2 |
6773676 | Schembri | Aug 2004 | B2 |
6773888 | Li et al. | Aug 2004 | B2 |
6780982 | Lyamichev et al. | Aug 2004 | B2 |
6787308 | Balasubramanian et al. | Sep 2004 | B2 |
6789965 | Barth et al. | Sep 2004 | B2 |
6790620 | Bass et al. | Sep 2004 | B2 |
6794499 | Wengel et al. | Sep 2004 | B2 |
6796634 | Caren et al. | Sep 2004 | B2 |
6800439 | McGall et al. | Oct 2004 | B1 |
6814846 | Berndt | Nov 2004 | B1 |
6815218 | Jacobson et al. | Nov 2004 | B1 |
6824866 | Glazer I et al. | Nov 2004 | B1 |
6830890 | Lockhart et al. | Dec 2004 | B2 |
6833246 | Balasubramanian | Dec 2004 | B2 |
6833450 | McGall et al. | Dec 2004 | B1 |
6835938 | Ghosh et al. | Dec 2004 | B2 |
6838888 | Peck | Jan 2005 | B2 |
6841131 | Zimmermann et al. | Jan 2005 | B2 |
6845968 | Killeen et al. | Jan 2005 | B2 |
6846454 | Peck | Jan 2005 | B2 |
6846922 | Manoharan et al. | Jan 2005 | B1 |
6852850 | Myerson et al. | Feb 2005 | B2 |
6858720 | Myerson et al. | Feb 2005 | B2 |
6879915 | Cattell | Apr 2005 | B2 |
6880576 | Karp et al. | Apr 2005 | B2 |
6884580 | Caren et al. | Apr 2005 | B2 |
6887715 | Schembri | May 2005 | B2 |
6890723 | Perbost et al. | May 2005 | B2 |
6890760 | Webb | May 2005 | B1 |
6893816 | Beattie | May 2005 | B1 |
6897023 | Fu et al. | May 2005 | B2 |
6900047 | Bass | May 2005 | B2 |
6900048 | Perbost | May 2005 | B2 |
6911611 | Wong et al. | Jun 2005 | B2 |
6914229 | Corson et al. | Jul 2005 | B2 |
6916113 | De et al. | Jul 2005 | B2 |
6916633 | Shannon | Jul 2005 | B1 |
6919181 | Hargreaves | Jul 2005 | B2 |
6927029 | Lefkowitz et al. | Aug 2005 | B2 |
6929951 | Corson et al. | Aug 2005 | B2 |
6936472 | Earhart et al. | Aug 2005 | B2 |
6938476 | Chesk | Sep 2005 | B2 |
6939673 | Bass et al. | Sep 2005 | B2 |
6943036 | Bass | Sep 2005 | B2 |
6946285 | Bass | Sep 2005 | B2 |
6950756 | Kincaid | Sep 2005 | B2 |
6951719 | Dupret et al. | Oct 2005 | B1 |
6958119 | Yin et al. | Oct 2005 | B2 |
6960464 | Jessee et al. | Nov 2005 | B2 |
6969488 | Bridgham et al. | Nov 2005 | B2 |
6976384 | Hobbs et al. | Dec 2005 | B2 |
6977223 | George et al. | Dec 2005 | B2 |
6987263 | Hobbs et al. | Jan 2006 | B2 |
6989267 | Kim et al. | Jan 2006 | B2 |
6991922 | Dupret et al. | Jan 2006 | B2 |
7008037 | Caren et al. | Mar 2006 | B2 |
7025324 | Slocum et al. | Apr 2006 | B1 |
7026124 | Barth et al. | Apr 2006 | B2 |
7027930 | Cattell | Apr 2006 | B2 |
7028536 | Karp et al. | Apr 2006 | B2 |
7029854 | Collins et al. | Apr 2006 | B2 |
7034290 | Lu et al. | Apr 2006 | B2 |
7041445 | Chenchik et al. | May 2006 | B2 |
7045289 | Allawi et al. | May 2006 | B2 |
7051574 | Peck | May 2006 | B2 |
7052841 | Delenstarr | May 2006 | B2 |
7062385 | White et al. | Jun 2006 | B2 |
7064197 | Rabbani et al. | Jun 2006 | B1 |
7070932 | Leproust et al. | Jul 2006 | B2 |
7075161 | Barth | Jul 2006 | B2 |
7078167 | Delenstarr et al. | Jul 2006 | B2 |
7078505 | Bass et al. | Jul 2006 | B2 |
7094537 | Leproust et al. | Aug 2006 | B2 |
7097974 | Staehler et al. | Aug 2006 | B1 |
7101508 | Thompson et al. | Sep 2006 | B2 |
7101986 | Dellinger et al. | Sep 2006 | B2 |
7105295 | Bass et al. | Sep 2006 | B2 |
7115423 | Mitchell | Oct 2006 | B1 |
7122303 | Delenstarr et al. | Oct 2006 | B2 |
7122364 | Lyamichev et al. | Oct 2006 | B1 |
7125488 | Li | Oct 2006 | B2 |
7125523 | Sillman | Oct 2006 | B2 |
7128876 | Yin et al. | Oct 2006 | B2 |
7129075 | Gerard et al. | Oct 2006 | B2 |
7135565 | Dellinger et al. | Nov 2006 | B2 |
7138062 | Yin et al. | Nov 2006 | B2 |
7141368 | Fisher et al. | Nov 2006 | B2 |
7141807 | Joyce et al. | Nov 2006 | B2 |
7147362 | Caren et al. | Dec 2006 | B2 |
7150982 | Allawi et al. | Dec 2006 | B2 |
7153689 | Tolosko et al. | Dec 2006 | B2 |
7163660 | Lehmann | Jan 2007 | B2 |
7166258 | Bass et al. | Jan 2007 | B2 |
7179659 | Stolowitz et al. | Feb 2007 | B2 |
7183406 | Belshaw et al. | Feb 2007 | B2 |
7192710 | Gellibolian et al. | Mar 2007 | B2 |
7193077 | Dellinger et al. | Mar 2007 | B2 |
7198939 | Dorsel et al. | Apr 2007 | B2 |
7202264 | Ravikumar et al. | Apr 2007 | B2 |
7202358 | Hargreaves | Apr 2007 | B2 |
7205128 | Ilsley et al. | Apr 2007 | B2 |
7205400 | Webb | Apr 2007 | B2 |
7206439 | Zhou et al. | Apr 2007 | B2 |
7208322 | Stolowitz et al. | Apr 2007 | B2 |
7217522 | Brenner | May 2007 | B2 |
7220573 | Shea et al. | May 2007 | B2 |
7221785 | Curry et al. | May 2007 | B2 |
7226862 | Staehler et al. | Jun 2007 | B2 |
7227017 | Mellor et al. | Jun 2007 | B2 |
7229497 | Stott et al. | Jun 2007 | B2 |
7247337 | Leproust et al. | Jul 2007 | B1 |
7247497 | Dahm et al. | Jul 2007 | B2 |
7252938 | Leproust et al. | Aug 2007 | B2 |
7269518 | Corson | Sep 2007 | B2 |
7271258 | Dellinger et al. | Sep 2007 | B2 |
7276336 | Webb et al. | Oct 2007 | B1 |
7276378 | Myerson | Oct 2007 | B2 |
7276599 | Moore et al. | Oct 2007 | B2 |
7282183 | Peck | Oct 2007 | B2 |
7282332 | Caren et al. | Oct 2007 | B2 |
7282705 | Brennen | Oct 2007 | B2 |
7291471 | Sampson et al. | Nov 2007 | B2 |
7302348 | Ghosh et al. | Nov 2007 | B2 |
7306917 | Prudent et al. | Dec 2007 | B2 |
7314599 | Roitman et al. | Jan 2008 | B2 |
7323320 | Oleinikov | Jan 2008 | B2 |
7344831 | Wolber et al. | Mar 2008 | B2 |
7348144 | Minor | Mar 2008 | B2 |
7351379 | Schleifer | Apr 2008 | B2 |
7353116 | Webb et al. | Apr 2008 | B2 |
7361906 | Ghosh et al. | Apr 2008 | B2 |
7364896 | Schembri | Apr 2008 | B2 |
7368550 | Dellinger et al. | May 2008 | B2 |
7371348 | Schleifer et al. | May 2008 | B2 |
7371519 | Wolber et al. | May 2008 | B2 |
7371580 | Yakhini et al. | May 2008 | B2 |
7372982 | Le | May 2008 | B2 |
7384746 | Lyamichev et al. | Jun 2008 | B2 |
7385050 | Dellinger et al. | Jun 2008 | B2 |
7390457 | Schembri | Jun 2008 | B2 |
7393665 | Brenner | Jul 2008 | B2 |
7396676 | Robotti et al. | Jul 2008 | B2 |
7399844 | Sampson et al. | Jul 2008 | B2 |
7402279 | Schembri | Jul 2008 | B2 |
7411061 | Myerson et al. | Aug 2008 | B2 |
7413709 | Roitman et al. | Aug 2008 | B2 |
7417139 | Dellinger et al. | Aug 2008 | B2 |
7422911 | Schembri | Sep 2008 | B2 |
7427679 | Dellinger et al. | Sep 2008 | B2 |
7432048 | Neri et al. | Oct 2008 | B2 |
7435810 | Myerson et al. | Oct 2008 | B2 |
7439272 | Xu | Oct 2008 | B2 |
7476709 | Moody et al. | Jan 2009 | B2 |
7482118 | Allawi et al. | Jan 2009 | B2 |
7488607 | Tom-Moy May et al. | Feb 2009 | B2 |
7504213 | Sana et al. | Mar 2009 | B2 |
7514369 | Li et al. | Apr 2009 | B2 |
7517979 | Wolber | Apr 2009 | B2 |
7524942 | Wang et al. | Apr 2009 | B2 |
7524950 | Dellinger et al. | Apr 2009 | B2 |
7527928 | Neri et al. | May 2009 | B2 |
7531303 | Dorsel et al. | May 2009 | B2 |
7534561 | Sana et al. | May 2009 | B2 |
7534563 | Hargreaves | May 2009 | B2 |
7537936 | Dahm et al. | May 2009 | B2 |
7541145 | Prudent et al. | Jun 2009 | B2 |
7544473 | Brenner | Jun 2009 | B2 |
7556919 | Chenchik et al. | Jul 2009 | B2 |
7563600 | Oleinikov | Jul 2009 | B2 |
7572585 | Wang | Aug 2009 | B2 |
7572907 | Dellinger et al. | Aug 2009 | B2 |
7572908 | Dellinger et al. | Aug 2009 | B2 |
7585970 | Dellinger et al. | Sep 2009 | B2 |
7588889 | Wolber et al. | Sep 2009 | B2 |
7595350 | Xu | Sep 2009 | B2 |
7604941 | Jacobson | Oct 2009 | B2 |
7604996 | Stuelpnagel et al. | Oct 2009 | B1 |
7608396 | Delenstarr | Oct 2009 | B2 |
7618777 | Myerson et al. | Nov 2009 | B2 |
7629120 | Bennett et al. | Dec 2009 | B2 |
7635772 | McCormac | Dec 2009 | B2 |
7648832 | Jessee et al. | Jan 2010 | B2 |
7651762 | Xu et al. | Jan 2010 | B2 |
7659069 | Belyaev et al. | Feb 2010 | B2 |
7678542 | Lyamichev et al. | Mar 2010 | B2 |
7682809 | Sampson | Mar 2010 | B2 |
7709197 | Drmanac | May 2010 | B2 |
7718365 | Wang | May 2010 | B2 |
7718786 | Dupret et al. | May 2010 | B2 |
7723077 | Young et al. | May 2010 | B2 |
7737088 | Staehler et al. | Jun 2010 | B1 |
7737089 | Guimil et al. | Jun 2010 | B2 |
7741463 | Gormley et al. | Jun 2010 | B2 |
7749701 | Leproust et al. | Jul 2010 | B2 |
7759471 | Dellinger et al. | Jul 2010 | B2 |
7776021 | Borenstein et al. | Aug 2010 | B2 |
7776532 | Gibson et al. | Aug 2010 | B2 |
7790369 | Stahler et al. | Sep 2010 | B2 |
7790387 | Dellinger et al. | Sep 2010 | B2 |
7807356 | Sampson et al. | Oct 2010 | B2 |
7807806 | Allawi et al. | Oct 2010 | B2 |
7811753 | Eshoo | Oct 2010 | B2 |
7816079 | Fischer | Oct 2010 | B2 |
7820387 | Neri et al. | Oct 2010 | B2 |
7829314 | Prudent et al. | Nov 2010 | B2 |
7855281 | Dellinger et al. | Dec 2010 | B2 |
7862999 | Zheng et al. | Jan 2011 | B2 |
7867782 | Barth | Jan 2011 | B2 |
7875463 | Adaskin et al. | Jan 2011 | B2 |
7879541 | Kincaid | Feb 2011 | B2 |
7879580 | Carr et al. | Feb 2011 | B2 |
7894998 | Kincaid | Feb 2011 | B2 |
7919239 | Wang | Apr 2011 | B2 |
7919308 | Schleifer | Apr 2011 | B2 |
7927797 | Nobile et al. | Apr 2011 | B2 |
7927838 | Shannon | Apr 2011 | B2 |
7932025 | Carr et al. | Apr 2011 | B2 |
7932070 | Hogrefe et al. | Apr 2011 | B2 |
7935800 | Allawi et al. | May 2011 | B2 |
7939645 | Borns | May 2011 | B2 |
7943046 | Martosella et al. | May 2011 | B2 |
7943358 | Hogrefe et al. | May 2011 | B2 |
7960157 | Borns | Jun 2011 | B2 |
7977119 | Kronick et al. | Jul 2011 | B2 |
7979215 | Sampas | Jul 2011 | B2 |
7998437 | Berndt et al. | Aug 2011 | B2 |
7999087 | Dellinger et al. | Aug 2011 | B2 |
8021842 | Brenner | Sep 2011 | B2 |
8021844 | Wang | Sep 2011 | B2 |
8034917 | Yamada | Oct 2011 | B2 |
8036835 | Sampas et al. | Oct 2011 | B2 |
8048664 | Guan et al. | Nov 2011 | B2 |
8053191 | Blake | Nov 2011 | B2 |
8058001 | Crameri et al. | Nov 2011 | B2 |
8058004 | Oleinikov | Nov 2011 | B2 |
8058055 | Barrett et al. | Nov 2011 | B2 |
8063184 | Allawi et al. | Nov 2011 | B2 |
8067556 | Hogrefe et al. | Nov 2011 | B2 |
8073626 | Troup et al. | Dec 2011 | B2 |
8076064 | Wang | Dec 2011 | B2 |
8076152 | Robotti | Dec 2011 | B2 |
8097711 | Timar et al. | Jan 2012 | B2 |
8137936 | Macevicz | Mar 2012 | B2 |
8148068 | Brenner | Apr 2012 | B2 |
8154729 | Baldo et al. | Apr 2012 | B2 |
8168385 | Brenner et al. | May 2012 | B2 |
8168388 | Gormley et al. | May 2012 | B2 |
8173368 | Staehler et al. | May 2012 | B2 |
8182991 | Kaiser et al. | May 2012 | B1 |
8194244 | Wang et al. | Jun 2012 | B2 |
8198071 | Goshoo et al. | Jun 2012 | B2 |
8202983 | Dellinger et al. | Jun 2012 | B2 |
8202985 | Dellinger et al. | Jun 2012 | B2 |
8206952 | Carr et al. | Jun 2012 | B2 |
8213015 | Kraiczek et al. | Jul 2012 | B2 |
8242258 | Dellinger et al. | Aug 2012 | B2 |
8247221 | Fawcett et al. | Aug 2012 | B2 |
8263335 | Carr et al. | Sep 2012 | B2 |
8268605 | Sorge et al. | Sep 2012 | B2 |
8283148 | Sorge et al. | Oct 2012 | B2 |
8288093 | Hall et al. | Oct 2012 | B2 |
8298767 | Brenner et al. | Oct 2012 | B2 |
8304273 | Stellacci et al. | Nov 2012 | B2 |
8309307 | Barrett et al. | Nov 2012 | B2 |
8309706 | Dellinger et al. | Nov 2012 | B2 |
8309710 | Sierzchala et al. | Nov 2012 | B2 |
8314220 | Mullinax et al. | Nov 2012 | B2 |
8318433 | Brenner | Nov 2012 | B2 |
8318479 | Domansky et al. | Nov 2012 | B2 |
8357489 | Chua et al. | Jan 2013 | B2 |
8357490 | Froehlich et al. | Jan 2013 | B2 |
8367016 | Quan et al. | Feb 2013 | B2 |
8367335 | Staehler et al. | Feb 2013 | B2 |
8380441 | Webb et al. | Feb 2013 | B2 |
8383338 | Kitzman et al. | Feb 2013 | B2 |
8415138 | Leproust | Apr 2013 | B2 |
8435736 | Gibson et al. | May 2013 | B2 |
8445205 | Brenner | May 2013 | B2 |
8445206 | Bergmann et al. | May 2013 | B2 |
8470996 | Brenner et al. | Jun 2013 | B2 |
8476018 | Brenner | Jul 2013 | B2 |
8476598 | Pralle et al. | Jul 2013 | B1 |
8481292 | Casbon et al. | Jul 2013 | B2 |
8481309 | Zhang et al. | Jul 2013 | B2 |
8491561 | Borenstein et al. | Jul 2013 | B2 |
8497069 | Hutchison et al. | Jul 2013 | B2 |
8500979 | Elibol et al. | Aug 2013 | B2 |
8501454 | Liu et al. | Aug 2013 | B2 |
8507226 | Carr et al. | Aug 2013 | B2 |
8507239 | Lubys et al. | Aug 2013 | B2 |
8507272 | Zhang et al. | Aug 2013 | B2 |
8530197 | Li et al. | Sep 2013 | B2 |
8552174 | Dellinger et al. | Oct 2013 | B2 |
8563478 | Gormley et al. | Oct 2013 | B2 |
8569046 | Love et al. | Oct 2013 | B2 |
8577621 | Troup et al. | Nov 2013 | B2 |
8586310 | Mitra et al. | Nov 2013 | B2 |
8614092 | Zhang et al. | Dec 2013 | B2 |
8642755 | Sierzchala et al. | Feb 2014 | B2 |
8664164 | Ericsson et al. | Mar 2014 | B2 |
8669053 | Stuelpnagel et al. | Mar 2014 | B2 |
8679756 | Brenner et al. | Mar 2014 | B1 |
8685642 | Sampas | Apr 2014 | B2 |
8685676 | Hogrefe et al. | Apr 2014 | B2 |
8685678 | Casbon et al. | Apr 2014 | B2 |
8715933 | Oliver | May 2014 | B2 |
8715967 | Casbon et al. | May 2014 | B2 |
8716467 | Jacobson | May 2014 | B2 |
8722368 | Casbon et al. | May 2014 | B2 |
8722585 | Wang | May 2014 | B2 |
8728766 | Casbon et al. | May 2014 | B2 |
8741606 | Casbon et al. | Jun 2014 | B2 |
8808896 | Choo et al. | Aug 2014 | B2 |
8808986 | Jacobson et al. | Aug 2014 | B2 |
8815600 | Liu et al. | Aug 2014 | B2 |
8889851 | Leproust et al. | Nov 2014 | B2 |
8932994 | Gormley et al. | Jan 2015 | B2 |
8962532 | Shapiro et al. | Feb 2015 | B2 |
8968999 | Gibson et al. | Mar 2015 | B2 |
8980563 | Zheng et al. | Mar 2015 | B2 |
9018365 | Brenner et al. | Apr 2015 | B2 |
9023601 | Oleinikov | May 2015 | B2 |
9051666 | Oleinikov | Jun 2015 | B2 |
9073962 | Fracchia et al. | Jul 2015 | B2 |
9074204 | Anderson et al. | Jul 2015 | B2 |
9085797 | Gebeyehu et al. | Jul 2015 | B2 |
9133510 | Andersen et al. | Sep 2015 | B2 |
9139874 | Myers et al. | Sep 2015 | B2 |
9150853 | Hudson et al. | Oct 2015 | B2 |
9187777 | Jacobson et al. | Nov 2015 | B2 |
9194001 | Brenner | Nov 2015 | B2 |
9216414 | Chu | Dec 2015 | B2 |
9217144 | Jacobson et al. | Dec 2015 | B2 |
9279149 | Efcavitch et al. | Mar 2016 | B2 |
9286439 | Shapiro et al. | Mar 2016 | B2 |
9295965 | Jacobson et al. | Mar 2016 | B2 |
9315861 | Hendricks et al. | Apr 2016 | B2 |
9328378 | Earnshaw et al. | May 2016 | B2 |
9347091 | Bergmann et al. | May 2016 | B2 |
9375748 | Harumoto et al. | Jun 2016 | B2 |
9376677 | Mir et al. | Jun 2016 | B2 |
9376678 | Gormley et al. | Jun 2016 | B2 |
9384320 | Church | Jul 2016 | B2 |
9384920 | Bakulich | Jul 2016 | B1 |
9388407 | Jacobson | Jul 2016 | B2 |
9394333 | Wada et al. | Jul 2016 | B2 |
9403141 | Banyai et al. | Aug 2016 | B2 |
9409139 | Banyai et al. | Aug 2016 | B2 |
9410149 | Brenner et al. | Aug 2016 | B2 |
9410173 | Betts et al. | Aug 2016 | B2 |
9416411 | Stuelpnagel et al. | Aug 2016 | B2 |
9422600 | Ramu et al. | Aug 2016 | B2 |
9487824 | Kutyavin | Nov 2016 | B2 |
9499848 | Carr et al. | Nov 2016 | B2 |
9523122 | Zheng et al. | Dec 2016 | B2 |
9528148 | Zheng et al. | Dec 2016 | B2 |
9534251 | Young et al. | Jan 2017 | B2 |
9555388 | Banyai et al. | Jan 2017 | B2 |
9568839 | Stahler et al. | Feb 2017 | B2 |
9580746 | Leproust et al. | Feb 2017 | B2 |
9670529 | Osborne et al. | Jun 2017 | B2 |
9670536 | Casbon et al. | Jun 2017 | B2 |
9677067 | Toro et al. | Jun 2017 | B2 |
9695211 | Wada et al. | Jul 2017 | B2 |
9718060 | Venter et al. | Aug 2017 | B2 |
9745573 | Stuelpnagel et al. | Aug 2017 | B2 |
9745619 | Rabbani et al. | Aug 2017 | B2 |
9765387 | Rabbani et al. | Sep 2017 | B2 |
9771576 | Gibson et al. | Sep 2017 | B2 |
9833761 | Banyai et al. | Dec 2017 | B2 |
9834774 | Carstens | Dec 2017 | B2 |
9839894 | Banyai et al. | Dec 2017 | B2 |
9879283 | Ravinder et al. | Jan 2018 | B2 |
9889423 | Banyai et al. | Feb 2018 | B2 |
9895673 | Peck et al. | Feb 2018 | B2 |
9925510 | Jacobson et al. | Mar 2018 | B2 |
9932576 | Raymond et al. | Apr 2018 | B2 |
9981239 | Banyai et al. | May 2018 | B2 |
10053688 | Cox | Aug 2018 | B2 |
10251611 | Marsh et al. | Apr 2019 | B2 |
10272410 | Banyai et al. | Apr 2019 | B2 |
10384188 | Banyai et al. | Aug 2019 | B2 |
10417457 | Peck | Sep 2019 | B2 |
10583415 | Banyai et al. | Mar 2020 | B2 |
10632445 | Banyai et al. | Apr 2020 | B2 |
10639609 | Banyai et al. | May 2020 | B2 |
10669304 | Indermuhle et al. | Jun 2020 | B2 |
10696965 | Nugent et al. | Jun 2020 | B2 |
20010018512 | Blanchard | Aug 2001 | A1 |
20010039014 | Bass et al. | Nov 2001 | A1 |
20010055761 | Kanemoto et al. | Dec 2001 | A1 |
20020012930 | Rothberg et al. | Jan 2002 | A1 |
20020025561 | Hodgson | Feb 2002 | A1 |
20020076716 | Sabanayagam et al. | Jun 2002 | A1 |
20020081582 | Gao et al. | Jun 2002 | A1 |
20020094533 | Hess et al. | Jul 2002 | A1 |
20020095073 | Jacobs et al. | Jul 2002 | A1 |
20020119459 | Griffiths et al. | Aug 2002 | A1 |
20020132308 | Liu et al. | Sep 2002 | A1 |
20020155439 | Rodriguez et al. | Oct 2002 | A1 |
20020160536 | Regnier et al. | Oct 2002 | A1 |
20020164824 | Xiao et al. | Nov 2002 | A1 |
20030008411 | Van et al. | Jan 2003 | A1 |
20030022207 | Balasubramanian et al. | Jan 2003 | A1 |
20030022240 | Luo et al. | Jan 2003 | A1 |
20030022317 | Jack et al. | Jan 2003 | A1 |
20030044781 | Korlach et al. | Mar 2003 | A1 |
20030058629 | Hirai et al. | Mar 2003 | A1 |
20030064398 | Barnes | Apr 2003 | A1 |
20030068633 | Belshaw et al. | Apr 2003 | A1 |
20030082719 | Schumacher et al. | May 2003 | A1 |
20030100102 | Rothberg et al. | May 2003 | A1 |
20030108903 | Wang et al. | Jun 2003 | A1 |
20030120035 | Gao et al. | Jun 2003 | A1 |
20030138782 | Evans | Jul 2003 | A1 |
20030143605 | Lok et al. | Jul 2003 | A1 |
20030148291 | Robotti | Aug 2003 | A1 |
20030148344 | Rothberg et al. | Aug 2003 | A1 |
20030171325 | Gascoyne et al. | Sep 2003 | A1 |
20030186226 | Brennan et al. | Oct 2003 | A1 |
20030228602 | Parker et al. | Dec 2003 | A1 |
20030228620 | Du | Dec 2003 | A1 |
20040009498 | Short | Jan 2004 | A1 |
20040043509 | Stahler et al. | Mar 2004 | A1 |
20040053362 | De et al. | Mar 2004 | A1 |
20040086892 | Crothers et al. | May 2004 | A1 |
20040087008 | Schembri | May 2004 | A1 |
20040106130 | Besemer et al. | Jun 2004 | A1 |
20040106728 | McGall et al. | Jun 2004 | A1 |
20040110133 | Xu et al. | Jun 2004 | A1 |
20040175710 | Haushalter | Sep 2004 | A1 |
20040175734 | Stahler et al. | Sep 2004 | A1 |
20040191810 | Yamamoto | Sep 2004 | A1 |
20040219663 | Page et al. | Nov 2004 | A1 |
20040236027 | Maeji et al. | Nov 2004 | A1 |
20040248161 | Rothberg et al. | Dec 2004 | A1 |
20040259146 | Friend et al. | Dec 2004 | A1 |
20050022895 | Barth et al. | Feb 2005 | A1 |
20050049796 | Webb et al. | Mar 2005 | A1 |
20050053968 | Bharadwaj et al. | Mar 2005 | A1 |
20050079510 | Berka et al. | Apr 2005 | A1 |
20050100932 | Lapidus et al. | May 2005 | A1 |
20050112608 | Grossman et al. | May 2005 | A1 |
20050112636 | Hurt et al. | May 2005 | A1 |
20050112679 | Myerson et al. | May 2005 | A1 |
20050124022 | Srinivasan et al. | Jun 2005 | A1 |
20050137805 | Lewin et al. | Jun 2005 | A1 |
20050208513 | Agbo et al. | Sep 2005 | A1 |
20050227235 | Carr et al. | Oct 2005 | A1 |
20050255477 | Carr et al. | Nov 2005 | A1 |
20050266045 | Canham et al. | Dec 2005 | A1 |
20050277125 | Benn et al. | Dec 2005 | A1 |
20050282158 | Landegren | Dec 2005 | A1 |
20060003381 | Gilmore et al. | Jan 2006 | A1 |
20060003958 | Melville et al. | Jan 2006 | A1 |
20060012784 | Ulmer | Jan 2006 | A1 |
20060012793 | Harris | Jan 2006 | A1 |
20060019084 | Pearson | Jan 2006 | A1 |
20060024678 | Buzby | Feb 2006 | A1 |
20060024711 | Lapidus et al. | Feb 2006 | A1 |
20060024721 | Pedersen | Feb 2006 | A1 |
20060076482 | Hobbs et al. | Apr 2006 | A1 |
20060078909 | Srinivasan et al. | Apr 2006 | A1 |
20060078927 | Peck et al. | Apr 2006 | A1 |
20060078937 | Korlach et al. | Apr 2006 | A1 |
20060127920 | Church et al. | Jun 2006 | A1 |
20060134638 | Mulligan et al. | Jun 2006 | A1 |
20060160138 | Church | Jul 2006 | A1 |
20060171855 | Yin et al. | Aug 2006 | A1 |
20060202330 | Reinhardt et al. | Sep 2006 | A1 |
20060203236 | Ji et al. | Sep 2006 | A1 |
20060203237 | Ji et al. | Sep 2006 | A1 |
20060207923 | Li | Sep 2006 | A1 |
20060219637 | Killeen et al. | Oct 2006 | A1 |
20070031857 | Makarov et al. | Feb 2007 | A1 |
20070031877 | Stahler et al. | Feb 2007 | A1 |
20070043516 | Gustafsson et al. | Feb 2007 | A1 |
20070054127 | Hergenrother et al. | Mar 2007 | A1 |
20070059692 | Gao et al. | Mar 2007 | A1 |
20070087349 | Staehler et al. | Apr 2007 | A1 |
20070099208 | Drmanac et al. | May 2007 | A1 |
20070122817 | Church et al. | May 2007 | A1 |
20070141557 | Raab et al. | Jun 2007 | A1 |
20070196854 | Stahler et al. | Aug 2007 | A1 |
20070207482 | Church et al. | Sep 2007 | A1 |
20070207487 | Emig et al. | Sep 2007 | A1 |
20070231800 | Roberts et al. | Oct 2007 | A1 |
20070233403 | Alwan et al. | Oct 2007 | A1 |
20070238104 | Barrett et al. | Oct 2007 | A1 |
20070238106 | Barrett et al. | Oct 2007 | A1 |
20070238108 | Barrett et al. | Oct 2007 | A1 |
20070259344 | Leproust et al. | Nov 2007 | A1 |
20070259345 | Sampas | Nov 2007 | A1 |
20070259346 | Gordon et al. | Nov 2007 | A1 |
20070259347 | Gordon et al. | Nov 2007 | A1 |
20070269870 | Church et al. | Nov 2007 | A1 |
20080085511 | Peck et al. | Apr 2008 | A1 |
20080085514 | Peck et al. | Apr 2008 | A1 |
20080087545 | Jensen et al. | Apr 2008 | A1 |
20080161200 | Yu et al. | Jul 2008 | A1 |
20080182296 | Chanda et al. | Jul 2008 | A1 |
20080214412 | Stahler et al. | Sep 2008 | A1 |
20080227160 | Kool | Sep 2008 | A1 |
20080233616 | Liss | Sep 2008 | A1 |
20080287320 | Baynes et al. | Nov 2008 | A1 |
20080300842 | Govindarajan et al. | Dec 2008 | A1 |
20080308884 | Kalvesten | Dec 2008 | A1 |
20080311628 | Shoemaker | Dec 2008 | A1 |
20090036664 | Peter | Feb 2009 | A1 |
20090053704 | Novoradovskaya et al. | Feb 2009 | A1 |
20090062129 | McKernan et al. | Mar 2009 | A1 |
20090087840 | Baynes et al. | Apr 2009 | A1 |
20090088679 | Wood et al. | Apr 2009 | A1 |
20090105094 | Heiner et al. | Apr 2009 | A1 |
20090170802 | Stahler et al. | Jul 2009 | A1 |
20090176280 | Hutchison, III et al. | Jul 2009 | A1 |
20090181861 | Li et al. | Jul 2009 | A1 |
20090194483 | Robotti et al. | Aug 2009 | A1 |
20090230044 | Bek | Sep 2009 | A1 |
20090238722 | Mora-Fillat Jose-Angel et al. | Sep 2009 | A1 |
20090239759 | Balch | Sep 2009 | A1 |
20090246788 | Albert et al. | Oct 2009 | A1 |
20090263802 | Drmanac | Oct 2009 | A1 |
20090285825 | Kini et al. | Nov 2009 | A1 |
20090324546 | Notka et al. | Dec 2009 | A1 |
20100004143 | Shibahara | Jan 2010 | A1 |
20100009872 | Eid et al. | Jan 2010 | A1 |
20100047805 | Wang | Feb 2010 | A1 |
20100051967 | Bradley et al. | Mar 2010 | A1 |
20100069250 | White, III et al. | Mar 2010 | A1 |
20100090341 | Wan et al. | Apr 2010 | A1 |
20100099103 | Hsieh et al. | Apr 2010 | A1 |
20100160463 | Wang et al. | Jun 2010 | A1 |
20100167950 | Juang et al. | Jul 2010 | A1 |
20100173364 | Evans, Jr. et al. | Jul 2010 | A1 |
20100216648 | Staehler et al. | Aug 2010 | A1 |
20100256017 | Larman et al. | Oct 2010 | A1 |
20100258487 | Zelechonok et al. | Oct 2010 | A1 |
20100286290 | Lohmann et al. | Nov 2010 | A1 |
20100292102 | Nouri | Nov 2010 | A1 |
20100300882 | Zhang et al. | Dec 2010 | A1 |
20110009607 | Komiyama et al. | Jan 2011 | A1 |
20110082055 | Fox et al. | Apr 2011 | A1 |
20110114244 | Yoo et al. | May 2011 | A1 |
20110114549 | Yin et al. | May 2011 | A1 |
20110124049 | Li et al. | May 2011 | A1 |
20110124055 | Carr et al. | May 2011 | A1 |
20110126929 | Velasquez-Garcia et al. | Jun 2011 | A1 |
20110171651 | Richmond | Jul 2011 | A1 |
20110172127 | Jacobson et al. | Jul 2011 | A1 |
20110201057 | Carr et al. | Aug 2011 | A1 |
20110217738 | Jacobson | Sep 2011 | A1 |
20110230653 | Novoradovskaya et al. | Sep 2011 | A1 |
20110254107 | Bulovic et al. | Oct 2011 | A1 |
20110287435 | Grunenwald et al. | Nov 2011 | A1 |
20120003713 | Hansen et al. | Jan 2012 | A1 |
20120021932 | Mershin et al. | Jan 2012 | A1 |
20120027786 | Gupta et al. | Feb 2012 | A1 |
20120028843 | Ramu et al. | Feb 2012 | A1 |
20120032366 | Ivniski et al. | Feb 2012 | A1 |
20120046175 | Rodesch et al. | Feb 2012 | A1 |
20120050411 | Mabritto et al. | Mar 2012 | A1 |
20120094847 | Warthmann et al. | Apr 2012 | A1 |
20120128548 | West et al. | May 2012 | A1 |
20120129704 | Gunderson et al. | May 2012 | A1 |
20120149602 | Friend et al. | Jun 2012 | A1 |
20120164127 | Short et al. | Jun 2012 | A1 |
20120164633 | Laffler | Jun 2012 | A1 |
20120164691 | Eshoo et al. | Jun 2012 | A1 |
20120184724 | Sierzchala et al. | Jul 2012 | A1 |
20120220497 | Jacobson et al. | Aug 2012 | A1 |
20120231968 | Bruhn et al. | Sep 2012 | A1 |
20120238737 | Dellinger et al. | Sep 2012 | A1 |
20120258487 | Chang et al. | Oct 2012 | A1 |
20120264653 | Carr et al. | Oct 2012 | A1 |
20120270750 | Oleinikov | Oct 2012 | A1 |
20120270754 | Blake | Oct 2012 | A1 |
20120283140 | Chu | Nov 2012 | A1 |
20120288476 | Hartmann et al. | Nov 2012 | A1 |
20120289691 | Dellinger et al. | Nov 2012 | A1 |
20120315670 | Jacobson et al. | Dec 2012 | A1 |
20120322681 | Kung et al. | Dec 2012 | A1 |
20130005585 | Anderson et al. | Jan 2013 | A1 |
20130005612 | Carr et al. | Jan 2013 | A1 |
20130014790 | Van Gerpen | Jan 2013 | A1 |
20130017642 | Milgrew et al. | Jan 2013 | A1 |
20130017977 | Oleinikov | Jan 2013 | A1 |
20130017978 | Kavanagh et al. | Jan 2013 | A1 |
20130035261 | Sierzchala et al. | Feb 2013 | A1 |
20130040836 | Himmler et al. | Feb 2013 | A1 |
20130045483 | Treusch et al. | Feb 2013 | A1 |
20130053252 | Xie et al. | Feb 2013 | A1 |
20130059296 | Jacobson et al. | Mar 2013 | A1 |
20130059761 | Jacobson et al. | Mar 2013 | A1 |
20130065017 | Sieber | Mar 2013 | A1 |
20130109595 | Routenberg | May 2013 | A1 |
20130109596 | Peterson et al. | May 2013 | A1 |
20130123129 | Zeiner et al. | May 2013 | A1 |
20130130321 | Staehler et al. | May 2013 | A1 |
20130137161 | Zhang et al. | May 2013 | A1 |
20130137173 | Zhang et al. | May 2013 | A1 |
20130137174 | Zhang et al. | May 2013 | A1 |
20130137861 | Leproust et al. | May 2013 | A1 |
20130164308 | Foletti et al. | Jun 2013 | A1 |
20130225421 | Li et al. | Aug 2013 | A1 |
20130244884 | Jacobson et al. | Sep 2013 | A1 |
20130252849 | Hudson et al. | Sep 2013 | A1 |
20130261027 | Li et al. | Oct 2013 | A1 |
20130281308 | Kung et al. | Oct 2013 | A1 |
20130296192 | Jacobson et al. | Nov 2013 | A1 |
20130296194 | Jacobson et al. | Nov 2013 | A1 |
20130298265 | Cunnac et al. | Nov 2013 | A1 |
20130309725 | Jacobson et al. | Nov 2013 | A1 |
20130323725 | Peter et al. | Dec 2013 | A1 |
20130330778 | Zeiner et al. | Dec 2013 | A1 |
20140011226 | Bernick et al. | Jan 2014 | A1 |
20140018441 | Fracchia et al. | Jan 2014 | A1 |
20140031240 | Behlke et al. | Jan 2014 | A1 |
20140038240 | Temme et al. | Feb 2014 | A1 |
20140106394 | Ko et al. | Apr 2014 | A1 |
20140141982 | Jacobson et al. | May 2014 | A1 |
20140170665 | Hiddessen et al. | Jun 2014 | A1 |
20140178992 | Nakashima et al. | Jun 2014 | A1 |
20140274729 | Kurn et al. | Sep 2014 | A1 |
20140274741 | Hunter et al. | Sep 2014 | A1 |
20140303000 | Armour et al. | Oct 2014 | A1 |
20140309119 | Jacobson et al. | Oct 2014 | A1 |
20140309142 | Tian | Oct 2014 | A1 |
20150010953 | Lindstrom et al. | Jan 2015 | A1 |
20150012723 | Park et al. | Jan 2015 | A1 |
20150031089 | Lindstrom | Jan 2015 | A1 |
20150038373 | Banyai et al. | Feb 2015 | A1 |
20150056609 | Daum et al. | Feb 2015 | A1 |
20150057625 | Coulthard | Feb 2015 | A1 |
20150065357 | Fox | Mar 2015 | A1 |
20150065393 | Jacobson | Mar 2015 | A1 |
20150099870 | Bennett et al. | Apr 2015 | A1 |
20150120265 | Amirav-Drory et al. | Apr 2015 | A1 |
20150159152 | Allen et al. | Jun 2015 | A1 |
20150183853 | Sharma et al. | Jul 2015 | A1 |
20150191719 | Hudson et al. | Jul 2015 | A1 |
20150196917 | Kay et al. | Jul 2015 | A1 |
20150203839 | Jacobson et al. | Jul 2015 | A1 |
20150211047 | Borns | Jul 2015 | A1 |
20150225782 | Walder et al. | Aug 2015 | A1 |
20150240232 | Zamore et al. | Aug 2015 | A1 |
20150240280 | Gibson et al. | Aug 2015 | A1 |
20150261664 | Goldman et al. | Sep 2015 | A1 |
20150269313 | Church | Sep 2015 | A1 |
20150293102 | Shim | Oct 2015 | A1 |
20150307875 | Happe et al. | Oct 2015 | A1 |
20150321191 | Kendall et al. | Nov 2015 | A1 |
20150322504 | Lao et al. | Nov 2015 | A1 |
20150344927 | Sampson et al. | Dec 2015 | A1 |
20150353921 | Tian | Dec 2015 | A9 |
20150353994 | Myers et al. | Dec 2015 | A1 |
20150361420 | Hudson et al. | Dec 2015 | A1 |
20150361422 | Sampson et al. | Dec 2015 | A1 |
20150361423 | Sampson et al. | Dec 2015 | A1 |
20150368687 | Saaem et al. | Dec 2015 | A1 |
20150376602 | Jacobson et al. | Dec 2015 | A1 |
20160001247 | Oleinikov | Jan 2016 | A1 |
20160002621 | Nelson et al. | Jan 2016 | A1 |
20160002622 | Nelson et al. | Jan 2016 | A1 |
20160010045 | Cohen et al. | Jan 2016 | A1 |
20160017394 | Liang et al. | Jan 2016 | A1 |
20160017425 | Ruvolo et al. | Jan 2016 | A1 |
20160019341 | Harris et al. | Jan 2016 | A1 |
20160024138 | Gebeyehu et al. | Jan 2016 | A1 |
20160024576 | Chee et al. | Jan 2016 | A1 |
20160026753 | Krishnaswami et al. | Jan 2016 | A1 |
20160026758 | Jabara et al. | Jan 2016 | A1 |
20160032396 | Diehn et al. | Feb 2016 | A1 |
20160046973 | Efcavitch et al. | Feb 2016 | A1 |
20160046974 | Efcavitch et al. | Feb 2016 | A1 |
20160082472 | Perego et al. | Mar 2016 | A1 |
20160089651 | Banyai | Mar 2016 | A1 |
20160090592 | Banyai et al. | Mar 2016 | A1 |
20160096160 | Banyai et al. | Apr 2016 | A1 |
20160097051 | Jacobson et al. | Apr 2016 | A1 |
20160102322 | Ravinder et al. | Apr 2016 | A1 |
20160108466 | Nazarenko et al. | Apr 2016 | A1 |
20160122755 | Hall et al. | May 2016 | A1 |
20160122800 | Bernick et al. | May 2016 | A1 |
20160152972 | Stapleton et al. | Jun 2016 | A1 |
20160168611 | Efcavitch et al. | Jun 2016 | A1 |
20160184788 | Hall et al. | Jun 2016 | A1 |
20160200759 | Srivastava et al. | Jul 2016 | A1 |
20160215283 | Braman et al. | Jul 2016 | A1 |
20160229884 | Indermuhle et al. | Aug 2016 | A1 |
20160230175 | Carstens | Aug 2016 | A1 |
20160230221 | Bergmann et al. | Aug 2016 | A1 |
20160251651 | Banyai et al. | Sep 2016 | A1 |
20160253890 | Rabinowitz et al. | Sep 2016 | A1 |
20160256846 | Smith et al. | Sep 2016 | A1 |
20160264958 | Toro et al. | Sep 2016 | A1 |
20160289758 | Akeson et al. | Oct 2016 | A1 |
20160289839 | Harumoto et al. | Oct 2016 | A1 |
20160303535 | Banyai et al. | Oct 2016 | A1 |
20160304862 | Igawa et al. | Oct 2016 | A1 |
20160304946 | Betts et al. | Oct 2016 | A1 |
20160310426 | Wu | Oct 2016 | A1 |
20160310927 | Banyai et al. | Oct 2016 | A1 |
20160333340 | Wu | Nov 2016 | A1 |
20160339409 | Banyai et al. | Nov 2016 | A1 |
20160340672 | Banyai et al. | Nov 2016 | A1 |
20160348098 | Stuelpnagel et al. | Dec 2016 | A1 |
20160354752 | Banyai et al. | Dec 2016 | A1 |
20160355880 | Gormley et al. | Dec 2016 | A1 |
20170017436 | Church | Jan 2017 | A1 |
20170066844 | Glanville | Mar 2017 | A1 |
20170067099 | Zheng et al. | Mar 2017 | A1 |
20170073664 | McCafferty et al. | Mar 2017 | A1 |
20170073731 | Zheng et al. | Mar 2017 | A1 |
20170081660 | Cox et al. | Mar 2017 | A1 |
20170081716 | Peck | Mar 2017 | A1 |
20170088887 | Makarov et al. | Mar 2017 | A1 |
20170095785 | Banyai et al. | Apr 2017 | A1 |
20170096706 | Behlke et al. | Apr 2017 | A1 |
20170114404 | Behlke et al. | Apr 2017 | A1 |
20170141793 | Strauss et al. | May 2017 | A1 |
20170147748 | Staehler et al. | May 2017 | A1 |
20170151546 | Peck et al. | Jun 2017 | A1 |
20170159044 | Toro et al. | Jun 2017 | A1 |
20170175110 | Jacobson et al. | Jun 2017 | A1 |
20170218537 | Olivares | Aug 2017 | A1 |
20170233764 | Young et al. | Aug 2017 | A1 |
20170249345 | Malik et al. | Aug 2017 | A1 |
20170253644 | Steyaert et al. | Sep 2017 | A1 |
20170320061 | Venter et al. | Nov 2017 | A1 |
20170327819 | Banyai et al. | Nov 2017 | A1 |
20170355984 | Evans et al. | Dec 2017 | A1 |
20170357752 | Diggans | Dec 2017 | A1 |
20170362589 | Banyai et al. | Dec 2017 | A1 |
20180051278 | Cox et al. | Feb 2018 | A1 |
20180051280 | Gibson et al. | Feb 2018 | A1 |
20180068060 | Ceze et al. | Mar 2018 | A1 |
20180104664 | Fernandez | Apr 2018 | A1 |
20180126355 | Peck | May 2018 | A1 |
20180142289 | Zeitoun et al. | May 2018 | A1 |
20180171509 | Cox | Jun 2018 | A1 |
20180236425 | Banyai et al. | Aug 2018 | A1 |
20180253563 | Peck et al. | Sep 2018 | A1 |
20180264428 | Banyai et al. | Sep 2018 | A1 |
20180273936 | Cox et al. | Sep 2018 | A1 |
20180282721 | Cox et al. | Oct 2018 | A1 |
20180312834 | Cox et al. | Nov 2018 | A1 |
20180326388 | Banyai et al. | Nov 2018 | A1 |
20180346585 | Zhang et al. | Dec 2018 | A1 |
20190060345 | Harrison et al. | Feb 2019 | A1 |
20190118154 | Eugene et al. | Apr 2019 | A1 |
20190135926 | Glanville | May 2019 | A1 |
20190244109 | Bramlett et al. | Aug 2019 | A1 |
20190318132 | Peck | Oct 2019 | A1 |
20190352635 | Toro et al. | Nov 2019 | A1 |
20190366293 | Banyai et al. | Dec 2019 | A1 |
20190366294 | Banyai et al. | Dec 2019 | A1 |
20200017907 | Zeitoun et al. | Jan 2020 | A1 |
20200102611 | Zeitoun et al. | Apr 2020 | A1 |
20200156037 | Banyai et al. | May 2020 | A1 |
20200181667 | Cheng-Hsien et al. | Jun 2020 | A1 |
20200222875 | Peck et al. | Jul 2020 | A1 |
Number | Date | Country |
---|---|---|
3157000 | Sep 2000 | AU |
2362939 | Aug 2000 | CA |
1771336 | May 2006 | CN |
102159726 | Aug 2011 | CN |
103907117 | Jul 2014 | CN |
104562213 | Apr 2015 | CN |
104734848 | Jun 2015 | CN |
10260805 | Jul 2004 | DE |
0090789 | Oct 1983 | EP |
0126621 | Aug 1990 | EP |
0753057 | Jan 1997 | EP |
1314783 | May 2003 | EP |
1363125 | Nov 2003 | EP |
1546387 | Jun 2005 | EP |
1153127 | Jul 2006 | EP |
1728860 | Dec 2006 | EP |
1072010 | Apr 2010 | EP |
2175021 | Apr 2010 | EP |
2330216 | Jun 2011 | EP |
1343802 | May 2012 | EP |
2504449 | Oct 2012 | EP |
2751729 | Jul 2014 | EP |
2872629 | May 2015 | EP |
2928500 | Oct 2015 | EP |
2971034 | Jan 2016 | EP |
3030682 | Jun 2016 | EP |
3044228 | Apr 2017 | EP |
2994509 | Jun 2017 | EP |
3204518 | Aug 2017 | EP |
2002536977 | Nov 2002 | JP |
2002538790 | Nov 2002 | JP |
2006503586 | Feb 2006 | JP |
2009294195 | Dec 2009 | JP |
2016527313 | Sep 2016 | JP |
WO-9015070 | Dec 1990 | WO |
WO-9210092 | Jun 1992 | WO |
WO-9210588 | Jun 1992 | WO |
WO-9309668 | May 1993 | WO |
WO-9525116 | Sep 1995 | WO |
WO-9526397 | Oct 1995 | WO |
WO-9615861 | May 1996 | WO |
WO-9710365 | Mar 1997 | WO |
WO-9822541 | May 1998 | WO |
WO-9841531 | Sep 1998 | WO |
WO-9942813 | Aug 1999 | WO |
WO-0013017 | Mar 2000 | WO |
WO-0018957 | Apr 2000 | WO |
WO-0042559 | Jul 2000 | WO |
WO-0042560 | Jul 2000 | WO |
WO-0042561 | Jul 2000 | WO |
WO-0049142 | Aug 2000 | WO |
WO-0053617 | Sep 2000 | WO |
WO-0156216 | Aug 2001 | WO |
WO-0210443 | Feb 2002 | WO |
WO-0156216 | Mar 2002 | WO |
WO-0220537 | Mar 2002 | WO |
WO-0224597 | Mar 2002 | WO |
WO-0227638 | Apr 2002 | WO |
WO-0233669 | Apr 2002 | WO |
WO-02072791 | Sep 2002 | WO |
WO-03040410 | May 2003 | WO |
WO-03046223 | Jun 2003 | WO |
WO-03054232 | Jul 2003 | WO |
WO-03064026 | Aug 2003 | WO |
WO-03064027 | Aug 2003 | WO |
WO-03064699 | Aug 2003 | WO |
WO-03065038 | Aug 2003 | WO |
WO-03066212 | Aug 2003 | WO |
WO-03089605 | Oct 2003 | WO |
WO-03093504 | Nov 2003 | WO |
WO-03100012 | Dec 2003 | WO |
WO-2004024886 | Mar 2004 | WO |
WO-2004029220 | Apr 2004 | WO |
WO-2004029586 | Apr 2004 | WO |
WO-2004031351 | Apr 2004 | WO |
WO-2004031399 | Apr 2004 | WO |
WO-2004059556 | Jul 2004 | WO |
WO-2005014850 | Feb 2005 | WO |
WO-2005051970 | Jun 2005 | WO |
WO-2005059096 | Jun 2005 | WO |
WO-2005059097 | Jun 2005 | WO |
WO-2006023144 | Mar 2006 | WO |
WO-2006076679 | Jul 2006 | WO |
WO-2006116476 | Nov 2006 | WO |
WO-2007120627 | Oct 2007 | WO |
WO-2007137242 | Nov 2007 | WO |
WO-2008006078 | Jan 2008 | WO |
WO-2008027558 | Mar 2008 | WO |
WO-2008045380 | Apr 2008 | WO |
WO-2008054543 | May 2008 | WO |
WO-2008063134 | May 2008 | WO |
WO-2008063135 | May 2008 | WO |
WO-2008109176 | Sep 2008 | WO |
WO-2010025310 | Mar 2010 | WO |
WO-2010025566 | Mar 2010 | WO |
WO-2010027512 | Mar 2010 | WO |
WO-2010089412 | Aug 2010 | WO |
WO-2010141433 | Dec 2010 | WO |
WO-2010141433 | Apr 2011 | WO |
WO-2011053957 | May 2011 | WO |
WO-2011056644 | May 2011 | WO |
WO-2011056872 | May 2011 | WO |
WO-2011066185 | Jun 2011 | WO |
WO-2011066186 | Jun 2011 | WO |
WO-2011085075 | Jul 2011 | WO |
WO-2011103468 | Aug 2011 | WO |
WO-2011109031 | Sep 2011 | WO |
WO-2011143556 | Nov 2011 | WO |
WO-2011150168 | Dec 2011 | WO |
WO-2011161413 | Dec 2011 | WO |
WO-2012013913 | Feb 2012 | WO |
WO-2012061832 | May 2012 | WO |
WO-2012078312 | Jun 2012 | WO |
WO-2012149171 | Nov 2012 | WO |
WO-2012154201 | Nov 2012 | WO |
WO-2013030827 | Mar 2013 | WO |
WO-2013032850 | Mar 2013 | WO |
WO-2013036668 | Mar 2013 | WO |
WO-2013101896 | Jul 2013 | WO |
WO-2013154770 | Oct 2013 | WO |
WO-2013177220 | Nov 2013 | WO |
WO-2014004393 | Jan 2014 | WO |
WO-2014008447 | Jan 2014 | WO |
WO-2014035693 | Mar 2014 | WO |
WO-2014088693 | Jun 2014 | WO |
WO-2014089160 | Jun 2014 | WO |
WO-2014093330 | Jun 2014 | WO |
WO-2014093694 | Jun 2014 | WO |
WO-2014151696 | Sep 2014 | WO |
WO-2014160004 | Oct 2014 | WO |
WO-2014160059 | Oct 2014 | WO |
WO-2015017527 | Feb 2015 | WO |
WO-2015021080 | Feb 2015 | WO |
WO-2015021280 | Feb 2015 | WO |
WO-2015040075 | Mar 2015 | WO |
WO-2015054292 | Apr 2015 | WO |
WO-2015081114 | Jun 2015 | WO |
WO-2015081142 | Jun 2015 | WO |
WO-2015090879 | Jun 2015 | WO |
WO-2015095404 | Jun 2015 | WO |
WO-2015120403 | Aug 2015 | WO |
WO-2015160004 | Oct 2015 | WO |
WO-2015175832 | Nov 2015 | WO |
WO-2016007604 | Jan 2016 | WO |
WO-2016011080 | Jan 2016 | WO |
WO-2016022557 | Feb 2016 | WO |
WO-2016053883 | Apr 2016 | WO |
WO-2016055956 | Apr 2016 | WO |
WO-2016065056 | Apr 2016 | WO |
WO-2016126882 | Aug 2016 | WO |
WO-2016126987 | Aug 2016 | WO |
WO-2016130868 | Aug 2016 | WO |
WO-2016161244 | Oct 2016 | WO |
WO-2016172377 | Oct 2016 | WO |
WO-2016173719 | Nov 2016 | WO |
WO-2016183100 | Nov 2016 | WO |
WO-2017049231 | Mar 2017 | WO |
WO-2017053450 | Mar 2017 | WO |
WO-2017059399 | Apr 2017 | WO |
WO-2017095958 | Jun 2017 | WO |
WO-2017100441 | Jun 2017 | WO |
WO-2017118761 | Jul 2017 | WO |
WO-2017158103 | Sep 2017 | WO |
WO-2017214574 | Dec 2017 | WO |
WO-2018026920 | Feb 2018 | WO |
WO-2018038772 | Mar 2018 | WO |
WO-2018057526 | Mar 2018 | WO |
WO-2018094263 | May 2018 | WO |
WO-2018112426 | Jun 2018 | WO |
WO-2018156792 | Aug 2018 | WO |
WO-2018170164 | Sep 2018 | WO |
WO-2018200380 | Nov 2018 | WO |
WO-2019222706 | Nov 2019 | WO |
WO-2020139871 | Jul 2020 | WO |
Entry |
---|
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science, available on line, Jun. 13, 2016, at: http://zlab.mit.edu/assets/reprints/Abudayyeh_OO_Science_2016.pdf , 17 pages. |
Adessi, et al. Solid phase DNA amplification: characterisation of primer attachment and amplification mechanisms. Nucleic Acids Res. 28(20):E87, 2000. |
Alexeyev, Mikhail F. et al., “Gene synthesis, bacterial expression and purification of the Rickettsia prowazekii ATP/ADP translocase”, Biochimica et Biophysics Acta, 1419:299-306, 1999. |
Al-Housseiny et al., Control of interfacial instabilities using flow geometry Nature Physics, 8:747-750, 2012. |
Amblard, Francois et al., “A magnetic manipulator for studying local rheology and micromechanical properties of biological systems”, Rev. Sci. Instrum., 67(3):18-827, 1996. |
Andoni and Indyk, Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions, Communications of the ACM, 51(1):117-122, 2008. |
Arkles, et al. The Role of Polarity in the Structure of Silanes Employed in Surface Modification. Silanes and Other Coupling Agents. 5:51-64, 2009. |
Arkles, Hydrophobicity, Hydrophilicity Reprinted with permission from the Oct. 2006 issue of Paint & Coatings Industry magazine, Retrieved on Mar. 19, 2016, 10 pages. |
Assi et al. Massive-parallel adhesion and reactivity-measurements using simple and inexpensive magnetic tweezers. J. Appl. Phys. 92(9):5584-5586 (2002). |
ATDBio, “Nucleic Acid Structure,” Nucleic Acids Book, 9 pages, published on Jan. 22, 2005. from: http://www.atdbio.com/content/5/Nucleic-acid-structure. |
ATDBio, “Solid-Phase Oligonucleotide Synthesis,” Nucleic Acids Book, 20 pages, Published on Jul. 31, 2011. from: http://www.atdbio.com/content/17/Solid-phase-oligonucleotide-synthesis. |
Au et al. Gene synthesis by a LCR-based approach: high level production of Leptin-L54 using synthetic gene in Escherichia coli. Biochemical and Biophysical Research Communications 248:200-203 (1998). |
Baedeker, Mathias et al., Overexpression of a designed 2.2kb gene of eukaryotic phenylalanine ammonialyase in Escherichia coli. FEBS Letters, 457:57-60, 1999. |
Barbee, et al. Magnetic Assembly of High-Density DNA Arrays for Genomic Analyses. Anal Chem. 80(6):2149-2154, 2008. |
Barton et al., A desk electrohydrodynamic jet printing system. Mechatronics, 20:611-616, 2010. |
Beaucage, et al. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron. 48:2223-2311, 1992. |
Beaucage, et al. Deoxynucleoside phosphoramidites—a new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22(20):1859-1862, 1981. |
Beaucage, Serge L. et al., “The Chemical synthesis of DNA/RNA” Chapter 2 in: Encyclopedia of Cell Biology, 1:36-53, 2016. |
Beaulieu, Martin et al., “PCR candidate region mismatch scanning adaptation to quantitative, high-throughput genotyping”, Nucleic Acids Research, 29(5):1114-1124, 2001. |
Beigelman, et al. Base-modified phosphoramidite analogs of pyrimidine ribonucleosides for RNA structure-activity studies. Methods Enzymol. 317:39-65, 2000. |
Bethge et al., “Reverse synthesis and 3′-modification of RNA.” Jan. 1, 2011, pp. 64-64, XP055353420. Retrieved from the Internet: URL:http://www.is3na.org/assets/events/Category%202-Medicinal %20Chemistry%20of%2001igonucleotides%20%2864-108%29.pdf. |
Binkowski et al., Correcting errors in synthetic DNA through consensus shuffling. Nucleic Acids Research, 33(6):e55, 8 pages, 2005. |
Biswas, Indranil et al., “Identification and characterization of a thermostable MutS homolog from Thennus aquaticus”, The Journal of Biological Chemistry, 271(9):5040-5048, 1996. |
Biswas, Indranil et al., “Interaction of MutS protein with the major and minor grooves of a heteroduplex DNA”, The Journal of Biological Chemistry, 272(20):13355-13364, 1997. |
Bjornson, Keith P. et al., “Differential and simultaneous adenosine Di- and Triphosphate binding by MutS”, The Journal of Biological Chemistry, 278(20):18557-18562, 2003. |
Blanchard, et al. High-Density Oligonucleotide Arrays. Biosens. & Bioelectronics. 1996; 11:687-690. |
Blanchard, in: Genetic Engineering, Principles and Methods, vol. 20, Ed. J. Sedlow, New York: Plenum Press, p. 111-124, 1979. |
Blawat et al., Forward error correction for DNA data storage. Procedia Computer Science, 80:1011-1022, 2016. |
Bonini and Mondino, Adoptive T-cell therapy for cancer: The era of engineered T cells. European Journal of Immunology, 45:2457-2469, 2015. |
Bornholt et al., A DNA-Based Archival Storage System, in International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), Apr. 2-6, 2016, Atlanta, GA, 2016, 637-649. |
Borovkov et al., High-quality gene assembly directly from unpurified mixtures of microassay-synthesized oligonucleotides. Nucleic Acid Research, 38(19):e180, 10 pages, 2010. |
Brunet, Aims and methods of biosteganography. Journal of Biotechnology, 226:56-64, 2016. |
Buermans et al., “Next Generation sequencing technology: Advances and applications,” Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1842:1931-1941, 2014. |
Butler, et al. In situ synthesis of oligonucleotide arrays by using surface tension. J Am Chem Soc. 123(37):8887-94, 2001. |
Calvert, Lithographically patterned self-assembled films. In: Organic Thin Films and Surfaces: Directions for the Nineties, vol. 20, p. 109, ed. by Abraham Ulman, San Diego: Academic Press, 1995. |
Cardelli, Two-Domain DNA Strand Displacement, Electron. Proc. Theor. Comput. Sci., 26:47-61, 2010. |
Carlson, “Time for New DNA Synthesis and Sequencing Cost Curves,” 2014. [Online]. Available: http://www.synthesis.cc/synthesis/2014/02/time_for_new_cost_curves_2014. 10 pages. |
Carr, et al. Protein-mediated error correction for de novo DNA synthesis. Nucleic Acids Res. 32(20):e162, 9 pages, 2004. |
Caruthers, Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. In Methods in Enzymology, Chapter 15, 154:287-313, 1987. |
Caruthers. Gene synthesis machines: DNA chemistry and its uses. Science 230(4723):281-285 (1985). |
Caruthers, The Chemical Synthesis of DNA/RNA: Our Gift to Science. J. Biol. Chem., 288(2):1420-1427, 2013. |
Casmiro, Danilo R. et al., “PCR-based gene synthesis and protein NMR spectroscopy”, Structure, 5(11):1407-1412, 1997. |
Cello, et al. Chemical synthesis of poliovirus cDNA: generation of infectious virus in the absence of natural template. Science. 297(5583):1016-8, 2000. |
Chalmers, et al. Scaling up the ligase chain reaction-based approach to gene synthesis. Biotechniques. 30(2):249-52, 2001. |
Chan, et al. Natural and engineered nicking endonucleases—from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res. 39(1):1-18, 2011. |
Chen, et al. Chemical modification of gene silencing oligonucleotides for drug discovery and development. Drug Discov Today. 10(8):587-93 2005. |
Chen et al., Programmable chemical controllers made from DNA, Nat. Nanotechnol., 8(10):755-762, 2013. |
Cheng, et al. High throughput parallel synthesis of oligonucleotides with 1536 channel synthesizer. Nucleic Acids Res. 30(18):e93, 2002. |
Cho, et al. Capillary passive valve in microfluidic systems. NSTI-Nanotech. 2004; 1:263-266. |
Chrisey et al., Fabrication of patterned DNA surfaces Nucleic Acids Research, 24(15):3040-3047 (1996). |
Chung et al., One-step preparation of competentEscherichia coil:Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A. Apr. 1989;86(7):2172-2175. |
Church et al., Next-generation digital information storage in DNA. Science, 337:6102, 1628-1629, 2012. |
Cleary et al. Production of complex nucleic acid libraries using highly parallel in situ oligonucleotide synthesis. Nature Methods, 1(13):241-248, 2004. |
Cohen et al., Human population: The next half century. Science, 302:1172-1175, 2003. |
Crick. On protein synthesis. Symp Soc Exp Biol12:138-163,1958. |
Cutler, David J. et al., “High-throughput variation detection and genotyping using microarrays”, Genome Research, vol. 11, 1913-19 (2001). |
Dahl, et al. Circle-to-circle amplification for precise and sensitive DNA analysis. Proc Natl Acad Sci U S A. Mar. 30, 2004;101(13):4548-53. Epub Mar. 15, 2004. |
De Mesmaeker, et al. Backbone modifications in oligonucleotides and peptide nucleic acid systems. Curr Opin Struct Biol. Jun. 1995;5(3):343-55. |
Deamer, David W. et al., “Characterization of nucleic acids by nanopore analysis”, Ace. Cham. Res., vol. 35, No. 10, 817-825 (2002). |
Deaven, The Human Genome Project: Recombinant clones for mapping and sequencing DNA. Los Alamos Science, 20:218-249, 1992. |
Deng et al., Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming Nature Biotechnology, 27:352-360 (2009). |
Dietrich, Rudiger.et al., “Gene assembly based on blunt-ended double-stranded DNA-modules”, Biotechnology Techniques, vol. 12, No. 1, 49-54 (Jan. 1998). |
Dormitzer et al., Synthetic generation of influenza vaccine viruses for rapid response to pandemics. Sci Translational Medicine, 5(185):185ra68, 14 pages, 2013. |
Doudna et al. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096-1-1258096-9, 2014. |
Dower et al., High efficiency transformation of E.coli by high voltage electroporation. Nucleic Acids Res. 16(13):6127-45 (1988). |
Dressman, et al. Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci U S A. Jul. 22, 2003;100(15):8817-22. Epub Jul. 11, 2003. |
Drmanac, et al. Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science. Jan. 1, 2010;327(5961):78-81. doi: 10.1126/science.1181498. Epub Nov. 5, 2009. |
Droege and Hill, The Genome Sequencer FLXTM System-Longer reads, more applications, straight forward bioinformatics and more complete data sets Journal of Biotechnology, 136:3-10, 2008. |
Duffy, et al. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem. Dec. 1, 1998;70(23):4974-84. doi: 10.1021/ac980656z. |
Duggan, et al. Expression profiling using cDNA microarrays. Nat Genet. Jan. 1999;21(1 Suppl):10-4. |
Eadie, et al. Guanine modification during chemical DNA synthesis. Nucleic Acids Res. Oct. 26, 1987;15(20):8333-49. |
Eisen, Jonathan A., “A phylogenomic study of the MutS family of proteins”, Nucleic Acids Research, vol. 26, No. 18, 4291-4300 (1998). |
Ellis, et al. DNA assembly for synthetic biology: from parts to pathways and beyond. Integr Biol (Camb). Feb. 2011;3(2):109-18. doi: 10.1039/c0ib00070a. Epub Jan. 19, 2011. |
El-Sagheer, et al. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli. Proc Natl Acad Sci U S A. Jul. 12, 2011;108(28):11338-43. doi: 10.1073/pnas.1101519108. Epub Jun. 27, 2011. |
Elsik et al., The Genome sequence of taurine cattle: A window of ruminant biology and evolution. Science, 324:522-528, 2009. |
Elsner et al., 172 nm excimer VUV-triggered photodegradation and micropatterning of aminosilane films, Thin Solid Films, 517:6772-6776 (2009). |
Engler, et al. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 2008;3(11):e3647. doi: 10.1371/journal.pone.0003647. Epub Nov. 5, 2008. |
Engler, et al. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One. 2009;4(5):e5553. doi: 10.1371/journal.pone.0005553. Epub May 14, 2009. |
Erlich and Zielinski, DNA fountain enables a robust and efficient storage architecture. Science, 355(6328):950-054, 2017. |
European Patent Application No. 16871446.7 European Search Report dated Apr. 10, 2019. |
Evans et al., DNA Repair Enzymes. Current Protocols in Molecular Biology 84:III:3.9:3.9.1-3.9.12 http://www.ncbi.nlm.nih.gov/pubmed/18972391 (Published online Oct. 1, 2008 Abstract only provided). |
Fahy, et al. Self-sustained sequence replication (3SR): an isothermal transcription-based amplification system alternative to PCR. PCR Methods Appl. Aug. 1991;1(1):25-33. |
Fedoryak, Olesya D. et al., “Brominated hydroxyquinoline as a photolabile protecting group with sensitivity to multiphoton excitation”, Org. Lett., vol. 4, No. 2 , 3419-3422 (2002). |
Ferretti et al., Total synthesis of a gene for bovine rhodopsin. PNAS, 83:599-603 (1986). |
Finger et al., The wonders of Flap Endonucleases: Structure, function, mechanism and regulation. Subcell Biochem., 62:301-326, 2012. |
Fodor et al. Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995)767-773 (1991). |
Fogg et al., Structural basis for uracil recognition by archaeal family B DNA polymerases. Nature Structural Biology, 9(12):922-927, 2002. |
Foldesi, et al. The synthesis of deuterionucleosides. Nucleosides Nucleotides Nucleic Acids. Oct.-Dec. 2000;19(10-12):1615-56. |
Frandsen, et al. Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi. BMC Molecular Biology 2008, 9:70. |
Frandsen. Experimental setup. Dec. 7, 2010, 3 pages. http://www.rasmusfrandsen.dk/experimental_setup.htm. |
Frandsen. The USER Friendly technology. USER cloning. Oct. 7, 2010, 2 pages. http://www.rasmusfrandsen.dk/user_cloning.htm. |
Fullwood et al., Next-generation DNA sequencing of paired-end tags [PET] for transcriptome and genome analysis Genome Research, 19:521-532, 2009. |
Galneder. et al., Microelectrophoresis of a bilayer-coated silica bead in an optical trap: application to enzymology. Biophysical Journal, vol. 80, No. 5, 2298-2309 (May 2001). |
Gao, et al. A flexible light-directed DNA chip synthesis gated by deprotection using solution photogenerated acids. Nucleic Acids Res. Nov. 15, 2001;29(22):4744-50. |
Gao, et al. Thermodynamically balanced inside-out (TBIO) PCR-based gene synthesis: a novel method of primer design for high-fidelity assembly of longer gene sequences. Nucleic Acids Res. Nov. 15, 2003;31(22):e143. |
Garaj, et al. Graphene as a subnanometre trans-electrode membrane. Nature. Sep. 9, 2010;467(7312):190-3. doi: 10.1038/nature09379. |
Garbow, Norbert et al., “Optical tweezing electroghoresis of isolated, highly charged colloidal spheres”, Colloids and Surfaces A: Physiochem. Eng. Aspects, vol. 195, 227-241 (2001). |
GeneArt Seamless Cloning and Assembly Kits. Life Technologies Synthetic Biology. 8 pages, available online Jun. 15, 2012. |
Genomics 101. An Introduction to the Genomic Workflow. 2016 edition, 64 pages. Available at: http://www.frontlinegenomics.com/magazine/6757/genomics-101/. |
Geu-Flores, et al. USER fusion: a rapid and efficient method for simultaneous fusion and cloning of multiple PCR products. Nucleic Acids Res. 2007;35(7):e55. Epub Mar. 27, 2007. |
Gibson Assembly. Product Listing. Application Overview. 2 pages, available online Dec. 16, 2014. |
Gibson, et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science. Feb. 29, 2008;319(5867):1215-20. doi: 10.1126/science.1151721. Epub Jan. 24, 2008. |
Gosse, Charlie et al. “Magnetic tweezers: micromanipulation and force measurement at the molecular level”, Biophysical Journal, vol. 8, 3314-3329 (Jun. 2002). |
Grass, et al., Robust chemical preservation of digital information on DNA in silica with error-correcting codes, Angew. Chemie—Int. Ed., 54(8):2552-2555, 2015. |
Greagg et al., A read-ahead function in archaeal DNA polymerases detects promutagenic template-strand uracil. Proc. Nat. Acad. Sci. USA, 96:9045-9050, 1999. |
Grovenor. Microelectronic materials. Graduate Student Series in Materials Science and Engineering. Bristol, England: Adam Hilger, 1989; p. 113-123. |
Gu et al., Depletion of abundant sequences by hybridization (DASH): using Cas9 to remove unwanted high-abundance species in sequencing libraries and molecular counting applications. Genome Biology, 17:41, 13 pages, 2016. |
Haber, Charbel et al., Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instrum., vol. 71, No. 12, 4561-4570 (Dec. 2000). |
Hanahan and Cold Spring Harbor Laboratory, Studies on transformation of Escherichia coli with plasmids J. Mol. Biol. 166:557-580 (1983). |
Hanahan et al., Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol, vol. 204, p. 63-113 (1991). |
Harada, et al. Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection. Nucleic Acids Res. May 25, 1993;21(10):2287-91. |
Heckers Karl H. et al., “Error analysis of chemically synthesized polynucleotides”, BioTechniques, vol. 24, No. 2, 256-260 (1998). |
Herzer et al.: Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates Chem. Commun., 46:5634-5652 (2010). |
Hoover et al., “DNAWorks: an automated method for designing oligonucleotides for PCR-based gene synthesis”, Nucleic Acids Research, vol. 30, No. 10, e43, 7 pages (2002). |
Hosu, Basarab G. et al., Magnetic tweezers for intracellular applications⋅, Rev. Sci. Instrum., vol. 74, No. 9, 4158-4163 (Sep. 2003). |
Huang, Hayden et al., “Three-dimensional cellular deformation analysis with a two-photon magnetic manipulator workstation”, Biophysical Journal, vol. 82, No. 4, 2211-2223 (Apr. 2002). |
Hughes et al. Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer Nat Biotech 4:342-347 (2001). |
Hughes et al. Principles of early drug discovery. Br J Pharmacol 162(2):1239-1249, 2011. |
Hutchison, et al. Cell-free cloning using phi29 DNA polymerase. Proc Natl Acad Sci U S A. Nov. 29, 2005;102(48):17332-6. Epub Nov. 14, 2005. |
In-Fusion Cloning: Accuracy, Not Background. Cloning & Competent Cells, ClonTech Laboratories, 3 pages, available online Jul. 6, 2014. |
International Application No. PCT/US2017/026232 International Preliminary Report on Patentability dated Feb. 26, 2019. |
International Application No. PCT/US2017/045105 International Preliminary Report on Patentability dated Feb. 5, 2019. |
International Application No. PCT/US2017/052305 International Preliminary Report on Patentability dated Apr. 30, 2019. |
International Application No. PCT/US2018/050511 International Search Report and Written Opinion dated Jan. 11, 2019. |
International Application No. PCT/US2018/057857 International Search Report and Written Opinion dated Mar. 18, 2019. |
International Application No. PCT/US2019/012218 International Search Report and Written Opinion dated Mar. 21, 2019. |
Jackson, Brian A. et al., “Recognition of DNA base mismatches by a rhodium intercalator”, J. Am. Chem. Soc., vol. 19, 12986-12987 (1997). |
Jacobs et al. DNA glycosylases: In DNA repair and beyond. Chromosoma 121:1-20 (2012)—http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260424/. |
Jinek et al., A Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337:816-821, 2012. |
Karagiannis and El-Osta, RNA interference and potential therapeutic applications of short interfering RNAs Cancer Gene Therapy, 12:787-795, 2005. |
Ke, Song-Hua et al., “Influence of neighboring base pairs on the stability of single base bulges and base pairs in a DNA fragment”, Biochemistry, Vo. 34, 4593-4600 (1995). |
Kelley, Shana, et al. Single-base mismatch detection based on charge transduction through DNA, Nucleic Acids Research, vol. 27, No. 24, 4830-4837 (1999). |
Kim et al., High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. Nano Letters, 15:969-973, 2015. |
Kim, Yang-Gyun et al., “Chimeric restriction endonuclease”, Proc. Natl. Acad. Sci. USA, vol. 91, 883-887 (Feb. 1994). |
Kim, Yang-Gyun, “The interaction between Z-ONA and the Zab domain of double-stranded RNA adenosine deaminase characterized using fusion nucleases”, The Journal of Biological Chemistry, vol. 274, No. 27, 19081-19086 (1999). |
Kim, Yan˜Gyun et al., “Site specific cleavage of DNA-RNA hybrids by zinc finger/Fok I cleavage domain fusions” Gene, vol. 203, 43-49 (1997). |
Kinde, et al. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A. Jun. 7, 2011;108(23):9530-5. Epub May 17, 2011. |
Kodumal, et al. Total synthesis of long DNA sequences: synthesis of a contiguous 32-kb polyketide synthase gene cluster. Proc Natl Acad Sci U S A. Nov. 2, 2004;101(44):15573-8. Epub Oct. 20, 2004. |
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology, 32:267-273, 2014 (with three pages of supplemental “Online Methods”). |
Kong et al., Parallel gene synthesis in a microfluidic device. Nucleic Acids Res., 35(8):e61 (2007). |
Kong. Microfluidic Gene Synthesis. MIT Thesis. Submitted to the program in Media Arts and Sciences, School of Architecture and Planning, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Media Arts and Sciences at the Massachusetts Institute of Technology. 143 pages Jun. 2008. |
Kopp, Martin U. et al., “Chemical amplification: continuous-flow PCR on a chip”, Science, vol. 280, 1046-1048 (May 15, 1998). |
Kosuri and Church, “Large-scale de novo DNA synthesis: technologies and applications,” Nature Methods, 11:499-507, 2014. Available at: http://www.nature.com/nmeth/journal/v11/n5/full/nmeth.2918.html. |
Kosuri, et al. A scalable gene synthesis by selective amplification of DNA pools from high-fidelity microchips. Nature Biotechnology. 2010; 28:1295-1299. |
Krayden, Inc., A Guide to Silane Solutions. Silane coupling agents. 7 pages. Published on May 31, 2005 at: http://krayden.com/pdf/xia_silane_chemistry.pdf. |
Lagally, et al. Single-Molecule DNA Amplification and Analysis in an Integrated Microfluidic Device. Analytical Chemistry. 2001;73(3): 565-570. |
Lahue, R.S. et al., “DNA mismatch correction in a defined system”, Science, vol. 425; No. 4914, 160-164 (Jul. 14, 1989). |
Lambrinakos, A. et al., “Reactivity of potassium permanganate and tetraethylammonium chloride with mismatched bases and a simple mutation detection protocol”,Nucleic Acids Research, vol. 27, No. 8, 1866-1874 (1999). |
Landegren, et al. A ligase-mediated gene detection technique. Science. Aug. 26, 1988;241(4869):1077-80. |
Lang, Matthew J. et al., “An automated two-dimensional optical force clamp for single molecule studies”, Biophysical Journal, vol. 83, 491-501 (Jul. 2002). |
Lashkari, et al. An automated multiplex oligonucleotide synthesizer: development of high-throughput, low-cost DNA synthesis. Proc Natl Acad Sci U S A. Aug. 15, 1995;92(17):7912-5. |
Lausted et al., “POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer,” Genome Biology, 5:R58, 17 pages, 2004. available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC507883/. |
Leamon, et al. A massively parallel PicoTiterPlate based platform for discrete picoliter-scale polymerase chain reactions. Electrophoresis. Nov. 2003;24(21):3769-77. |
Lee: Covalent End-Immobilization of Oligonucleotides onto Solid Surfaces; Thesis, Massachusetts Institute of Technology, Aug. 2001 (315 pages). |
Lee, C.S. et al., “Microelectromagnets for the control of magnetic nanoparticles”, Appl. Phys. Lett., vol. 79, No. 20, 3308-3310 (Nov. 12, 2001). |
Lee, et al. A microfluidic oligonucleotide synthesizer. Nucleic Acids Research 2010 vol. 38(8):2514-2521. DOI: 10.1093/nar/gkq092. |
Leproust, et al. Agilent's Microarray Platform: How High-Fidelity DNA Synthesis Maximizes the Dynamic Range of Gene Expression Measurements. 2008; 1-12. http://www.miltenyibiotec.com/˜/media/Files/Navigation/Genomic%20Services/Agilent_DNA_Microarray_Platform.ashx. |
Leproust et al., “Synthesis of high-quality libraries of long (150mer) oligonucleotides by a novel depurination controlled process,” Nucleic Acids Research, 35(8):2522-2540, 2010. |
Lesnikowski, et al. Nucleic acids and nucleosides containing carboranes. J. Organometallic Chem. 1999; 581:156-169. |
Leumann. DNA analogues: from supramolecular principles to biological properties. Bioorg Med Chem. Apr. 2002;10(4):841-54. |
Levene, et al. Zero-mode waveguides for single-molecule analysis at high concentrations. Science. Jan. 31, 2003;299(5607):682-6. |
Lewontin and Harti, Population genetics in forensic DNA typing. Science, 254:1745-1750, 1991. |
Light source unit for printable patterning VUV-Aligner / USHIO Inc., Link here: https://www.ushio.co.jp/en/products/1005.html, published Apr. 25, 2016, printed from the internet on Aug. 2, 2016, 3 pages. |
Limbachiya et al., Natural data storage: A review on sending information from now to then via Nature. ACM Journal on Emerging Technologies in Computing Systems, V(N):Article A, May 19, 2015, 17 pages. |
Link Technologies. “Product Guide 2010.” Nov. 27, 2009, 136 pages. XP055353191. Retrieved from the Internet: URL:http://www.linktech.co.uk/documents/517/517.pdf. |
Lipshutz, Robert J. et al., “High density synthetic oligonucleotide arrays”, Nature Genetics Supplement, vol. 21, 20-24 (Jan. 1999). |
Lishanski, Alia et al., “Mutation detection by mismatch binding protein, MutS, in amplified DNA: application to the cystic fibrosis gene”, Proc. Natl. Acad. Sci. USA, vol. 91, 2674-2678 (Mar. 1994). |
Liu et al., Comparison of Next-Generation Sequencing Systems. Journal of Biomedicine and Biotechnology, 11 pages, 2012. |
Liu, et al. Enhanced Signals and Fast Nucleic Acid Hybridization by Microfluidic Chaotic Mixing. Angew. Chem. Int. Ed. 2006; 45:3618-3623. |
Liu et al., Rational design of CXCR4 specific antibodies with elongated CDRs. JACS, 136:10557-10560, 2014. |
Lizardi, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification. Nat Genet. Jul. 1998;19(3):225-32. |
Li, Lin et al., “Functional domains in Fok I restriction endonuclease”, Proc. Natl. Acad. Sci. USA, 89:4275-4279, 1992. |
Lu, A.-Lien et al., “Methyl-directed repair of DNA base-pair mismatches in vitro”, Proc. Natl. Acad. Sci. USA, 80:4639-4643, 1983. |
Lund, et al. A validated system for ligation-free uracilexcision based assembly of expression vectors for mammalian cell engineering. DTU Systems of Biology. 2011. 1 page. http://www.lepublicsystemepco.com/files/modules/gestion_rubriques/REF-B036-Lund_Anne%20Mathilde.pdf. |
Ma, et al. DNA synthesis, assembly and application in synthetic biology. Current Opinion in Chemical Biology. 16:260-267, 2012. |
Ma et al., Versatile surface functionalization of cyclic olefin copolymer (COC) with sputtered SiO2 thin film for potential BioMEMS applications. Journal of Materials Chemistry, 11 pages, 2009. |
Mahato et al., Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA Expert Opin. Drug Delivery, 2(1):3-28, 2005. |
Margulies, et al. Genome sequencing in open microfabricated high-density picolitre reactors. Nature. 437(7057):376-80, 2005. |
Matteucci, et al. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103(11):3185-3191, 1981. |
Matzas et al., Next generation gene synthesis by targeted retrieval of bead-immobilized, sequence verified DNA clones from a high throughput pyrosequencing device. Nat. Biotechnol., 28(12):1291-1294, 2010. |
McBride & Caruthers, “An investigation of several deoxynucleoside phosphoramidites useful for synthesizing deoxyoligonucleotides.” Tetrahedron Lett. 24: 245-248, 1983. |
McGall, et al. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proc Natl Acad Sci USA. 93(24):13555-60, 1996. |
McGall, et al. The Efficiency of Light-Directed Synthesis of DNA Arrays on Glass Substrates. J. Am. Chem. Soc. 119(22):5081-5090, 1997. |
Mei et al., Cell-free protein synthesis in microfluidic array devices Biotechnol. Prog., 23(6):1305-1311, 2007. |
Mendel-Hartvig. Padlock probes and rolling circle amplification. New possibilities for sensitive gene detection. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 1175. Uppsala University. 2002, 39 pages. http://www.diva-portal.org/smash/get/diva2:161926/FULLTEXT01.pdf. |
Meyers and Friedland, Knowledge-based simulation of genetic regulation in bacteriophage lambda. Nucl. Acids Research, 12(1):1-16, 1984. |
Milo and Phillips, Numbers here reflect the number of protein coding genes and excludes tRNA and non-coding RNA. Cell Biology by the Numbers, p. 286, 2015. |
Mitra, et al. In situ localized amplification and contact replication of many individual DNA molecules. Nucleic Acids Res. 27(24):e34, 1999. |
Morin et al., Profiling the HeLa S3 transcriptome using randomly primed cDNA and massively parallel short-read sequencing. Biotechniques, 45:81-94, 2008. |
Morris and Stauss, Optimizing T-cell receptor gene therapy for hematologic malignancies. Blood, 127(26):3305-3311, 2016. |
Muller, Caroline et al. “Protection and labelling of thymidine by a fluorescent photolabile group”, Helvetica Chimica Acta, vol. 84, 3735-3741 (2001). |
Nakatani, Kazuhiko et al., “Recognition of a single guanine bulge by 2-Acylamino-1 ,8-naphthyridine”, J. Am. Chem. Soc., vol. 122, 2172-2177 (2000). |
Douthwaite et al.: Affinity maturation of a novel antagonistic human monoclonal antibody with a long VH CDR3 targeting the Class A GPCR formyl-peptide receptor 1; mAbs, vol. 7, Iss. 1, pp. 152-166 (Jan. 1, 2015). |
Jo et al.: Engineering therapeutic antibodies targeting G-protein-coupled receptors; Experimental & Molecular Medicine; 48; 9 pages (2016). |
Martinez-Torrecuadrada et al.: Targeting the Extracellular Domain of Fibroblast Growth Factor Receptor 3 with Human Single-Chain Fv Antibodies Inhibits Bladder Carcinoma Cell Line Proliferation; Clinical Cancer Research; vol. 11; pp. 6282-6290 (2005). |
Neiman M.S,. Negentropy principle in information processing systems. Radiotekhnika, 1966, No. 1211, p. 2-9. |
Neiman M.S., On the bases of the theory of information retrieval. Radiotekhnika, 1967, No. 5, p. 2-10. |
Neiman M.S., On the molecular memory systems and the directed mutations. Radiotekhnika, 1965, No. 6, pp. 1-8. |
Neiman M.S., On the relationships between the reliability, performance and degree of microminiaturization at the molecular-atomic level. Radiotekhnika, 1965, No. 1, pp. 1-9. |
Neiman M.S., Some fundamental issues of microminiaturization. Radiotekhnika, 1964, No. 1, pp. 3-12. |
Nishikura, A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst Cell, 107:415-418, 2001. |
Nour-Eldin, et al. USER Cloning and USER Fusion: The Ideal Cloning Techniques for Small and Big Laboratories. Plant Secondary Metabolism Engineering. Methods in Molecular Biology vol. 643, 2010, pp. 185-200. |
Ochman, et al. Genetic applications of an inverse polymerase chain reaction. Genetics. Nov. 1988;120(3):621-3. |
Organick et al., Scaling up DNA data storage and random access retrieval, bioRxiv, preprint first posted online Mar. 7, 2017, 14 pages. |
Pan, et al. An approach for global scanning of single nucleotide variations. Proc Natl Acad Sci U S A. Jul. 9, 2002;99(14):9346-51. |
Pankiewicz. Fluorinated nucleosides. Carbohydr Res. Jul. 10, 2000;327(1-2):87-105. |
PCT/IL2012/000326 International Preliminary Report on Patentability dated Dec. 5, 2013. |
PCT/IL2012/000326 International Search Report dated Jan. 29, 2013. |
PCT/US14/049834 International Preliminary Report on Patentability dated Feb. 18, 2016. |
PCT/US2014/049834 International Search Report and Written Opinion dated Mar. 19, 2015. |
PCT/US2014/049834, “Invitation to Pay Additional Fees and, where applicable, protest fee,” dated Jan. 5, 2015. |
PCT/US2015/043605 International Preliminary Report on Patentability dated Feb. 16, 2017. |
PCT/US2015/043605 International Search Report and Written Opinion dated Jan. 6, 2016. |
PCT/US2015/043605 Invitation to Pay Additional Fees dated Oct. 28, 2015. |
PCT/US2016/016459 International Preliminary Report on Patentability dated Aug. 17, 2017. |
PCT/US2016/016459 International Search Report and Written Opinion dated Apr. 13, 2016. |
PCT/US2016/016636 International Preliminary Report on Patentability dated Aug. 17, 2017. |
PCT/US2016/016636 International Search Report and Written Opinion dated May 2, 2016. |
PCT/US2016/028699 International Preliminary Report on Patentability dated Nov. 2, 2017. |
PCT/US2016/028699 International Search Report and Written Opinion dated Jul. 29, 2016. |
PCT/US2016/031674 International Preliminary Report on Patentability dated Nov. 23, 2017. |
PCT/US2016/031674 International Search Report and Written Opinion dated Aug. 11, 2016. |
PCT/US2016/052336 International Search Report and Written Opinion dated Dec. 7, 2016. |
PCT/US2016/052916 International Search Report and Written Opinion dated Dec. 30, 2016. |
PCT/US2016/064270 International Search Report and Written Opinion dated Apr. 28, 2017. |
PCT/US2017/026232 International Search Report and Written Opinion dated Aug. 28, 2017. |
PCT/US2017/036868 International Search Report and Written Opinion dated Aug. 11, 2017. |
PCT/US2017/045105 International Search Report and Written Opinion dated Oct. 20, 2017. |
PCT/US2018/037161 International Search Report and Written Opinion dated Oct. 22, 2018. |
PCT/US2018/037161 Invitation to Pay Additional Fees dated Aug. 27, 2018. |
PCT/US2018/056783 International Search Report and Written Opinion of the International Searching Authority dated Dec. 20, 2018. |
Pease, et al. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A. May 24, 1994;91(11):5022-6. |
Peisajovich, et al. BBF RFC 28: A method for combinatorial multi-part assembly based on the type-lis restriction enzyme aarl. Sep. 16, 2009, 7 pages. |
Pellois, et al. “Individually addressable parallel peptide synthesis on microchips”, Nature Biotechnology, vol. 20 , 922-926 (Sep. 2002). |
Petersen, et al. LNA: a versatile tool for therapeutics and genomics. Trends Biotechnol. Feb. 2003;21(2):74-81. |
Pierce and Wangh, Linear-after-the-exponential polymerase chain reaction and allied technologies Real-time detection strategies for rapid, reliable diagnosis from single cells Methods Mol. Med. 132:65-85 (2007) (Abstract only). |
Pierce, et al. Linear-after-the-exponential polymerase chain reaction and allied technologies. Real-time detection strategies for rapid, reliable diagnosis from single cells. Methods Mol Med. 2007;132:65-85. |
Pirrung. How to make a DNA chip. Angew. Chem. Int. Ed., 41:1276-1289, 2002. |
Plesa et al., Multiplexed gene synthesis in emulsions for exploring protein functional landscapes. Science, 10.1126/science.aao5167, 10 pages, 2018. |
Pon. Solid-phase supports for oligonucleotide synthesis. Methods Mol Biol. 1993;20:465-96. |
Poster. Reimagine Genome Scale Research. 2016, 1 page. Available at http://www2.twistbioscience.com/Oligo_Pools_CRISPR_poster. |
Powers et al. Optimal strategies for the chemical and enzymatic synthesis of bihelical deoxyribonucleic acids. J Am Chem Soc., 97(4):875-884, 1975. |
Pray. “Discovery of DNA Structure and Function: Watson and Crick,” Nature Education, 2008, 6 pages. available at: http://www.nature.com/scitable/topicpage/discovery-of-dna-structure-and-function-watson-397. |
Prodromou, et al. Recursive PCR: a novel technique for total gene synthesis. Protein Eng. Dec. 1992;5(8):827-9. |
Puigbo. Optimizer: a web server for optimizing the codon usage of DNA sequences. Nucleic Acid Research, 35(14):126-131, 2007. |
Qian and Winfree, Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332(6034):196-1201, 2011. |
Qian, et al., Neural network computation with DNA strand displacement cascades, Nature, 475(7356):368-372, 2011. |
Quan, et al. Parallel on-chip gene synthesis and application to optimization of protein expression. Nature Biotechnology. 2011; 29:449-452. |
Quan et al., “Parallel on-chip gene synthesis and application to optimization of protein expression,” Nature Biotechnology, 29(5):449-452, 2011. |
Rafalski and Morgante, Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends in Genetics, 20(2):103-111, 2004. |
Raje and Murma, A Review of electrohydrodynamic-inkjet printing technology. International Journal of Emerging Technology and Advanced Engineering, 4(5):174-183, 2014. |
Rastegari, et al., XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks, in ECCV 2016, Part IV, LNCS 9908, p. 525-542, 2016. |
Reimagine SequenceSpace, Reimagine Research, Twist Bioscience, Product Brochure, Published Apr. 6, 2016 online at: www2.twistbioscience.com/TB_Product_Brochure_04.2016, 8 pages. |
RF Electric discharge type excimer lamp. Products Catalog. Excimer lamp light source “flat excimer,” 16 pages dated Jan. 2016. From: http://www.hamamatsu.com/jp/en/product/category/1001/3026/index.html. |
Richmond, et al. Amplification and assembly of chip-eluted DNA (AACED): a method for high-throughput gene synthesis. Nucleic Acids Res. Sep. 24, 2004;32(17):5011-8. Print 2004. |
Roche. Restriction Enzymes from Roche Applied Science—A Tradition of Premium Quality and Scientific Support. FAQS and Ordering Guide. Roche Applied Science. Accessed Jan. 12, 2015, 37 pages. |
Rogozin et al., Origin and evolution of spliceosomal introns. Biology Direct, 7:11, 2012. |
Ruminy, et al., “Long-range identification of hepatocyte nuclear factor-3 (FoxA) high and low-affinity binding Sites with a chimeric nuclease”, J. Mol. Bioi., vol. 310, 523-535 (2001). |
Saaem et al., In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate ACS Applied Materials & Interfaces, 2(2):491-497, 2010. |
Saboulard, et al. High-throughput site-directed mutagenesis using oligonucleotides synthesized on DNA chips. Biotechniques. Sep. 2005;39(3):363-8. |
Sacconi, L. et al., Three-dimensional magneto-optic trap for micro-object manipulation, Optics Letters, vol. 26, No. 17, 1359-1361 (Sep. 1, 2001). |
Saiki et al. Analysis of enzymatically amplified beta-globin and HLA-DQ alpha DNA with allele-specific oligonucleotide probes. Nature 324:163-166 (1986). |
Sandhu, et al. Dual asymmetric PCR: one-step construction of synthetic genes. Biotechniques. Jan. 1992;12(1):14-6. |
Sargolzaei et al., Extent of linkage disequilibrium in Holstein cattle in North America. J.Dairy Science, 91:2106-2117, 2007. |
Schaller, et al. Studies on Polynucleotides. XXV.1 The Stepwise Synthesis of Specific Deoxyribopolynucleotides (5). Further Studies on the Synthesis of Internucleotide Bond by the Carbodiimide Method. The Synthesis of Suitably Protected Dinucleotides as Intermediates in the Synthesis of Higher Oligonucleotides. J. Am. Chem. Soc. 1963; 85(23):3828-3835. |
Schmalzing et al. Microchip electrophoresis: a method for high-speed SNP detection. Nucleic Acids Res 28(9):E43 (2000). |
Schmitt et al., New strategies in engineering T-cell receptor gene-modified T cells to more effectively target malignancies. Clinical Cancer Research, 21(23):5191-5197, 2015. |
Seelig, et al., Enzyme-Free Nucleic Acid Logic Circuits, Science 314(5805):1585-1588, 2006. |
Sharan et al. Recombineering: a homologous recombination-based method of genetic engineering. Nat Profile 4(2):1-37 (originally pp. 206-223) (2009). |
Sharpe and Mount, Genetically modified T cells in cancer therapy: opportunities and challenges. Disease Models and Mechanisms, 8:337-350, 2015. |
Simonyan and Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, Published as a conference paper at Int. Conf. Learn. Represent., pp. 1-14, 2015. |
Singh-Gasson, Sangeet et al., Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array, Nature Biotechnology, vol. 17, 974-978 (Oct. 1999). |
Smith, et al. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A. Dec. 23, 2003;100(26):15440-5. Epub Dec. 2, 2003. |
Smith, et al. Generation of cohesive ends on PCR products by UDG-mediated excision of dU, and application for cloning into restriction digest-linearized vectors. PCR Methods Appl. May 1993;2(4):328-32. |
Smith, Jane et al., “Mutation detection with MutH, MutL, and MutS mismatch repair proteins”, Proc. Natl. Acad. Sci. USA, vol. 93, 4374-4379 (Apr. 1996). |
Smith Jane et al., “Removal of Polymerase-Produced mutant sequences from PCR products”, Proc. Natl. Acad. Sci. USA, vol. 94, 6847-6850 (Jun. 1997). |
Smith, Steven B. et al., “Direct mechanical measurements of the elasticity of single DNA molecules using magnetic beads”, Science, vol. 258, 1122-1126 (Nov. 13, 1992). |
Soni, et al. Progress toward ultrafast DNA sequencing using solid-state nanopores. Clin Chem. Nov. 2007;53(11):1996-2001. Epub Sep. 21, 2007. |
Southern, et al. Analyzing and comparing nucleic acid sequences by hybridization to arrays of oligonucleotides: evaluation using experimental models. Genomics. Aug. 1992;13(4):1008-17. |
Sierzchala, Agnieszka B. et al., “Solid-phase oligodeoxynucleotide synthesis : a two-step cycle using peroxy anion deprotection”, J. Am. Chem. Soc., vol. 125, No. 44, 13427-13441 (2003). |
U.S. Appl. No. 15/187,714 Office Action dated Apr. 4, 2019. |
Sproat, et al. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides & Nucleotides. 1995; 14(1&2):255-273. |
Srivannavit et al., Design and fabrication of microwell array chips for a solution-based, photogenerated acid-catalyzed parallel oligonuclotide DNA synthesis. Sensors and Actuators A, 116:150-160, 2004. |
Srivastava et al., “RNA synthesis: phosphoramidites for RNA synthesis in the reverse direction. Highly efficient synthesis and application to convenient introduction of ligands, chromophores and modifications of synthetic RNA at the 3′-end”, Nucleic Acids Symposium Series, 52(1):103-104, 2008. |
Steel, The Flow-Thru Chip a Three-dimensional biochip platform. In: Schena, Microarray Biochip Technology, Chapter 5, Natick, MA: Eaton Publishing, 2000, 33 pages. |
Stemmer, et al. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene. Oct. 16, 1995;164(1):49-53. |
Stryer. “DNA Probes and genes can be synthesized by automated solid-phase methods.” Biochemistry, 3rd edition, New York: W.H. Freeman and Company, 1988; 123-125. |
Stutz, et al. Novel fluoride-labile nucleobase-protecting groups for the synthesis of 3′(2′)-O-amino-acylated RNA sequences. Helv. Chim. Acta. 2000; 83(9):2477-2503. |
Takahashi, Cell-free cloning using multiply-primed rolling circle amplification with modified RNA primers. Biotechniques. Jul. 2009;47(1):609-15. doi: 10.2144/000113155. |
Tanase, M. et al., “Magnetic trapping of multicomponent nanowires”, The Johns Hopkins University, Baltimore, Maryland, p. 1-3 (Jun. 25, 2001). |
Taylor et al., Impact of surface chemistry and blocking strategies on DNA microarrays. Nucleic Acids Research, 31(16):e87, 19 pages, 2003. |
The Hood Laboratory, “Beta Group.” Assembly Manual for the POSaM: The ISB Piezoelelctric Oligonucleotide Synthesizer and Microarrayer, Inkjet Microarrayer Manual Version 1.2, 50 pages, May 28, 2004. |
The SLIC, Gibson, CPEC and SLiCE assembly methods (and GeneArt Seamless, In-Fusion Cloning). 5 pages, available online Sep. 2, 2010. |
Tian, et al. Accurate multiplex gene synthesis from programmable DNA microchips. Nature. Dec. 23, 2004;432(7020):1050-4. |
Tsai et al., Dimeric CRISPR RNA-guided Fokl nucleases for highly specific genome editing Nat. Biotechnol., 32(6):569-576, 2014. |
Unger, et al. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science. Apr. 7, 2000;288(5463):113-6. |
U.S. Appl. No. 14/241,874 Office Action dated Feb. 27, 2017. |
U.S. Appl. No. 14/452,429 Notice of Allowance dated Jun. 7, 2016. |
U.S. Appl. No. 14/452,429 Office Action dated Oct. 21, 2015. |
U.S. Appl. No. 14/452,429 Restriction Requirement dated Dec. 12, 2014. |
U.S. Appl. No. 14/885,962 Notice of Allowance dated Nov. 8, 2017 and Sep. 29, 2017. |
U.S. Appl. No. 14/885,962 Office Action dated Dec. 16, 2016. |
U.S. Appl. No. 14/885,962 Office Action dated Sep. 8, 2016. |
U.S. Appl. No. 14/885,962 Restriction Requirement dated Mar. 1, 2016. |
U.S. Appl. No. 14/885,963 Notice of Allowance dated May 24, 2016. |
U.S. Appl. No. 14/885,963 Office Action dated Feb. 5, 2016. |
U.S. Appl. No. 14/885,965 Office Action dated Aug. 30, 2017. |
U.S. Appl. No. 14/885,965 Office Action dated Feb. 10, 2017. |
U.S. Appl. No. 14/885,965 Office Action dated Feb. 18, 2016. |
U.S. Appl. No. 14/885,965 Office Action dated Jan. 4, 2018. |
U.S. Appl. No. 14/885,965 Office Action dated Jul. 7, 2016. |
U.S. Appl. No. 15/015,059 Office Action dated Feb. 7, 2019. |
U.S. Appl. No. 15/135,434 Office Action dated Nov. 30, 2017. |
U.S. Appl. No. 15/135,434 Restriction Requirement dated Jul. 12, 2017. |
U.S. Appl. No. 15/154,879 Notice of Allowance dated Feb. 1, 2017. |
U.S. Appl. No. 15/156,134 Office Action dated Apr. 4, 2019. |
U.S. Appl. No. 15/187,714 Restriction Requirement dated Sep. 17, 2018. |
U.S. Appl. No. 15/187,721 Notice of Allowance dated Dec. 7, 2016. |
U.S. Appl. No. 15/187,721 Office Action dated Oct. 14, 2016. |
U.S. Appl. No. 15/233,835 Notice of Allowance dated Oct. 4, 2017. |
U.S. Appl. No. 15/233,835 Office Action dated Feb. 8, 2017. |
U.S. Appl. No. 15/233,835 Office Action dated Jul. 26, 2017. |
U.S. Appl. No. 15/233,835 Restriction Requirement dated Nov. 4, 2016. |
U.S. Appl. No. 15/245,054 Office Action dated Mar. 21, 2017. |
U.S. Appl. No. 15/245,054 Office Action dated Oct. 19, 2016. |
U.S. Appl. No. 15/268,422 Office Action dated Mar. 1, 2019. |
U.S. Appl. No. 15/268,422 Restriction Requirement dated Oct. 4, 2018. |
U.S. Appl. No. 15/377,547 Final Office Action dated Feb. 8, 2019. |
U.S. Appl. No. 15/377,547 Office Action dated Mar. 24, 2017. |
U.S. Appl. No. 15/377,547 Office Action dated Nov. 30, 2017. |
U.S. Appl. No. 15/433,909 Non-Final Office Action dated Feb. 8, 2019. |
U.S. Appl. No. 15/433,909 Restriction Requirement dated Sep. 17, 2018. |
U.S. Appl. No. 15/602,991 Final Office Action dated Dec. 13, 2018. |
U.S. Appl. No. 15/602,991 Notice of Allowance dated Oct. 25, 2017. |
U.S. Appl. No. 15/602,991 Office Action dated Sep. 21, 2017. |
U.S. Appl. No. 15/603,013 Office Action dated Oct. 20, 2017. |
U.S. Appl. No. 15/682,100 Office Action dated Jan. 2, 2018. |
U.S. Appl. No. 15/682,100 Restriction Requirement dated Nov. 8, 2017. |
U.S. Appl. No. 15/729,564 Final Office Action dated Dec. 13, 2018. |
U.S. Appl. No. 15/729,564 Office Action dated Jan. 8, 2018. |
U.S. Appl. No. 15/816,995 Restriction Requirement dated Apr. 4, 2019. |
U.S. Appl. No. 15/844,395 Restriction Requirement dated May 17, 2019. |
U.S. Appl. No. 15/860,445 Final Office Action dated Dec. 13, 2018. |
U.S. Appl. No. 15/860,445 Office Action dated May 30, 2018. |
U.S. Appl. No. 14/452,429 Office Action dated Apr. 9, 2015. |
U.S. Appl. No. 15/151,316Final Office Action dated Feb. 21, 2019. |
Vaijayanthi, et al. Recent advances in oligonucleotide synthesis and their applications. Indian J Biochem Biophys. Dec. 2003;40(6):377-91. |
Van Den Brulle, et al. A novel solid phase technology for high-throughput gene synthesis. Biotechniques. 2008; 45(3):340-343. |
Van Tassell et al., SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nature Methods, 5:247-252, 2008. |
Vargeese, et al. Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis. Nucleic Acids Res. Feb. 15, 1998;26(4):1046-50. |
Verma et al. Modified oligonucleotides: synthesis and strategy for users. Annu Rev Biochem 67:99-134 (1998). |
Vincent, et al. Helicase-dependent isothermal DNA amplification. EMBO Rep. Aug. 2004;5(8):795-800. |
Visscher et al., “Construction of multiple-beam optical traps with nanometer-resolution position sensing”, IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, No. 4, 1066-1076 (Dec. 1996). |
Voldmans Joel et al., “Holding forces of single-particle dielectrophoretic traps.” Biophysical Journal, vol. 80, No. 1, 531-541 (Jan. 2001). |
Vos, et al. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Res. Nov. 11, 1995;23(21):4407-14. |
Wagner et al., “Nucleotides, Part LXV, Synthesis of 2′-Deoxyribonucleoside 5′-Phosphoramidites: New Building Blocks for the Inverse (5′-3′)-Oligonucleotide Approach.” Helvetica Chimica Acta, 83(8):2023-2035, 2000. |
Wah, David A. et al., “Structure of Fok I has implications for DNA cleavage”, Proc. Natl. Acad. Sci. USA, vol. 95, 10564-10569 (Sep. 1998). |
Wah, David A. et al., “Structure of the multimodular endonuclease Fok I bound to DNA”, Nature, vol. 388, 97-100 ( Jul. 1997). |
Walker, et al. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. Apr. 11, 1992;20(7):1691-6. |
Wan et al., Deep Learning for Content-Based Image Retrieval: A comprehensive study. in Proceedings of the 22nd ACM International Conference on Multimedia—Nov. 3-7, 2014, Orlando, FL, p. 157-166, 2014. |
Weber, et al. A modular cloning system for standardized assembly of multigene constructs. PLoS One. Feb. 18, 2011;6(2):e16765. doi: 10.1371/journal.pone.0016765. |
Welz, et al. 5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis. Tetrahedron Lett. 2002; 43(5):795-797. |
Westin et al., Anchored multiplex amplification on a microelectronic chip array Nature Biotechnology, 18:199-202 (2000) (abstract only). |
Whitehouse, Adrian et al. “Analysis of the mismatch and insertion/deletion binding properties of Thermus thermophilus, HB8, MutS”, Biochemical and Biophysical Research Communications, vol. 233, 834-837 (1997). |
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482:331-338, 2012. |
Wijshoff, Herman. Structure and fluid-dynamics in Piezo inkjet printheads. Thesis. Venio, The Netherlands, published 2008, p. 1-185. |
Wirtz, Denis, “Direct measurement of the transport properties of a single DNA molecule”, Physical Review Letters, vol. 75, No. 12, 2436-2439 (Sep. 18, 1995). |
Withers-Martinez, Chrislaine et al., “PCR-based gene synthesis as an efficient approach for expression of the A+ T-rich malaria genome”, Protein Engineering, vol. 12, No. 12, 1113-1120 (1999). |
Wood, Richard D. et al., “Human DNA repair genes”, Science, vol. 291, 1284-1289 (Feb. 16, 2001). |
Wosnick, et al. Rapid construction of large synthetic genes: total chemical synthesis of two different versions of the bovine prochymosin gene. Gene. 1987;60(1):115-27. |
Wright and Church, An open-source oligomicroarray standard for human and mouse. Nature Biotechnology, 20:1082-1083, 2002. |
Wu, et al. “Sequence-Specific Capture of Protein-DNA Complexes for Mass Spectrometric Protein Identification” PLoS ONE. Oct. 20, 2011, vol. 6, No. 10. |
Wu, et al. RNA-mediated gene assembly from DNA arrays. Angew Chem Int Ed Engl. May 7, 2012;51(19):4628-32. doi: 10.1002/anie.201109058. |
Wu, et al. Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. Gene. 1989;76(2):245-54. |
Wu, Xing-Zheng et al., “An improvement of the on-line electrophoretic concentration method for capillary electrophoresis of proteins an experimental factors affecting he concentration effect”, Analytical Sciences, vol. 16, 329-331 (Mar. 2000). |
Xiong, et al. A simple, rapid, high-fidelity and cost-effective PCR-based two-step DNA synthesis method for long gene sequences. Nucleic Acids Res. 2004, 32(12):e98. |
Xiong et al., Chemical gene synthesis: Strategies, softwares, error corrections, and applications. FEMS Microbiol. Rev., 32:522-540, 2008. |
Xiong, et al. Non-polymerase-cycling-assembly-based chemical gene synthesis: Strategies, methods, and progress. Biotechnology Advances. 26(2):121-134, 2008. |
Xu et al., Design of 240,000 orthogonal 25mer DNA barcode probes. PNAS, 106(7):2289-2294, 2009. |
Yang, et al “Purification, cloning, and characterization of the CEL I nuclease”, Biochemistry, 39(13):3533-35, 2000. |
Yazdi, et al., A Rewritable, Random-Access DNA-Based Storage System, Scientific Reports, 5, Article No. 14138, 27 pages, 2015. |
Yehezkel et al., De novo DNA synthesis using single molecule PCR Nucleic Acids Research, 36(17):e107, 2008. |
Yes HMDS vapor prime process application note Prepared by UC Berkeley and University of Texas at Dallas and re-printed by Yield Engineering Systems, Inc., 6 pages (http://www.yieldengineering.com/Portals/O/HMDS%20Application%20Note.pdf (Published online Aug. 23, 2013). |
Youil, Rima et al., “Detection of 81 of 81 known mouse Beta-Giobin promoter mutations with T4 Endonuclease VII⋅ The EMC Method”, Genomics, 32:431-435, 1996. |
Young, et al. Two-step total gene synthesis method. Nucleic Acids Res. 32(7):e59, 2004. |
Zhang and Seelig, Dynamic DNA nanotechnology using strand-displacement reactions, Nat. Chem., 3(2):103-113, 2011. |
Zheleznaya, et al. Nicking endonucleases. Biochemistry (Mosc). 74(13):1457-66, 2009. |
Zhirnov et al., Nucleic acid memory. Nature Materials, 15:366, 2016. |
Zhou, et al. “Establishment and application of a loop-mediated isothermal amplification (LAMP) system for detection of cry1Ac transgenic sugarcane” Scientific Reports May 9, 2014, vol. 4, No. 4912. |
Zhou et al., Microfluidic PicoArray synthesis of oligodeoxynucleotides and simultaneous assembling of multiple DNA sequences Nucleic Acids Research, 32(18):5409-5417, 2004. |
Acevedo-Rocha et al.: Directed evolution of stereoselective enzymes based on genetic selection as opposed to screening systems. J. Biotechnol. 191:3-10 (2014). |
Alberts et al.: Molecular Biology of the Cell. 4th edition. New York: Garland Science; 2002. The Generation of Antibody Diversity. https://www.ncbi.nlm.nih.gov/books/NBK26860/. |
Almagro et al.: Progress and Challenges in the Design and Clinical Development of Antibodies for Cancer Therapy. Frontiers in immunology; 8, 1751 (2018) doi:10.3389/fimmu.2017.01751 https://www.frontiersin.org/articles/10.3389/fimmu.2017.01751/full. |
Arand et al.: Structure of Rhodococcus erythropolis limonene-1,2-epoxide hydrolase reveals a novel active site. EMBO J. 22:2583-2592 (2003). |
Assembly manual for the POSaM: The ISB Piezoelelctric Oligonucleotide Synthesizer and Microarrayer, The Institute for Systems Biology, May 28, 2004 (50 pages). |
Carter and Friedman. DNA synthesis and Biosecurity: Lessons learned and options for the future. J. Craig Venter Institute, La Jolla, CA, 28 pages, Oct. 2015. |
CeGaT. Tech Note available at https://www.cegat.de/web/wp-content/uploads/2018/06/Twist-Exome-Tech-Note.pdf (4 pgs.) (2018). |
Chilamakuri et al.: Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 15(1):449 (2014). |
Cruse et al.: Atlas of Immunology, Third Edition. Boca Raton:CRC Press (pp. 282-283) (2010). |
De Silva et al.: New Trends of Digital Data Storage in DNA. BioMed Res Int. 2016:8072463 (2016). |
Dillon et al.: Exome sequencing has higher diagnostic yield compared to simulated disease-specific panels in children with suspected monogenic disorders. Eur J Hum Genet 26(5):644-651 (2018). |
Dvorsky. Living Bacteria Can Now Store Data. GIZMODO internet publication. Retrieved from https://gizmodo.com/living-bacteria-can-now-store-data-1781773517 (4 pgs) (Jun. 10, 2016). |
Eroshenko et al.: Gene Assembly from Chip-Synthesized Oligonucleotides; Current Protocols in Chemical biology 4: 1-17 (2012). |
European Patent Application No. 12827479.2 Extended European Search Report dated May 18, 2015. |
European Patent Application No. 12827479.2 Partial European Search Report dated Jan. 29, 2015. |
European Patent Application No. 14834665.3 Communication dated Jan. 16, 2018. |
European Patent Application No. 14834665.3 extended European Search Report dated Apr. 28, 2017 . |
European Patent Application No. 14834665.3 Further Examination Report dated Nov. 28, 2018. |
European Patent Application No. 14834665.3 Office Action dated May 2, 2018. |
European Patent Application No. 16847497.1 Extended European Search Report dated Jan. 9, 2019. |
European Patent Application No. 16871446.7 First Official Action dated Nov. 13, 2019. |
European Patent Application No. 17844060.8 Extended Search Report dated Apr. 20, 2020. |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:1-9 (2017). |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S1 figure (2017). |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S1 Table (2017). |
Galka et al.: QuickLib, a method for building fully synthetic plasmid libraries by seamless cloning of degenerate oligonucleotides. PLOS ONE, 12, e0175146:S2 figure (2017). |
Gao et al.: A method for the generation of combinatorial antibody libraries using pIX phage display. PNAS 99(20):12612-12616 (2002). |
Gibson et al.: Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science 329(5989):52-56 (2010). |
Goldfeder et al.: Medical implications of technical accuracy in genome sequencing. Genome Med 8(1):24 (2016). |
Goldman et al.: Towards practical, high-capacity, low-maintenance information storage in synthesized DNA, Nature, 494(7435):77-80, 2013. |
Han et al.: Linking T-cell receptor sequence to functional phenotype at the single-cell level. Nat Biotechnol 32(7):684-692 (2014). |
Hauser et al.: Trends in GPCR drug discovery: new agents, targets and indications. Nature Reviews Drug Discovery, 16, 829-842 (2017). doi:10.1038/nrd.2017.178 https://www.nature.com/articles/nrd.2017.178. |
Hötzel et al.: A strategy for risk mitigation of antibodies with fast clearance. mAbs, 4(6), 753-760 (2012). doi:10.4161/mabs.22189 https://www.ncbi.nlm.nih.gov/pubmed/23778268. |
Imgur: The magic of the internet. Uploaded May 10, 2012, 2 pages, retrieved from: https://imgur.com/mEWuW. |
International Application No. PCT/US2017/062391 International Preliminary Report on Patentability dated May 21, 2019. |
International Application No. PCT/US2018/019268 International Preliminary Report on Patentability dated Sep. 6, 2019. |
International Application No. PCT/US2019/032992 International Search Report and Written Opinion dated Oct. 28, 2019. |
International Application No. PCT/US2019/032992 Invitation to Pay Additional Fees dated Sep. 6, 2019. |
Jacobus et al.: Optimal cloning of PCR fragments by homologous recombination in Escherichia soli. PLoS One 10(3):e0119221 (2015). |
Jager et al.: Simultaneous Humoral and Cellular: Immune Response against Cancer—Testis Antigen NY-ESO-1: Definition of Human Histocompatibility Leukocyte Antigen (HLA)-A2—binding Peptide Epitopes. J. Exp. Med. 187(2):265-270 (1998). |
Li et al.: Beating bias in the directed evolution of proteins: Combining high-fidelity on-chip solid-phase gene synthesis with efficient gene assembly for combinatorial library construction. First published Nov. 24, 2017, 2 pages. retrieved from: https://doi.org/10.1002/cbic.201700540. |
Li et al.: Beating Bias in the Directed Evolution of Proteins: Combining High-Fidelity on-Chip Solid-Phase Gene Synthesis with Efficient Gene Assembly for Combinatorial Library Construction. ChemBioChem 19:221-228 (2018). |
Mazor et al.: Isolation of Full-Length IgG Antibodies from Combinatorial Libraries Expressed in Escherichia coli; Antony S. Dimitrov (ed.), Therapeutic Antibodies: Methods and Protocols, vol. 525, Chapter 11, pp. 217-239 (2009). |
Meynert et al.: Quantifying single nucleotide variant detection sensitivity in exome sequencing. BMC Bioinformatics 14:195 (2013). |
Meynert et al.: Variant detection sensitivity and biases in whole genome and exome sequencing. BMC Bioinformatics 15:247 (2014). |
Mulligan. Commercial Gene Synthesis Technology PowerPoint presentation. BlueHeron® Biotechnology. Apr. 5, 2006 (48 pgs). |
Organick et al.: Random access in large-scale DNA data storage. Nature Biotechnology, Advance Online Publication, 8 pages, 2018. |
Paul et al.: Acid binding and detritylation during oligonucleotide synthesis. Nucleic Acids Research. 15. pp. 3048-3052 (1996). |
PCT/US2016/052336 International Preliminary Report on Patentability dated Mar. 29, 2018. |
PCT/US2016/052916 International Preliminary Report on Patentability dated Apr. 5, 2018. |
PCT/US2016/064270 International Preliminary Report on Patentability dated Jun. 14, 2018. |
PCT/US2017/052305 International Search Report and Written Opinion dated Feb. 2, 2018. |
PCT/US2017/062391 International Search Report and Written Opinion dated Mar. 28, 2018. |
PCT/US2017/066847 International Search Report and Written Opinion dated May 4, 2018. |
PCT/US2018/022487 International Search Report and Written Opinion dated Aug. 1, 2018. |
PCT/US2018/022493 International Search Report and Written Opinion dated Aug. 1, 2018. |
PCT/US2018/037152 International Preliminary Report on Patentability dated Dec. 26, 2019. |
PCT/US2018/037152 International Search Report and Written Opinion dated Aug. 28, 2018. |
PCT/US2018/037161 International Preliminary Report on Patentability dated Dec. 17, 2019. |
PCT/US2018/050511 International Preliminary Report on Patentability dated Mar. 26, 2020. |
PCT/US2018/056783 International Preliminary Report on Patentability dated Apr. 30, 2020. |
PCT/US2018/057857 International Preliminary Report on Patentability dated Apr. 28, 2020. |
PCT/US2018/19268 International Search Report and Written Opinion dated Jun. 26, 2018. |
PCT/US2018/19268 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 2, 2018. |
PCT/US2018/22487 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 31, 2018. |
PCT/US2018/22493 Invitation to Pay Additional Fees and, where applicable, protest fee dated May 31, 2018. |
PCT/US2019/068435 International Search Report and Written Opinion dated Apr. 23, 2020. |
PCT/US2020/019371 International Search Report and Written Opinion dated Jun. 25, 2020. |
PCT/US2020/019986 Invitation to Pay Additional Fees dated Jun. 5, 2020. |
PCT/US2020/019988 Invitation to Pay Additional Fees dated Jun. 8, 2020. |
PubChem Data Sheet Acetonitrile. Printed from website https://pubchem.ncbi.nlm.nig.gov/ pp. 1-124 (2020). |
PubChem Data Sheet Methylene Chloride. Printed from website. |
Rajpal et al.: A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc. Natl. Acad. Sci. 102(24):8466-8471 (2005). |
Skerra. Phosphorothioate primers improve the amplification of DNA sequences by DNA polymerases with proofreading activity. Nucleic Acids Res. Jul. 25, 1992; 20(14):3551-4. |
Solomon et al.: Genomics at Agilent: Driving Value in DNA Sequencing.https://www.agilent.com/labs/features/2010_genomics.html, 8 pages (Aug. 5, 2010). |
Sullivan et al.: Library construction and evaluation for site saturation mutagenesis. Enzyme Microb. Technol. 53:70-77 (2013). |
Sun et al.: Structure-Guided Triple-Code Saturation Mutagenesis: Efficient Tuning of the Stereoselectivity of an Epoxide Hydrolase. ACS Catal. 6:1590-1597 (2016). |
Twist Bioscience | White Paper. DNA-Based Digital Storage. Retrieved from the internet, Twistbioscience.com, Mar. 27, 2018, 5 pages. |
U.S. Appl. No. 14/241,874 Final Office Action dated Jan. 28, 2019. |
U.S. Appl. No. 14/241,874 Office Action dated Jul. 14, 2016. |
U.S. Appl. No. 14/241,874 Office Action dated May 4, 2018. |
U.S. Appl. No. 14/885,965 Office Action dated Aug. 28, 2018. |
U.S. Appl. No. 15/015,059 Final Office Action dated Jul. 17, 2019. |
U.S. Appl. No. 15/015,059 Office Action dated Aug. 19, 2019. |
U.S. Appl. No. 15/135,434 Notice of Allowance dated Feb. 9, 2018. |
U.S. Appl. No. 15/151,316 Final Office Action dated Jul. 9, 2020. |
U.S. Appl. No. 15/151,316 Office Action dated Jun. 7, 2018. |
U.S. Appl. No. 15/151,316 Office Action dated Oct. 4, 2019. |
U.S. Appl. No. 15/156,134 Final Office Action dated Jan. 3, 2020. |
U.S. Appl. No. 15/187,714 Final Office Action dated Sep. 17, 2019. |
U.S. Appl. No. 15/268,422 Final Office Action dated Oct. 3, 2019. |
U.S. Appl. No. 15/272,004 Office Action dated Jun. 12, 2020. |
U.S. Appl. No. 15/377,547 Office Action dated Jul. 27, 2018. |
U.S. Appl. No. 15/602,991 Office Action dated May 31, 2018. |
U.S. Appl. No. 15/602,991 Office Action dated May 31, 2019. |
U.S. Appl. No. 15/603,013 Final Office Action dated Nov. 6, 2019. |
U.S. Appl. No. 15/603,013 Office Action dated Jan. 30, 2018. |
U.S. Appl. No. 15/603,013 Office Action dated Jul. 10, 2018. |
U.S. Appl. No. 15/619,322 Final Office Action dated Mar. 30, 2020. |
U.S. Appl. No. 15/619,322 Office Action dated Aug. 14, 2019. |
U.S. Appl. No. 15/709,274 Notice of Allowance dated Apr. 3, 2019. |
U.S. Appl. No. 15/729,564 Office Action dated Jun. 6, 2018. |
U.S. Appl. No. 15/729,564 Office Action dated May 30, 2019. |
U.S. Appl. No. 15/816,995 Office Action dated May 19, 2020. |
U.S. Appl. No. 15/816,995 Office Action dated Sep. 20, 2019. |
U.S. Appl. No. 15/835,342 Office Action dated Dec. 2, 2019. |
U.S. Appl. No. 15/835,342 Restriction Requirement dated Sep. 10, 2019. |
U.S. Appl. No. 15/844,395 Office Action dated Jan. 24, 2020. |
U.S. Appl. No. 15/921,479 Final Office Action dated Jun. 15, 2020. |
U.S. Appl. No. 15/921,479 Office Action dated Nov. 12, 2019. |
U.S. Appl. No. 15/921,479 Restriction Requirement dated May 24, 2019. |
U.S. Appl. No. 15/960,319 Office Action dated Aug. 16, 2019. |
U.S. Appl. No. 15/991,992 Office Action dated May 21, 2020. |
U.S. Appl. No. 15/991,992 Restriction Requirement dated Mar. 10, 2020. |
U.S. Appl. No. 16/006,581 Office Action dated Sep. 25, 2019. |
U.S. Appl. No. 16/031,784 Office Action dated May 12, 2020. |
U.S. Appl. No. 16/039,256 Restriction Requirement dated May 18, 2020. |
U.S. Appl. No. 16/128,372 Restriction Requirement dated May 18, 2020. |
U.S. Appl. No. 16/165,952 Office Action dated Mar. 12, 2020. |
U.S. Appl. No. 16/239,453 Office Action dated May 11, 2020. |
U.S. Appl. No. 16/239,453 Office Action dated Nov. 7, 2019. |
U.S. Appl. No. 16/409,608 Office Action dated Sep. 9, 2019. |
U.S. Appl. No. 16/530,717 Final Office Action dated Apr. 15, 2020. |
U.S. Appl. No. 16/530,717 Office Action dated Sep. 6, 2019. |
U.S. Appl. No. 16/535,777 Office Action dated Jan. 23, 2020. |
U.S. Appl. No. 16/535,779 First Action Interview dated Feb. 10, 2020. |
U.S. Appl. No. 15/603,013 Office Action dated Jun. 26, 2019. |
U.S. Appl. No. 15/921,537 Office Action dated Apr. 1, 2020. |
Van Der Werf et al.: Limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis DCL14 belongs to a novel class of epoxide hydrolases. J. Bacteriol. 180:5052-5057 (1998). |
Warr et al.: Exome Sequencing: current and future perspectives. G3: (Bethesda) 5(8):1543-1550 (2015). |
Zheng et al.: Manipulating the Stereoselectivity of Limonene Epoxide Hydrolase by Directed Evolution Based on Iterative Saturation Mutagenesis. J. Am. Chem. Soc. 132:15744-15751 (2010). |
Number | Date | Country | |
---|---|---|---|
20190240636 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62261753 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15860445 | Jan 2018 | US |
Child | 16384678 | US | |
Parent | 15365826 | Nov 2016 | US |
Child | 15860445 | US |