The present invention relates in general to furnace vessels and in particular to water-cooled wall panels for use in furnaces for making metals such as steel.
Water-cooled sidewall panels are commonly used in steelmaking furnaces to prevent thermal shock at hot spots that occur throughout the walls of the furnace vessel. This is particularly the case in electric arc furnaces (EAFs) where the furnace wall is subject to the extremely high heat loads created by the furnace electrodes. Typical panels are constructed as hollow box-like structures made of steel or copper through which water flows in order to cool the heat transfer face of the panel which is exposed to intense heat being generated in the furnace. Copper and steel have relative advantages and disadvantages when used as the principle material of a steelmaking furnace sidewall panel. Copper has better heat transfer properties than steel. That is, unlike cast copper panels, cast steel panels are subject to mechanical-thermal stresses due to uneven cooling across the face of the panel. However, copper is much more expensive than steel and does not have the structural strength of steel.
Water-cooled panels have also been used to provide mounting or support means for burners, injectors or other metal treatment means that discharge gaseous and/or particulate matter into the furnace during such procedures as scrap metal melting, slag formation, metal refining, post-combustion and the like. The panel can be an individually mounted unit or mounted as part of a module including other similarly constructed furnace panels.
Typically, a water-cooled wall panel for a metal making furnace is made from a highly conductive material such as cast copper for optimum heat transfer. Thus, not only are the front face and sides of the panel made of copper but so too is the panel back face, i.e., the face of the panel designed to face outwardly from the furnace. However, heat transfer through the panel back face is not a panel design parameter. Thus, the very provision of a panel back face made of copper adds needless expense to the typical water-cooled furnace sidewall panel.
In order to properly cool the panel during use, an intricate water baffle design must be cast internally of the panel at the time of its formation. The internal water-cooled area must be integrally cored and cast to assure proper water flow distribution configuration and metal thickness. In addition, panel mounting lugs, water inlet and outlet connections and burner/injector mounting bosses must also be formed into the back face of the poured panel. The panel is also produced such that during foundry teeming, the hot face is chilled to develop smaller grain size and promote directional solidification. However, the shrinkage associated with cooling of the panel front face requires the provision of several casting gates and risers to accommodate the additional molten metal needed to compensate for the reduced volume of the cooled front face.
In addition to the foregoing, many other problems are inherent in integrally cast water-cooled furnace panels. Included among these are:
1. Difficulty in maintaining a uniform internal water passage core arrangement.
2. Uneven panel back face metal thicknesses resulting in shrinkage defects.
3. A large internal core area that causes off-gassing during casting and results in porosity defects.
4. No direct methods to visually inspect the casting's interior or clean the critical internal water passages.
5. Weld repair of casting defects requires preheating which creates a high probability of post-weld crack propagation in the casting.
6. Mounting lug damage or misalignment repairs require preheating with specialized welding techniques which also creates a high probability of post-weld crack propagation in the casting.
7. With a copper panel casting, the panel back face is more susceptible to mechanical damage during installation of the burners, injectors and connections (e.g., cross-threading, impact damage) which may require panel replacement or specialized weld repairing to ameliorate the harm.
8. The cooling water distribution typically differs for each metal manufacturer/customer, thereby necessitating a unique panel casting for each manufacturer and the maintenance of a large inventory and work-in-process castings to fulfill customer needs.
U.S. Pat. Nos. 6,137,823; 4,304,396 and 4,216,348 disclose the use of bi-metal steel and copper water-cooled panels for use in EAF vessel sidewall and/or roof panels. The front or “hot” face of the panels, i.e., the panel face designed to face the interior of the furnace, is made of copper and the back face is made of steel. The front and rear faces are welded or otherwise joined to one another to define a water coolant passageway for cooling the front face of the panel. The resultant panels are comparable in thermal efficiency to panels cast entirely of copper yet are less expensive to manufacture and maintain. However, none of the bi-metal panels disclosed in these patents contemplates the use of copper and steel in a bi-metal panel having passageways through which gaseous and/or particulate matter is discharged through the panel into a furnace vessel. Indeed, U.S. Pat. No. 4,304,396 discloses water-cooled, bi-metal copper and steel furnace sidewall panels as being separate and distinct from burner support panels that are also provided in the furnace wall.
An advantage exists, therefore, for a water-cooled, bi-metal copper and steel furnace sidewall panel including at least one passageway for enabling gaseous and/or particulate matter to be discharged into a furnace vessel through the panel.
The present invention is directed to a water-cooled, bi-metal copper and steel furnace panel including passageway means for enabling at least one of gaseous and particulate matter to be discharged into a furnace vessel through the panel. In a preferred embodiment, the passageway means may include support means for metal treatment apparatus. The front plate or “hot” face of the panel is made of copper and the rear plate or rear face is made of steel. The front and rear plates are welded or otherwise joined to one another to define a water coolant passageway for cooling the front plate of the panel. In a preferred embodiment, the panel is a two-piece unit comprising a steel back plate welded to a copper shell including the front plate and integral copper panel sides. An array of vane means is selectively securable to the inner face of the outer steel plate in any desired number and arrangement suitable to accommodate the gaseous/particulate matter discharge passageway(s) and the cooling requirements of the front plate. The present invention thus contemplates a versatile, thermally efficient yet cost-effective water-cooled furnace wall panel for enabling gaseous and/or particulate matter to be injected into a metal making furnace vessel through the panel.
Other details, objects and advantages of the present invention will become apparent as the following description of the presently preferred embodiments and presently preferred methods of practicing the invention proceeds.
The invention will become more readily apparent from the following description of preferred embodiments thereof shown, by way of example only, in the accompanying drawings wherein:
Referring to the drawings wherein like or similar references indicate like or similar elements throughout the several views, there is shown in
Turning to
Rear plate 26 preferably includes a water inlet 30 and a water outlet 32 for enabling coolant water flow through the panel. Plate 26 also has means for mounting panel 22 to the wall of the furnace. Preferably, the mounting means comprises a plurality of steel lugs 34 welded or otherwise secured to the rear face of the plate. Lugs 34 include apertures 36 which receive pins provided in the furnace wall such as pins 38 (
According to the present invention, panel 22 includes passageway means for enabling at least one of gaseous and particulate matter to be discharged into a furnace vessel through the panel. Pursuant to a presently preferred embodiment, the passageway means may comprise at least one means for supporting or mounting apparatus for treating metal. Such metal treating apparatus may include any device or mechanism for discharging gaseous and/or particulate matter into a furnace vessel during such procedures as scrap metal melting, slag formation, metal refining, post-combustion and the like. Examples include, without limitation, burners, oxygen and/or other gas stream injection devices, and devices for injecting particulate matter entrained in a flow of pressurized gas. In the illustrated example, panel 22 includes a pair of tubes 40 and 42, the inlets and outlets and general configurations of which are variously shown in
According to a preferred embodiment, tubes 40 and 42 are integrally cast with the copper shell including front plate 24 and side walls 28. Depending on their desired lengths, diameters and wall thicknesses, tubes 40 and 42 may be initially cast as tubular members or they may be cast as solid members that are thereafter bored to produce the desired tubular configurations.
As seen most clearly in
Referring to
Panel 22 has thus far been described as a discrete and independent panel that is useful by itself in the wall of a metal making furnace. However, panel 22 or a similar panel may be but one of a plurality of similarly constructed water-cooled panels that may be component parts of a larger modular unit 64 that may be installed in a furnace wall. More specifically, as shown in
Included among the advantages realized by the furnace panel of the present invention are:
1. The copper hot face shell becomes a simple casting requiring no internal cores and is easily inspected for metal thickness consistency.
2. The back plate is a less expensive yet comparatively thick steel plate that is attached to the hot face casting by welding, thereby eliminating inherent casting defects.
3. The steel back plate can be easily modified with any variety of attachment lugs and mounting frames to readily accommodate any furnace configuration.
4. Damage to the back plate or the internal vanes can be repaired by conventional welding procedures without removing the panel from the furnace.
5. The modular design of the panel minimizes inventory requirements by standardizing only two items—the hot face copper shell casting and the steel back plate.
6. A single copper face casting can accommodate many different water inlet, outlet and flow path variations since the water connections and internal flow vanes are welded to the steel back plate in any desired arrangement as opposed to being cast into the copper panel as is presently done in conventional unitary cast panels.
Although the invention has been described in detail for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention as claimed herein.