Not applicable.
Not applicable.
Not applicable.
Heating, ventilation, and/or air conditioning (HVAC) systems may generally be used in residential and/or commercial structures to provide heating and/or cooling in order to create comfortable temperatures inside areas associated with such structures. To provide conditioned airflow into such conditioned areas, most HVAC systems employ an air conditioning unit having a fan to move the conditioned air through the HVAC system and into the climate conditioned areas. Condensation may form on or in components of the HVAC system while in use.
In an embodiment described herein, an inlet water collector is provided. The inlet water collector may comprise a base having an air intake aperture; an inner wall having a first top end and a first bottom end, the first bottom end provided proximate to the base; an outer wall having a second top end and a second bottom end, the second bottom end provided proximate to the base, the inner wall having a diameter smaller than a diameter of the outer wall; one or more pipe stops provided proximate to the base and between the inner wall and outer wall, a height of the one or more pipe stops extending less than a height of the outer wall; and a drain coupled to the outer wall and in fluid communication with a channel displaced between the inner wall and the outer wall.
In an embodiment described herein, an heating, ventilation, and/or air conditioning (HVAC) system is provided. The HVAC system may comprise a furnace comprising a combustion air intake; a combustion air intake pipe mated to an inlet water collector; and the inlet water collector coupled to the combustion air intake, the inlet water collector comprising: a base having an air intake aperture; an inner wall having a first top end and a first bottom end, the first bottom end provided proximate to the base; an outer wall having a second top end and a second bottom end, the second bottom end provided proximate to the base, the inner wall having a diameter smaller than a diameter of the outer wall; one or more pipe stops provided proximate to the base and between the inner wall and outer wall, a height of the one or more pipe stops extending less than a height of the outer wall; and a drain coupled to the outer wall and in fluid communication with a channel displaced between the inner wall and the outer wall.
For the purpose of clarity, any one of the embodiments disclosed herein may be combined with any one or more other embodiments disclosed herein to create a new embodiment within the scope of the present disclosure.
For a more complete understanding of the present disclosure and the advantages thereof, reference is now made to the following brief description, taken in connection with the accompanying drawings and detailed description:
It should be understood at the outset that although illustrative implementations of one or more embodiments of the present disclosure are provided below, the disclosed systems and/or methods may be implemented using any number of techniques, whether currently known or in existence. The disclosure should in no way be limited to the illustrative implementations, drawings, and techniques illustrated below, including the exemplary designs and implementations illustrated and described herein, but may be modified within the scope of the appended claims along with their full scope of equivalents.
Described herein is a furnace inlet water collector. The collector may be designed to prevent condensation from entering a furnace cabinet. The collector may be installed at the combustion air inlet of a furnace. During operation, combustion air is drawn into the furnace via the combustion air inlet. The combustion air may include moisture that results in condensation forming on the interior of the combustion air intake pipe. The condensation may drip into the cabinet of the furnace and may cause damage to components of the furnace, including but not limited to the gas valve, integrated furnace control (IFC), and/or the inducer motor. The furnace inlet water collector may include an outer wall with an inner diameter slightly larger than an outer diameter of the combustion air intake pipe. A bottom end of the outer wall may be coupled to a base. The furnace inlet water collector may include one or more stops that the combustion air intake pipe may rest on. An inner wall with an outer diameter smaller than an inner diameter of the combustion air intake pipe may be coupled with the base as well. The inner wall, outer wall, and base may form a channel to catch condensation that forms on the interior of the combustion air intake pipe. The outer wall may have a drain hole for draining the captured condensation.
The collector 300 includes an outer wall 330 and an inner wall 340. The outer wall 330 may be cylindrical in shape with an inner diameter 335 slightly larger than an outer diameter of a combustion air intake pipe, e.g., combustion air intake pipe 230. The bottom end 338 of outer wall 330 may be connected to the base 310. The inner wall 340 may be conical in shape with an outer diameter 345 less than an inner diameter of the combustion air intake pipe. The conical shape on inner wall 340 may include the top end 348 of the inner wall 340 having a smaller diameter 345 than the bottom end 344 of inner wall 340. The bottom end 344 of inner wall 340 may be connected to base 310. In some embodiments, the inner wall 340 may be cylindrical in shape, where the top end 348 and bottom end 344 of inner wall 340 are the same diameter, slightly less than the inner diameter of the combustion air intake pipe. The bottom end 344 of inner wall 340 may have a diameter substantially equal to aperture 314 to allow combustion air to enter the furnace. A channel 360 for collecting condensation may be formed between the outer wall 330, and inner wall 340. In some embodiments, base 310 may act as the bottom of the channel 360, in other embodiments a spacer 370 may be at the bottom of channel 360. In some embodiments, the bottom end 344 of inner wall 340 may abut the bottom end 338 of outer wall 330. In this case, inner wall 340 may be conical in shape, and the channel 360 may be formed by the inner wall 340 and the outer wall 330.
When a combustion air intake pipe, e.g., combustion air intake pipe 230, is installed into collector 300, clamp 332 may be tightened to hold the combustion air intake pipe in place. The clamp 332 may be a duct clamp or some other fastening device, e.g., duct tape, zip ties, etc. A drain 320 may be connected through outer wall 330 to allow condensation captured between inner wall 340 and outer wall 330 to drain from the collector 300. The drain 320 may be secured to a drain hose or drain pipe by tightening clamp 322. The clamp 322 may be a duct clamp or some other fastening device, e.g., duct tape, zip ties, etc.
Referring also to
The collector 300 may include a screen 350 across aperture 314. The screen 350 may include a number of openings 352. The screen 350 may prevent large debris from entering the combustion chamber of a furnace, e.g., furnace 210, where collector 300 is installed. While a screen 350 with round openings 352 is shown, any size or shape openings 352 may be used to prevent debris from entering the combustion chamber of the furnace.
Furthermore, it should be understood that the disclosed systems and methods may be embodied in many other specific forms without departing from the spirit or scope of the present disclosure. The present examples are to be considered as illustrative and not restrictive, and the intention is not to be limited to the details given herein. For example, the various elements or components may be combined or integrated in another system or certain features may be omitted or not implemented.
At least one embodiment is disclosed and variations, combinations, and/or modifications of the embodiment(s) and/or features of the embodiment(s) made by a person having ordinary skill in the art are within the scope of the disclosure. Alternative embodiments that result from combining, integrating, and/or omitting features of the embodiment(s) are also within the scope of the disclosure. Where numerical ranges or limitations are expressly stated, such express ranges or limitations should be understood to include iterative ranges or limitations of like magnitude falling within the expressly stated ranges or limitations (e.g., from about 1 to about 10 includes, 2, 3, 4, etc.; greater than 0.10 includes 0.11, 0.12, 0.13, etc.). For example, whenever a numerical range with a lower limit, R1, and an upper limit, Ru, is disclosed, any number falling within the range is specifically disclosed. In particular, the following numbers within the range are specifically disclosed: R=R1+k*(Ru−R1), wherein k is a variable ranging from 1 percent to 100 percent with a 1 percent increment, i.e., k is 1 percent, 2 percent, 3 percent, 4 percent, 5 percent, . . . , 50 percent, 51 percent, 52 percent, . . . , 95 percent, 96 percent, 97 percent, 98 percent, 99 percent, or 100 percent. Unless otherwise stated, the term “about” shall mean plus or minus 10 percent of the subsequent value.
Moreover, any numerical range defined by two R numbers as defined in the above is also specifically disclosed. Use of the term “optionally” with respect to any element of a claim means that the element is required, or alternatively, the element is not required, both alternatives being within the scope of the claim. Use of broader terms such as comprises, includes, and having should be understood to provide support for narrower terms such as consisting of, consisting essentially of, and comprised substantially of Accordingly, the scope of protection is not limited by the description set out above but is defined by the claims that follow, that scope including all equivalents of the subject matter of the claims. Each and every claim is incorporated as further disclosure into the specification and the claims are embodiment(s) of the present invention.