The aspects of the disclosed embodiments generally relate to recovery boilers. The aspects of the disclosed embodiments particularly, though not exclusively, to protecting recovery boiler floor tubes.
This section illustrates useful background information without admission of any technique described herein representative of the state of the art.
Recovery boilers are fueled with waste liquor (black liquor) generated in connection with pulp manufacturing. Black liquor is a highly corrosive substance which is combusted in a furnace area of the boiler.
The floor of the recovery boiler furnace is made of tubes that are filled with water. If the floor tubes are directly exposed to black liquor, this may lead in unfavorable conditions that promote local corrosion or cracking of the floor tubes. During recovery boiler start up, after recovery boiler outage, the floor tubes may additionally be exposed to an excessive heat load due to start-up burner flame impingement if not protected.
In order to protect the floor tubes, a protective layer of a protecting chemical, such as sodium sulfate, may be spread onto the furnace floor during recovery boiler outage after the floor tubes have been inspected. The spreading of the chemical, however, is laborious requiring manual labor in terms of carrying bags into the furnace and spreading the bags/powder to cover the floor.
According to a first aspect of the disclosed embodiments, there is provided a method for protecting a furnace floor of a black liquor recovery boiler, comprising:
In certain embodiments, the mixing and covering are performed during recovery boiler outage.
In certain embodiments, the protective material contains salt. In certain embodiments, the material is or comprises a recovery boiler process chemical, such as sodium sulfate, sodium carbonate or another inorganic sodium salt. In certain embodiments, the material is sodium containing material. In certain embodiments, the sodium containing material is a sodium salt, such as sodium sulfate or sodium carbonate. In certain embodiments, the mixture is free of organic material. In certain embodiments, the mixing consists of blending the protective material with water.
In certain embodiments, the said covering is to form a protective layer. In certain embodiments, the protective layer is to protect the floor against direct exposure of black liquor. In certain embodiments, the protective layer is to protect the floor against start up burner flame impingement. In certain embodiments, an empty or emptied furnace floor is covered, the term empty or emptied referring to a furnace floor that is not covered by hot smelt. In certain embodiments, this means a washed or otherwise cleaned furnace floor.
In certain embodiments, the said mixing is performed by mixing the material forming the protective layer with fluid or water. In certain embodiments, the mixing is performed without a chemical reaction. Accordingly, the material forming the protective layer merely dissolves in the fluid or water.
In certain embodiments, the method comprises covering the furnace floor by said mixture by flowing the formed mixture onto the floor from the outside of the furnace.
In certain embodiments, the method comprises causing the mixture to flow onto the furnace floor from the outside of the furnace via an opening in a wall of the black liquor boiler.
In certain embodiments, the method comprises pumping the mixture onto the furnace floor from the outside of the furnace. In other embodiments, the protective material is mixed with the fluid only on the furnace floor.
In certain embodiments, the mixing is performed in connection with pumping the mixture onto the furnace floor. In certain embodiments, said mixing is performed during said pumping or prior to said pumping. In certain embodiments, the furnace floor is used as a mixing vessel.
In certain embodiments, the method comprises feeding the protective material (salt containing material) onto the furnace floor. In certain embodiments, the method comprises feeding the protective material onto the furnace floor by pumping. In certain embodiments, the protective material is blown onto the furnace floor. In certain embodiments, the protective material is mixed with water on the furnace floor. The resulting mixture is allowed to stay on the furnace floor. Accordingly, in certain embodiments, the furnace floor is used as a mixing vessel.
In certain embodiments, the method comprises feeding water onto the furnace floor.
In certain embodiments, the method comprises mixing the protective material with water on the furnace floor by one mixing device or a plurality of mixing devices. In certain embodiments, the mixing device(s) is/are operated through at least one opening in the furnace wall. In certain embodiments, the mixing device(s) is/are operated by a pressure medium, for example, pressurized air. In certain embodiments, the mixing device(s) is/are set (or installed) on the furnace floor.
In certain embodiments, the method comprises:
In certain embodiments, the protective material is fed onto the furnace floor as a continuous kind of process (such as pumping or blowing). In certain embodiments, such a process is a non-manual process (non-manual feed).
In certain embodiments, the method comprises providing the mixture as an aqueous solution.
In certain embodiments the said mixing material with a fluid to form a mixture (or providing the mixture as an aqueous solution) is an in-situ or on-site process in contrast to any off-site process in which the mixture or aqueous solution would be formed elsewhere, e.g., another factory location, and transferred to the recovery boiler facility (or building) therefrom.
In certain embodiments, the method comprises:
In certain embodiments, the method comprises settling the flown mixture on the floor by gravity alone.
In certain embodiments, the method comprises forming a salt lake onto the floor extending over the floor from side to side during recovery boiler outage. In certain embodiments, the salt lake contains the protective material.
In certain embodiments, the method comprises allowing the salt lake to solidify forming a protective layer to protect floor tubes of the furnace from direct exposure of black liquor and flame impingement.
In certain embodiments, the material comprises at least two different salts.
In certain embodiments, the material comprises at least two different salts selected from a group consisting of: sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
In certain embodiments, the method comprises using a mixture whose melting point, after solidification, is lower than 850° C.
According to a second aspect of the disclosed embodiments, there is provided an apparatus for protecting a furnace floor of a black liquor recovery boiler, comprising means for performing the method of the first aspect or any of its embodiments.
Accordingly, in accordance with the second aspect, there is provided an apparatus for protecting a furnace floor of a black liquor recovery boiler, comprising:
In certain embodiments, the mixing means comprises a container. In certain embodiments, the mixing means comprises a mixer. In certain embodiments, the covering means comprises a pipe and an optional pump to feed the mixture onto the furnace floor.
Different non-binding example aspects and embodiments of the present disclosure have been presented in the foregoing. The embodiments in the foregoing are used merely to explain selected aspects or steps that may be utilized in implementations of the present disclosure. Some embodiments may be presented only with reference to certain aspects of the disclosed embodiments. It should be appreciated that corresponding embodiments may apply to other aspects as well, and any appropriate combinations may be formed.
Some example embodiments of the present disclosure will be described with reference to the accompanying drawings, in which:
In the following description, like reference signs denote like elements or steps.
It has been observed that especially in large boilers the conventional method of providing the floor with the protecting material is laborious and time-consuming. The outage time could be shortened if the protecting material could be provided onto the furnace floor more quickly.
The protective layer of protective material is provided by a method comprising mixing appropriate material with a fluid, for example water, to form a mixture, and covering the furnace floor 102 by said mixture by flowing the formed mixture onto the floor 102 from the outside of the furnace 100.
In certain embodiments, the method comprises causing the mixture to flow onto the furnace floor 102 from the outside of the furnace 100 via an opening in the wall of the black liquor recovery boiler, or furnace wall 101.
In certain embodiments, the mixture is caused to flow via at least one smelt spout opening 250. In certain embodiments, the mixture is caused flow via at least one primary air opening 260. In certain embodiments, the mixture is caused flow via at least one secondary air opening 270. In addition or instead, a man door opening residing in the wall 101 and/or at least one start-up burner opening 280 and/or at least one black liquor nozzle opening may be used.
In certain embodiments, the formed lake is allowed to solidify forming a protective layer to protect floor tubes of the furnace 100 from direct exposure of black liquor and flame impingement.
In certain embodiments, the method comprises pumping the mixture onto the furnace floor 102 from the outside of the furnace 100.
In certain embodiments, the mixture flown onto the floor settles on the floor by gravity alone forming a lake 210 extending over the whole area of the floor 102. The lake 210 is allowed to solidify forming a protective layer. In certain embodiments, the fluid/water in the lake evaporates, which evaporation may be enhanced by firing oil or gas using start-up burners, and a solid layer of protective material is formed.
In certain embodiments said mixing is performed prior to said pumping such as presented in connection with
In certain embodiments, the method comprises performing the act of covering the furnace floor with said mixture simultaneously with a removal of the furnace safety roof 105 during outage. Since the presented method does not require workers inside of the furnace 100, the safety roof 105 can be removed simultaneously with flowing the mixture onto the floor 102 and spreading it by gravitation.
In certain embodiments, as shown in
Accordingly, in certain embodiments, the method comprises feeding water onto the furnace floor 102, for example by pumping. A salt lake 810 is formed onto the floor 102. The protective material in the salt lake 810 is mixed with water of the salt lake by one mixing device 805 or a plurality of mixing devices 805. The mixture of protective material and water (or the formed aqueous solution) is allowed to solidify (the mixture is allowed to precipitate or crystallize) forming a protective layer to protect floor tubes of the furnace 100 from direct exposure of black liquor and flame impingement.
Any suitable opening in the furnace wall 101 (generally depicted as opening 350 as discussed in the preceding) may be used to feed in the protective material and/or water.
In certain embodiments, the mixing is implemented by one or more mixing devices 805 set or installed on the furnace floor 102. In certain embodiments, the mixing device(s) 805 form a desired circulation of water and salt(s) (protective material). The mixing by mixing device(s) 805 aids in forming the mixture of water and protective material as an aqueous solution in which the protective material is mainly or wholly in a dissolved state. Thereafter the mixing device(s) 805 are removed from the furnace 100. The mixture of protective material and water (or the formed aqueous solution) is allowed to solidify (the mixture is allowed to precipitate or crystallize while the water evaporates) forming a protective layer to protect floor tubes of the furnace 100 from direct exposure of black liquor and flame impingement.
In certain embodiments, a mixing arrangement comprising one or a plurality of mixing devices is used. The mixing device(s) are operated through at least one opening 350 in the furnace wall 101. The opening 350 may preferably be a smelt spout opening.
In certain embodiments, the mixing device(s) 805 are operated by a pressure medium, for example, pressurized air. In certain embodiments, a pressure medium pipe 930 enters the furnace 100 via said opening 350. The mixing devices in
In certain embodiments, the material that is mixed with fluid comprises at least two different salts.
In certain embodiments, the material comprises at least two different salts selected from a group consisting of: sodium carbonate, sodium sulfate, sodium sulfide, sodium chloride, potassium carbonate, and potassium sulfate.
In certain embodiments, the method comprises using a mixture whose melting point, after solidification, is lower than 850° C. Examples of such mixtures are the mixture of sodium sulfate and sodium carbonate, the mixture of sodium sulfate, sodium carbonate and sodium sulfide, the mixture of sodium sulfate, sodium carbonate, potassium sulfate and potassium carbonate.
In certain other embodiments, conventional protective materials, such as mere sodium sulfate or mere sodium carbonate is used.
Without limiting the scope and interpretation of the patent claims, certain technical effects of one or more of the example embodiments of this disclosure are listed in the following. A technical effect is that the protective material can be transferred onto the furnace floor and it spreads evenly without the need of any worker being inside of the furnace during the transfer and spreading. Another technical effect is faster transfer and spreading of the protective material. Another technical effect is a shortened recovery boiler outage time due to the fact that the transfer and spreading of the protective material can be performed simultaneously with the removal of the safety roof in an upper portion of the furnace. Another technical effect is easier removal of the protective layer when needed due to using material mixtures having lower melting temperature.
Various embodiments have been presented. It should be appreciated that in this document, words comprise, include and contain are each used as open-ended expressions with no intended exclusivity.
The foregoing description has provided by way of non-limiting examples of particular implementations and embodiments of the present disclosure a full and informative description of the best mode presently contemplated by the inventors for carrying out the present disclosure. It is however clear to a person skilled in the art that the present disclosure is not restricted to details of the embodiments presented in the foregoing, but that it can be implemented in other embodiments using equivalent means or in different combinations of embodiments without deviating from the characteristics of the present disclosure.
Furthermore, some of the features of the afore-disclosed embodiments of this present disclosure may be used to advantage without the corresponding use of other features. As such, the foregoing description shall be considered as merely illustrative of the principles of the present disclosure, and not in limitation thereof. Hence, the scope of the present disclosure is only restricted by the appended patent claims.
Number | Date | Country | Kind |
---|---|---|---|
PCT/FI2019/050048 | Jan 2019 | FI | national |
20196059 | Dec 2019 | FI | national |