This application is directed, in general, to furnaces and, more specifically, to protecting the furnace from condensation accumulation.
HVAC systems can be used to regulate the environment within an enclosure. Typically, an air blower is used to pull air from the enclosure into the HVAC system through ducts and push the air back into the enclosure through additional ducts after conditioning the air (e.g., heating or cooling the air). For example, a furnace, such as a gas furnace may be used to heat the air.
High efficiency residential gas-fired appliances typically rely on a mechanical means, such as a combustion air inducer, to create controlled mass flow thru the flue side of the appliance heat exchanger. For flow to occur, a pressure differential must exist across the heat train of the furnace. To verify that the proper pressure drop and flow are achieved and maintained to support the combustion process of the furnace within safe limits, pressure sensing devices are typically employed. These pressure sensing devices might include mechanical differential pressure sensing devices (such as pressure switches) or electronic sensors which provide feedback to an integrated electronic control.
This type of furnace design is similar among industry manufacturers, and typically employs a flue gas/condensate collector box attached to the end of the condenser coil (referred to herein as a Cold End Header Box (CEHB)), a combustion air inducer fan assembly (CAI), a fixed orifice located in the CAI or CEHB to regulate flow through the heat train, and a pressure sensing device to monitor flow. The pressure sensing device could be used to monitor pressure across the fixed orifice, or other points in the heat train to provide the most advantageous signal for the application.
In one aspect, the disclosure provides a CEHB. In one embodiment, the CEHB includes: (1) a first channel having a first channel supply port positioned to be in fluid communication with an inlet of a combustion air blower and a first pressure port couplable to a first input of a pressure sensing device, the combustion air blower and the pressure sensing device associated with the cold end header box and (2) a second channel having a second channel supply port positioned to be in fluid communication with the inlet of the combustion air blower, a second pressure port couplable to a second input of the pressure sensing device and a pressure reference inlet, the second channel in fluid communication with the first channel and configured to have about a same pressure as the first channel when the pressure reference inlet is blocked.
In another aspect, a furnace is disclosed. In one embodiment, the furnace includes: (1) a heat exchanger, (2) a combustion air inducer configured to generate air flow through the heat exchanger, (3) a pressure sensing device configured to monitor a combustion pressure through the heat exchanger and (4) a header box configured to be coupled between the heat exchanger and the combustion air inducer, the header box having: (4A) a negative pressure channel having a first channel supply port positioned to be in fluid communication with an inlet of the combustion air blower and a negative pressure port couplable to a negative input of the pressure sensing device; and (4B) a positive pressure channel having a positive pressure channel supply port positioned to be in fluid communication with the inlet of the combustion air blower, a positive pressure port couplable to a positive input of the pressure sensing device and a pressure reference inlet, the positive pressure channel in fluid communication with the negative pressure channel and configured to have about a same pressure as the negative pressure channel when the pressure reference inlet is blocked.
In yet another aspect, blocked condensation protection system for a furnace is disclosed. In one embodiment, the blocked condensation protection system includes: (1) a pressure sensing device configured to monitor a combustion pressure through a heat exchanger of the furnace and (2) a header box configured to be coupled between the heat exchanger and a combustion air inducer of the furnace, the header box having: (2A) a first channel having a first channel supply port positioned to be in fluid communication with an inlet of a combustion air blower associated with the furnace and a first pressure port couplable to a first input of the pressure sensing device and (2B) a second channel having a second channel supply port positioned to be in fluid communication with the inlet of the combustion air blower, a second pressure port couplable to a second input of the pressure sensing device and a pressure reference inlet, the second channel in fluid communication with the first channel and configured to have about a same pressure as the first channel when the pressure reference inlet is blocked, the pressure sensing device configured to turn off a fuel supply to the heat exchanger when determining a pressure differential between the first channel and the second channel is about zero.
Reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:
As air flows through the heat train of the furnace, condensation is generated and typically collected in the CEHB. To prevent build-up of the condensation and protect the monitoring equipment, for example the pressure sensing devices, proper draining of the condensation out of the CEHB is needed. Conventional furnaces may require multiple pressure sensing devices or require relocating the pressure sensing devices when a furnace is used in different positions in order to properly sense water build-up under block drain conditions and protect the sensing devices from condensation. Additionally, hoses used for drainage or sensing pressure may also have to be relocated when a furnace is installed at different positions.
The disclosure provides a furnace including a header box having integrated blocked condensation protection. Whether the furnace is installed in either an upright or horizontal position, disclosed herein is a blocked condensation protection system that is configured to shut off the fuel to the furnace when the condensate drain, a vent or an air intake is plugged. Instead of the disclosed furnace requiring multiple switches for monitoring combustion pressure (which verifies proper flow through the heat exchanger), as disclosed herein a single pressure sensing device may be used to monitor the combustion pressure and protect against blocked condensation drainage. Unlike conventional furnaces, the disclosed furnace does not need the relocating of switches or the rerouting of any pressure tubes when used in different positions.
In one embodiment, the header box is a CEHB of a gas furnace. The CEHB is disposed between the secondary heat exchanger and the combustion air inducer of the gas furnace. The disclosed CEHB includes channels that are appropriately sized and positioned to fluidly communicate and obtain about the same pressure when condensation drainage is not operating properly (e.g., blocked condensation). As such, a pressure sensing device coupled to pressure ports in the channels detects a zero or about zero differential pressure between the channels and shuts off the fuel supply to the furnace. Due to the configuration of the channels, the disclosure advantageously uses a single pressure sensing device to monitor the combustion pressure and blocked drainage. Advantageously, the number of safety pressure switches that are typically needed can be reduced.
Turning now to
A burner assembly 140 contains a thermostatically-controlled solenoid valve 142, a manifold 144 leading from the valve 142 and across the burner assembly 140, one or more gas orifices (not shown) coupled to the manifold 144 and one or more burners (not shown) corresponding to and located proximate the gas orifices. The illustrated embodiment of the burner assembly 140 has a row of six burners. Alternative embodiments of the burner assembly 140 may have more or fewer burners arranged in one or more rows. A combustion air inlet 146 allows air in for the burner assembly 140. In an assembled configuration, the burner assembly 140 is located proximate the heat exchanger assembly 120 such that the burners thereof at least approximately align with the inlets 125.
The furnace 100 also includes a draft inducer assembly 150 having a combustion air inducer 154 and a combustion flue collar 156 coupled to an outlet of the combustion air inducer 154. In an assembled configuration, the draft inducer assembly 150 is located proximate the heat exchanger assembly 120 such that the combustion flue collar 156 approximately aligns with a flue (not illustrated) that directs undesired gases (e.g., gaseous products of combustion) away from the furnace 100. Associated with the draft inducer assembly 150 are first and second drain hoses, 151, 152, that provide a path to drain condensation from the combustion flue collar 156 and the flue.
A blower 160 is suspended from the shelf 114 such that an outlet (not referenced) thereof approximately aligns with the opening 116. An electronic controller 170 is located proximate the blower 160 and is configured to control the blower, the valve 142 and the combustion air inducer 154 to cause the furnace to provide heat. A cover 180 may be placed over the front opening 112 of the housing 110.
A CEHB 190 provides an interface between the combustion air inducer 154 and the secondary heat exchanger 126. The combustion air inducer 154 has an inlet coupled to the CEHB 190. In an assembled configuration, the draft inducer assembly 150 is located proximate the heat exchanger assembly 120 such that the CEHB 190 approximately aligns with the outlets 127 and the combustion flue collar 156 approximately aligns with the flue.
The furnace 100 also includes a pressure sensing device 195 that is configured to monitor the combustion pressure through the heat train of the furnace 100. The pressure sensing device 195 may be a mechanical differential pressure sensing device (such as a pressure switch) or an electronic sensor which provide feedback to an integrated electronic controller of the furnace 100, such as the electronic controller 170. The pressure sensing device 195 includes inputs for determining the combustion pressure. The inputs of the pressure sensing device 195 are coupled to pressure ports of the CEHB 190. As discussed below, the pressure ports are protected from water contamination by placement of the pressure ports in channels of the CEHB 190.
Based on a differential pressure obtained by the pressure sensing device 195 from data received via the pressure ports, the gas supply for the heat exchanger 120 may be turned-off or remain off when there is improper air flow through the heat train. Additionally, the gas supply for the heat exchanger 120 may be turned-off or remain off when condensation drainage of the CEHB 190 is impaired or blocked. Thus, the same pressure sensing device 195 employing data from the pressure ports of the CEHB 195 may protect the furnace 100 from improper air flow through the heat train and protect the furnace 100 from blocked condensation drainage. The pressure sensing device 195 may be fastened to the ports of the CEHB 190 through conventional hoses. The pressure sensing device 195 may also be coupled to the electronic controller 170 or the valve 142 through conventional means. In some embodiments, the pressure sensing device 195 may be fastened to the CEHB 190.
In the illustrated embodiment, the controller 170 turns on the combustion air inducer 154 to initiate a draft in the heat exchangers (including the heat exchanger 124) and purge potentially harmful unburned or combustion gases. Then the controller 170 opens the valve 142 to admit gas to the manifold 144 and the one or more gas orifices, whereupon the gas begins to mix with air to form primary combustion air. Then the controller 170 activates an igniter (not shown in
The CEHB 190 is configured to provide an exit for the heated gas from the heat exchanger via the secondary heat exchanger 126. The CEHB 190 is also configured to remove the condensation associated with the heated gas. As such, the CEHB 190 is typically constructed of a non-metallic material that is resistive to water corrosion. The CEHB 190, for example, may be constructed of a plastic.
The CEHB 190 may be employed in a multi-position gas furnace such as the furnace 100. Accordingly, the CEHB 190 includes components of a multi-position drain system that includes a first drain port 210, a second drain port 212, a left drain 214 and a right drain 216. The first and second drain ports 210, 212, are positioned and configured to couple to drain hoses, such as drain hoses 151, 152, from the combustion flue collar 156. Depending on the installation of the furnace 100, the left drain 214, the right drain 216 or both the left and right drains 214, 216, may be used to remove condensation from the CEHB 190.
Located on the four sides of the CEHB 190 is a flange 220 that is configured to attach the CEHB 190 to the secondary heat exchanger 126. The flange 220 includes holes, in which hole 222 is denoted, that are used to mechanically attach the CEHB 190 to the secondary heat exchanger 126. A gasket is typically used between the flange 220 and the secondary heat exchanger 126.
The CEHB 190 also includes a support collar 230 that is used to couple the combustion air inducer 154 to the CEHB 190. The support collar 230, therefore, corresponds to an inlet of the combustion air blower 154 for drawing air through the heat exchanger 120. The support collar 230 helps support the combustion air inducer in such a way that the inducer requires only two screws compared to the traditional four to mount to the CEHB 190. A gasket denoted in
Located within the circumference of the support collar 230 (and therefore within the inlet of the combustion air blower 154) is a fixed orifice 240. The fixed orifice 240 is configured to regulate gas flow through the heat exchanger 120. The fixed orifice 240 may be sized based on an input size of the furnace 100. Also located within the circumference of the support collar 230 are a negative channel supply port 244 and a positive channel supply port 246. Each of these ports in the front face of the CEHB 190 provides an opening for supplying air to the respective channels. The size and location of the fixed orifice 240, the negative channel supply port 244, the positive channel supply port 246 and the size and location of positive and negative pressure channels 270, 280, (illustrated in
The CEHB 190 also includes a connection system 235 having alignment protrusions as denoted in
The CEHB 190 further includes a positive pressure port 250 and a negative pressure port 260 that are coupled to a positive input and a negative input of a pressure sensing device, such as the pressure sensing device 195. The pressure sensing device is configured to monitor a combustion pressure across the fixed orifice 240 based on data received at the negative input port and the positive input port via the negative and positive pressure ports 250, 260. The positive and negative pressure ports 250, 260, are typically coupled to the pressure sensing device via pressure sensing device hoses. The positive pressure port 250 is located within the positive pressure channel 270 and the negative pressure port 260 is located within the negative pressure channel 280 as illustrated in
The CEHB 190 further includes a screw mounting lug 292 and a water dam 295. The screw mounting lug 292 is used when mounting a combustion air inducer to the CEHB 190. The water dam 295 is a condensate water dam that is configured to direct water away from sensitive areas of the CEHB 190 and assists in maintaining a stable pressure signal.
A first end of the positive pressure channel 270, an inlet end 272, extends within the support collar 230 as illustrated within
Though not visible in
Located within a supply section 286 of the negative pressure channel 280 is the negative channel supply port 244. A portion of the supply section 286 including the negative channel supply port 244 is located within the circumference of the support collar 230 and, therefore, the corresponding inlet of the combustion air inducer 154. Sides of the negative pressure channel 280 around the open end 284 are shaped to provide a water shroud to protect the negative pressure port 260 from contamination.
The negative channel supply port 244 is positioned to be in fluid communication with the inlet of the combustion air inducer. The negative pressure port 260 in the negative pressure channel 280 is couplable to an input, such as a negative input, of a pressure sensor device. Similarly, the positive pressure channel supply port 246 is positioned to be in fluid communication with the inlet of the combustion air blower and the positive pressure port 250 is couplable to an input, such as a positive input, of the pressure sensor device. The positive pressure channel 270 and the negative pressure channel 280 are in fluid communication and are configured to have about a same pressure when the pressure reference inlet 274 is blocked (e.g., blocked by condensation). The CEHB 190 is designed wherein this is true even when the furnace including the CEHB 190 is installed in multiple positions. During operation of the combustion air blower when the pressure reference inlet 274 is not blocked (i.e., during normal operation when there is proper drainage), the positive pressure channel 270 is configured to have a positive pressure compared to negative pressure channel 280.
The bleed ports 440 are designed to bleed down the negative pressure that is received via the negative pressure channel supply port 244. The bleed ports 440 are positioned in the CEHB 190 to be free from water contamination. The location and size of the bleed ports are selected to normalize the high negative pressure in the inlet zone of the combustion air inducer 154 to a targeted pressure value or range of values at the negative pressure port 260. As such, a single type of pressure sensing device can be used for various models.
The flow restriction orifice 450 is configured to restrict air flow through the positive pressure channel 270 from the positive pressure channel supply port 246. The size of the flow restriction orifice 450 may be selected to coordinate with the positive pressure port 250.
During normal operation, condensation gathers on the lower side of the CEHB 190, which is connected to both the left drain 214 and the right drain 216 when the CEHB 190 is horizontal. Both the left drain 214 and the right drain 216 can provide a drainage path for the condensation. In some embodiments, only one of the drains 214, 216, may be used while the unused drain is intentionally plugged.
While a clear drainage path is provided for the condensation to drain out, the pressure reference inlet 274 is unblocked by condensation and the pressure in the positive pressure channel 270 represents the pressure in the CHEB 190. As such, a pressure differential that exists between the negative pressure channel 280 and the positive pressure channel 270 is maintained.
When the condensation does not drain from the CEHB 190, the condensation backs-up and blocks the pressure reference inlet 274 as illustrated in
A similar operation is illustrated in
The header box 820 is configured to be coupled between the heat exchanger and a combustion air inducer of the furnace associated with the pressure sensing device 810. Some components of the header box 820 discussed below are not visible in
Those skilled in the art to which this application relates will appreciate that other and further additions, deletions, substitutions and modifications may be made to the described embodiments.
This application is a divisional of U.S. patent application Ser. No. 12/834,391, filed Jul. 12, 2010. U.S. patent application Ser. No. 12/834,391 claims the benefit of U.S. Provisional Application No. 61/295,501, filed by Shailesh S. Manohar, et al., on Jan. 15, 2010, entitled “An Improved Heating Furnace for a HVAC System”. U.S. patent application Ser. No. 12/834,391 and U.S. Provisional Application Ser. No. 61/295,501 are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2079807 | Kehl | May 1937 | A |
2631659 | Wright | Mar 1953 | A |
3274990 | MacCracken | Sep 1966 | A |
3806038 | Nelson | Apr 1974 | A |
4309947 | Ketterer | Jan 1982 | A |
4309977 | Kitchen | Jan 1982 | A |
4481935 | Bawel | Nov 1984 | A |
4603680 | Dempsey et al. | Aug 1986 | A |
4622947 | Hays et al. | Nov 1986 | A |
4638942 | Ballard et al. | Jan 1987 | A |
4887767 | Thompson et al. | Dec 1989 | A |
4976459 | Lynch | Dec 1990 | A |
4982721 | Lynch | Jan 1991 | A |
5027789 | Lynch | Jul 1991 | A |
5123452 | LeBlanc | Jun 1992 | A |
5186386 | Lynch | Feb 1993 | A |
5197664 | Lynch | Mar 1993 | A |
5313930 | Kujawa et al. | May 1994 | A |
5320087 | Froman | Jun 1994 | A |
5322050 | Lu | Jun 1994 | A |
5347980 | Shellenberger | Sep 1994 | A |
5375586 | Schumacher et al. | Dec 1994 | A |
5429150 | Siefers, Jr. | Jul 1995 | A |
5448986 | Christopher et al. | Sep 1995 | A |
5522541 | Zia et al. | Jun 1996 | A |
5582159 | Harvey et al. | Dec 1996 | A |
5623918 | Swilik, Jr. et al. | Apr 1997 | A |
5642660 | Killgore et al. | Jul 1997 | A |
5666889 | Evens et al. | Sep 1997 | A |
5704343 | Ahn et al. | Jan 1998 | A |
5749355 | Roan | May 1998 | A |
5775318 | Haydock et al. | Jul 1998 | A |
5799646 | Zia et al. | Sep 1998 | A |
6237545 | Barnett et al. | May 2001 | B1 |
6893252 | Stephens et al. | May 2005 | B2 |
7036498 | Riepenhoff et al. | May 2006 | B2 |
8056533 | Wagner | Nov 2011 | B2 |
8056553 | Khan | Nov 2011 | B2 |
8393318 | Khan et al. | Mar 2013 | B2 |
8474281 | Kumar | Jul 2013 | B2 |
8561601 | Schneberger et al. | Oct 2013 | B2 |
8672673 | Noman et al. | Mar 2014 | B2 |
8683993 | Paller et al. | Apr 2014 | B2 |
20030188733 | Woodall et al. | Oct 2003 | A1 |
20050126558 | Riepenhoff et al. | Jun 2005 | A1 |
20070003891 | Jaeschke | Jan 2007 | A1 |
20080314375 | Khan | Dec 2008 | A1 |
20090044793 | Khan et al. | Feb 2009 | A1 |
20090044794 | Hugghins et al. | Feb 2009 | A1 |
20110070818 | Goel et al. | Mar 2011 | A1 |
20110174201 | Kowald et al. | Jul 2011 | A1 |
20110174291 | Manohar et al. | Jul 2011 | A1 |
20110174461 | Kowald et al. | Jul 2011 | A1 |
20110174471 | Paller et al. | Jul 2011 | A1 |
20110174891 | Kowald et al. | Jul 2011 | A1 |
20110177465 | Paller et al. | Jul 2011 | A1 |
20120055465 | Khan | Mar 2012 | A1 |
20120090591 | Rieke et al. | Apr 2012 | A1 |
Number | Date | Country |
---|---|---|
1729371 | Feb 2006 | CN |
1849495 | Oct 2006 | CN |
1930441 | Mar 2007 | CN |
201203263 | Mar 2009 | CN |
0596555 | May 1994 | EP |
1147639 | Nov 1957 | FR |
2581735 | Nov 1986 | FR |
S5620908 | Feb 1981 | JP |
2007253206 | Oct 2007 | JP |
Entry |
---|
U.S. Appl. No. 15/091,956, Kowald et al. |
Translation of Chinese office action dated Jul. 7, 2014, Applicant: Lennox Industries Inc., 7 pages. |
Foreign Communication From A Related Counterpart Application, Chinese Application No. 201010594963.0, First Chinese Office Action dated Jan. 30, 2014, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20160305689 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
61295501 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12834391 | Jul 2010 | US |
Child | 15193631 | US |