1. Field of the Invention The present invention relates, in general, to a glide attachable to a leg of a piece of furniture and, in particular, to a glide assembly mountable about an existing foot attached to the free end of a leg of a chair or desk.
2. Background
The free end of each leg of a piece of furniture often includes a cap, foot, glide, or the like. In many institutionalized settings, such as in a school or other educational facility, the feet disposed on the corresponding free ends of the respective legs of a piece of furniture are designed to allow easy sliding of a chair or desk, for instance, upon a surface such as a floor. More specifically, the feet are designed to increase the amount of surface-area contact, but reduce the amount of frictional contact, between the legs and the floor.
One type of foot commonly employed in the related art generally includes an attachment portion and a gliding portion. The attachment portion is adapted to be attached to the free end of a leg, and the gliding portion is pivotally connected to an end of the attachment portion located opposite the leg. The gliding portion defines a relatively broad, flat bottom surface adapted to be in operative contact with the floor. This type of foot is made typically of a hard, durable material, such as metal, nylon, or steel. The bottom surface of a conventional foot is sometimes made of metal or plastic.
However, this type of foot suffers from many disadvantages. The bottom surface of the conventional foot is relatively large, which increases the amount of frictional contact with the floor and causes scraping, scratching, or marring of relatively more surface area of the floor. And, use of this type of foot generally facilitates a sliding motion across the floor and, therefore, increases incidence of floor scraping, scratching, or marring and attendant noise. This relatively greater amount of scraping, scratching, or marring, in turn, increases not only costs of stripping, waxing, and buffing the floor and other labor and material costs associated with maintaining the floor, but also the number of airborne particulates and, thus, pollutants in the room in which the corresponding chair or desk is used. Furthermore, the bottom surface defines relatively more area upon which dirt, dust, sand, and other debris can gather, thus making this type of foot relatively more difficult, time-consuming, and, thus, expensive to clean and keep sanitary. This debris can even be imbedded into the bottom surface of the foot such that the texture of the bottom surface becomes like sandpaper and, thus, scrapes, scratches, or mars the floor even more than it does otherwise.
In addition, when the chair or desk is moved along the floor, the frictional contact between this type of foot and the floor produces a perceptible, often irritating, noise. In a classroom setting, especially in an elementary school where there are a substantial number of relatively young students moving or “scooting” their respective chairs and desks at any one time, this noise can be multiplied to a very significant level. Moreover, the floor upon which the corresponding chair or desk is supported can be mopped weekly, even daily. In such an especially wet environment, this type of foot—being made mostly or even entirely of metal—can rust and, hence, have a relatively shorter life, produce rust marks on the floor when the chair or desk is moved along the floor, and cause the legs of the chair or desk to be aesthetically displeasing.
Because of these disadvantages, it is often desired to replace the existing feet. As it turns out, however, the existing feet, which are initially employed with the respective chairs or desks, are not designed to be removed, so it is often a relatively difficult and, thus, expensive chore to remove all of them. Furthermore, the legs of the corresponding chairs or desks on which the respective conventional feet are used are often disposed at different angles relative to the floor. A replacement foot of the type known in the related art has suffered from the disadvantage that it is not adapted to interface between the free end of the corresponding leg and the floor at an appropriate angle. This has resulted in uneven contact of the foot with the floor and, thus, increased scraping, scratching, or marring of the floor by the foot and generation of more noise by the chair or desk as it is moved relative to the floor. A replacement foot of the type known in the related art has also suffered from the disadvantage that the portion of it that operatively contacts the floor inevitably becomes worn to the point that the replacement foot is no longer adequately effective for its intended purpose. Yet, this portion is not replaceable by itself such that even though the remainder of the replacement foot may have much more useful life, the entire replacement foot must be replaced. Of course, this results in wasted material and, thus, money. A replacement foot of the type known in the related art has also suffered from the disadvantage that it has hinges, locking prongs, and/or seams exposed that would allow dirt, dust, sand, and other debris to collect therein. These difficulties have presented a barrier to use of improved caps, feet, glides, and such.
Thus, there is a need in the related art for a relatively efficient way of replacing an existing foot from a leg of a chair or desk with a glide. More specifically, there is a need in the related art for a relatively easy and, thus, inexpensive way of mounting an aftermarket replacement glide to the free end of a leg of a chair or desk. In particular, there is a need in the related art for a glide that is adapted to accommodate an existing foot at an appropriate angle relative to a floor while reducing incidence of floor scraping, scratching, or marring and generation of noise, in addition, there is a need in the related art for such a glide that does not rust or otherwise mark the floor. Moreover, there is a need in the related art for such a glide the portion of which operatively contacts the floor is replaceable by itself (without replacing the entire glide). There is a need in the related art for such a glide that does not have hinges, locking prongs, and/or seams exposed that would allow dirt, dust, sand, and other debris to collect therein as well.
The present invention overcomes the disadvantages in the related art in a glide assembly adapted to be mounted about an existing foot attached to the free end of a leg of a piece of furniture that is adapted to be supported upon a surface. The glide assembly includes a body defining an exterior surface and a bore extending partially through the body to define a hollow interior, an interior surface, a top, open end of the body, and a bottom, closed end of the body disposed opposite the open end. A cap is designed to be replaceably attached to the closed end of the body and adapted to engage the surface upon which the leg is supported.
One advantage of the furniture-glide assembly of the present invention is that it provides a relatively efficient way of replacing the existing foot from the free end of the leg of the furniture piece.
Another advantage of the furniture-glide assembly of the present invention is that it provides a relatively easy and, thus, inexpensive way of mounting an aftermarket replacement glide to the free end of the leg of the furniture piece.
Another advantage of the furniture-glide assembly of the present invention is that it is substantially spherical, and, thereby, substantially the same amount of surface area of the glide assembly contacts the surface upon which the furniture piece is supported independent of the angle at which the free end of the leg is engaged relative to the surface.
Another advantage of the furniture-glide assembly of the present invention is that the surface area of the “footprint” of the glide assembly on the surface upon which the furniture piece is supported is substantially less than that of the existing foot.
Another advantage of the furniture-glide assembly of the present invention is that it contacts the surface upon which the furniture piece is supported at only a point or relatively small area, which, in turn, reduces the area of the surface that can be scraped, scratched, or marred.
Another advantage of the furniture-glide assembly of the present invention is that it is operatively effectively independent of the angle at which the free end of the leg is engaged relative to the surface upon which the furniture piece is supported.
Another advantage of the furniture-glide assembly of the present invention is that it can be used on a leg of the furniture piece that is engaged with respect to the surface upon which the furniture piece is supported at any angle within a greater range of angles such that the glide assembly can be used on a greater number of furniture-piece legs.
Another advantage of the furniture-glide assembly of the present invention is that the body thereof is designed to distribute load applied thereto substantially evenly throughout the body.
Another advantage of the furniture-glide assembly of the present invention is that it causes the furniture piece to be more stable and, thereby, safer for a user of the furniture piece.
Another advantage of the furniture-glide assembly of the present invention is that it can be used on practically any type of surface upon which the furniture piece is supported without risk of scraping, scratching, or marring the surface.
Another advantage of the furniture-glide assembly of the present invention is that the cap is easily removable and replaceable by itself (without replacing the entire glide assembly) and, thereby, saves material and, thus, money.
Another advantage of the furniture-glide assembly of the present invention is that it does not have hinges, locking prongs, and/or seams exposed that would allow dirt, dust, sand, and other debris to collect therein.
Another advantage of the furniture-glide assembly of the present invention is that flattening, distortion, and/or separation (e.g., sheering or peeling off) of the cap is prevented when the leg slides across the surface upon which the furniture piece is supported with a heavy load weighing down upon the cap.
Another advantage of the furniture-glide assembly of the present invention is that the exterior surface is non-absorbent, water-resistant, and impervious to dirt, dust, sand, and other debris and most floor chemicals.
Another advantage of the furniture-glide assembly of the present invention is that use thereof generally requires that the furniture piece be picked-up when its movement relative to the surface upon which it is supported is desired and, therefore, reduces incidence of surface scraping, scratching, or marring and attendant noise.
Another advantage of the furniture-glide assembly of the present invention is that frictional contact between it and the surface upon which the furniture piece is supported does not produce a perceptible noise when the furniture piece is moved along the surface.
Another advantage of the furniture-glide assembly of the present invention is that it facilitates reduction in costs of stripping, waxing, and buffing the surface upon which the furniture piece is supported and other labor and material costs associated with maintaining the surface.
Another advantage of the furniture-glide assembly of the present invention is that it is easier and faster to clean and keep sanitary.
Another advantage of the furniture-glide assembly of the present invention is that it is durable.
Another advantage of the furniture-glide assembly of the present invention is that it is more “green-friendly” in that it increases quality of air of a room in which it is used by reducing the amount of contact between the furniture piece and the surface upon which it is supported and, thus, number of airborne particulates.
Another advantage of the furniture-glide assembly of the present invention is that it does not rust and, hence, has a longer life, does not produce rust marks on the surface upon which the furniture piece is supported when it is moved along the surface, and keeps the legs of the furniture piece more aesthetically pleasing.
Another advantage of the furniture-glide assembly of the present invention is that it can be employed with existing feet of various size.
Another advantage of the furniture-glide assembly of the present invention is that it can be manufactured easily and inexpensively.
Other objects, features, and advantages of the present invention are readily appreciated as the same becomes better understood while reading the subsequent description taken in conjunction with the accompanying drawing.
Referring now to the figures, where like numerals are used to designate like structure, four embodiments of a furniture-glide assembly of the present invention are generally indicated at 10 and 110. The glide assembly 10 and 110 is adapted to be mounted about an existing foot, generally indicated at 12 in
The foot 12 is described below and shown in the figures specifically attached about the free end of the leg 14. Also, the glide assembly 10 and 110 is described below and shown in the figures used in connection with a chair-desk combination, generally indicated at 16 in
Referring now to
The gliding portion 20 is typically pivotally connected to and extends from the closed end 22 of the attachment portion 18 away from the leg 14. More specifically, the gliding portion 20 often defines a substantially circular, flat bottom surface 28 located opposite the attachment portion 18 and adapted to pivot with respect to the attachment portion 18 such that the bottom surface 28 can be in operative contact with a floor 29, for example. The gliding portion 20 also includes a side wall and defines a substantial equator 30 that divides the side wall into an upper side exterior surface 32 and a lower side exterior surface 34. The upper side exterior surface 32 is substantially planar and tapers from the equator 30 to a central area of the closed end 22 of the attachment portion 18. The lower side exterior surface 34 is substantially planar and tapers from the equator 30 to the circumference of the bottom surface 28 of the gliding portion 20. The amount of surface area of the upper side exterior surface 32 is greater than that of the lower side exterior surface 34 such that the circumference of the equator 30 is greater than that of the bottom surface 28 of the gliding portion 20. The gliding portion 20 is broader than the attachment portion 18.
It should be appreciated by those having ordinary skill in the related art that the foot 12, in general, and each of the attachment portion 18 and gliding portion 20, in particular, can have any suitable shape, size, and structure. It should also be so appreciated that each of the attachment portion 18 and gliding portion 20 can have any suitable structural relationship with the other, the free end of the leg 14, and the floor 29. It should also be so appreciated that the attachment portion 18 and gliding portion 20 form no part of the present invention.
Thus, while there are two different embodiments of the glide assembly 10 and 110 disclosed herein, those having ordinary skill in the related art should appreciate that, within the scope of the appended claims, other means of providing the mounting of the glide assembly 10 and 110 to the foot 12 may be possible without departing from the scope of the present invention. Accordingly, the various embodiments of the present invention illustrated in the figures are described in greater detail below.
Referring now to
More specifically, the body 36 is substantially spherical and defines a central axis “A.” The exterior surface 48 is adapted to be disposed in contact with the floor 29. The bore 44 is substantially cylindrical and extends through nearly the entire body 36 such that the bore 44 defines a closed end 39 of the body 36. The central longitudinal axis of the bore 44 defines the axis “A” of the body 36. The bore 44 is adapted to be coaxial with the free end of the leg 14.
However, it should be appreciated by those having ordinary skill in the related art that the body 36 can have any suitable size and structure, such as being hollow. It should also be so appreciated that the bore 44 can extend any suitable distance through the body 36 and have any suitable structural relationship with the axis “A” of the body 36. Similarly, the bore 44 can have any suitable shape and size such that the insert assembly 37 can be disposed within the bore 44 and structural relationship with the free end of the leg 14 so as to mount the body 36 about the foot 12.
The exterior surface 48 of the body 36 may be textured. In particular, the exterior surface 48 includes a plurality of slightly raised surfaces 41 adapted to facilitate smooth frictional contact between the glide assembly 10 and the floor 29. In the embodiment shown, the raised surfaces 41 are substantially non-uniformly shaped and non-contacting with respect to each other, substantially smooth, and raised a substantially equal height with respect to each other above the exterior surface 48 of the body 36, which is only a slight amount relative to the radius of the body 36. The exterior surface 48 also defines a substantially uniform circular and planar rim 43 completely encircling the open end 50 of the body 36.
However, it should be appreciated by those having ordinary skill in the related art that the exterior surface 48 of the body 36 can include any suitable number of raised surfaces 41. In turn, the raised surfaces 41 can have any suitable shape, size, and texture and structural relationship with each other and the remainder of the body 36. For instance, the raised surfaces 41 can be substantially uniformly shaped and contacting with respect to each other, substantially rough, and raised a substantially unequal height with respect to each other above the exterior surface 48 of the body 36. Alternatively, the exterior surface 48 of the body 36 can include no raised surfaces 41 and be substantially smooth. It should also be so appreciated that the rim 4314 of the exterior surface 48 can have any suitable shape, size, and structure and structural relationship with the remainder of the exterior surface 48. Alternatively, the exterior surface 48 of the body 36 can define no rim 43 and be completely arcuate.
The spherical nature of the body 36 creates numerous advantages of the glide assembly 10 over caps, feet, and other glides of the related art. More specifically and as shown in
As can be easily seen, because of the spherical nature of the glide assembly 10, the surface area of the “footprint” of the glide assembly 10 on the floor 29 is substantially equal in both cases and substantially less—about 80% less—than that of the furniture foot of the related art. The glide assembly 10 contacts the floor 29 at only a point or relatively small area, which, in turn, reduces the surface area of the floor 29 that can be scraped, scratched, or marred. The glide assembly 10 is more aesthetically pleasing and defines relatively much less surface area thereof upon which dirt, dust, sand, and other debris can gather, thus making the glide assembly 10 easier and faster to clean and keep sanitary. The glide assembly 10 is durable and more “green-friendly” in that it increases quality of air of a room in which it is used by reducing the amount of contact between the chair or desk 16 and the floor 29 and, thus, number of airborne particulates. The glide assembly 10 is designed to distribute load applied thereto substantially evenly throughout the body 36.
The insert assembly 37 includes a pair of insert parts, generally indicated at 45, adapted to be fitted about the foot 12 and securely attached to each other about the foot 12 to mount the insert assembly 37 thereabout, all of which is described in detail below. The insert assembly 37 is substantially cylindrical and defines an exterior surface, generally indicated at 47, and a passageway 49 extending at least partially through the insert assembly 37 to define a hollow interior 51 and at least one open end 53 of the insert assembly 37. In an embodiment of the glide assembly 10, the insert assembly 37 defines a pair of opposed, substantially identical open ends 53 of the insert assembly 37 such that the closed end 39 of the body 36 operatively supports a bottom surface of the foot 12. The foot 12 is adapted to at least partially, even completely, fit within the hollow interior 51 of the insert assembly 37 to mount the insert assembly 37 about the foot 12. As shown in
However, it should be appreciated by those having ordinary skill in the related art that the insert assembly 37 can have any suitable shape, size, and structure so as to be receivable through the open end 50 and within the bore 44 of the body 36. For instance, the top of the insert assembly 37 can be disposed any suitable distance above or below the rim 43 of the body 20. It should also be so appreciated that the passageway 49 can have any suitable structural relationship with the insert assembly 37. The passageway 49 can have any suitable shape and size and structural relationship with the foot 12 such that the foot 12 is adapted to fit within the hollow interior 51 of the insert assembly 37 to mount the insert assembly 37 about the foot 12. It should also be so appreciated that any suitable amount of the foot 12 can fit within the hollow interior 51 of the insert assembly 37 to mount the insert assembly 37 about the foot 12.
As shown in
However, it should be appreciated by those having ordinary skill in the related art that the interior surface 46 of the body 36 can include any suitable number of grooves 57 and the exterior surface 47 of the insert assembly 37 can include any suitable number of ribs 59 adapted to cooperate with the groove(s) 57 to fixedly secure the body 36 about the insert assembly 37. It should also be so appreciated that each groove 57 can have any suitable shape and size and structural relationship with each of any of the other grooves 57, the corresponding rib 59, and the bore 44 of the body 36. In turn, it should also be so appreciated that each rib 59 can have any 17 suitable shape, size, and structure and structural relationship with each of any of the other ribs 59 so as to cooperate with the groove(s) 57 to fixedly secure the body 36 about the insert assembly 37.
As shown in
As shown in
However, it should be appreciated by those having ordinary skill in the related art that each insert part 45, in general, and interior surface 61 thereof, in particular, can have any suitable shape, size, and structure and structural relationship with a corresponding portion of the foot 12 so as to nestingly fit the insert assembly 37 about the foot 12. It should also be so appreciated that the insert parts 45 can be securely attached to each other in any suitable manner to mount the insert assembly 37 about the foot 12.
Preferably, the insert assembly 37 is made of plastic, in general, and either high-density polyethylene (HDPE) or nylon, in particular. The insert assembly 37 is preferably made of DuPont® Zytel® lubricated or unlubricated nylon resin. On the other hand, the body 36 is preferably made of a soft PVC material such that frictional contact between the glide assembly 10 and the floor 29 does not produce a perceptible noise and rust marks on the floor 29 when the chair or desk 16 is moved along the floor 29. In any event, the glide assembly 10 is preferably a device having a dual durometer with typically the insert assembly 37 made of a hard plastic material and the body 36 made of a softer plastic material.
However, it should be appreciated by those having ordinary skill in the related art that the insert assembly 37 can be made of any suitable material and the body 36 can be made of any suitable soft material such that it does not scrape, scratch, or mar the floor 29. In the same manner, the exterior surface 48 of the glide assembly 10 can have any suitable texture such that frictional contact between the glide assembly 10 and the floor 29 does not produce a perceptible noise and rust marks on the floor 29 when the chair or desk 16 is moved along the floor 29. Likewise, the exterior surface 48 of the glide assembly 10 can be any suitable color and have any suitable color combination so as to have a desired aesthetic appeal.
The soft nature of the body 36 creates numerous advantages of the glide assembly 10 over caps, feet, and other glides of the related art. More specifically, the glide assembly 10 can be used on practically any type of floor, including, but not limited to, carpeted, marble, Terrazo, tile, VCT, and wood floors. The exterior surface 48 is non-absorbent, water-resistant, and impervious to dirt, dust, sand, and other debris and most floor chemicals. Frictional contact between the glide assembly 10 and the floor 29 does not produce a perceptible noise when the chair or desk 16 is moved along the floor 29. Use of the glide assembly 10 generally requires that the chair or desk 16 be picked-up when its movement relative to the floor 29 is desired and, therefore, reduces incidence of scraping, scratching, or marring of the floor 29 and attendant noise. In this way, the glide assembly 10 facilitates reduction in costs of stripping, waxing, and buffing the floor 29 and other labor and material costs associated with maintaining the floor 29. The glide assembly 10 does not rust and, hence, has a longer life, does not produce rust marks on the floor 29 when the chair or desk 16 is moved along the floor 29, and keeps the free end of the legs 14 of the chair or desk 16 more aesthetically pleasing.
In operation, the interior surface 61 of a first insert part 45 is firmly nested with a corresponding portion of the foot 12 to be replaced, and then the interior surface 61 of a second insert part 45 is firmly nested with the remainder of the foot 12 and snappingly engaged to the first insert part 45 so as to mount the insert assembly 37 about the foot 12. The free end of the leg 14 and, thus, the foot 12 and insert assembly 37 are then raised off the floor 29 a sufficient amount to allow the insert assembly 37 to be received through the open end 50 of the body 36. The insert assembly 37 is then received through the open end 50 and within the hollow interior 38 of the body 36 until the closed end 39 of the body 36 operatively supports the bottom surface 28 of the foot 12 such that the body 36 is fixedly secured about the insert assembly 37 and, thus, foot 12. The free end of the leg 14 and, thus, the foot 12 and glide assembly 10 are then lowered to the floor 29 such that the glide assembly 10 can be used for frictional contact with the floor 29.
Referring now to
As shown in
More specifically, the closed end 139 of the body 136 defines a convex (as viewed in
In turn, the cap 186 defines a convex (as viewed in
The cap 186 can be frictionally fitted into the recessed volume 190 such that the concave surface 198 nestingly abuts the convex surface 184 and the side wall 194 frictionally abuts the rim 188. Alternatively or additionally, the cap 186 can be bonded with a suitable adhesive (not shown) to the convex surface 184 and/or rim 188 such that the cap 186 is fitted into the recessed volume 190. For example, glue or tape or any other suitable adhesive can be disposed on the side wall 194 and/or concave surface 198 for bonding the side wall 194 and/or concave surface 198 to the rim 188 and/or convex surface, respectively.
The rim 188 operatively surrounds at least a portion of the side wall 194 of the cap 186 and helps to prevent flattening, distortion, and/or separation (e.g., sheering or peeling off) of the cap 186 when the leg 14 slides across the floor 29 with a heavy load weighing down upon the cap 186. The cap 186 extends downward a distance below the rim 188 so that the felt pad 192 rests on the floor 29 without the rim 188 contacting the floor 29. As shown in
Preferably, the cap 186 is made of plastic, and the rim 188 is made of rubber. Also preferably, the cap 186 and felt pad 192 are substantially water-resistant and impervious to floor chemicals.
In operation, the felt pad 192 may wear down over time so that the cap 186, and even the rim 188, may eventually engage the floor 29. The cap 186 and rim 188 are formed of a material that does not scrape, scratch, or mar floor 29. However, in the event that the felt pad 192 or cap 186 wears down to this level so that the cap 186 or rim 188, respectively, hits the floor 29, the cap 186 and, thus, felt pad 192 can be easily removed and replaced with a new cap 186 and, thus, felt pad 192 that protrude down considerably below the rim 188, thus avoiding continued contact of the cap 186 or rim 188 on the floor 29.
It should be appreciated by those having ordinary skill in the related art that each of the closed end 139 of the body 136—including each of the convex surface 184, annular rim 188, and recessed volume 190—and cap 186—including each of the bottom surface 191, felt pad 192, side wall 194, and concave surface 198—can have any suitable shape, size, and structure and structural relationship with each other such that the cap 186 is replaceably attachable to the closed end 139 and adapted to engage the floor 29. It should be so appreciated also that the cap 186 can be fitted into the recessed volume 190 and/or bonded to the closed end 139 in any suitable manner, it should be so appreciated also that the felt pad 192 can have any suitable shape, size, and structure and structural relationship with each of the cap 186 and floor 29 and be disposed upon the cap 186 in any suitable manner. It should be so appreciated also that the cap 186 can extend downward any suitable distance below the rim 188 so that the felt pad 192 rests on the floor 29. It should be so appreciated also that each of the closed end 139 of the body 136 and cap 186 can be made of any suitable material.
The curved nature of the surface of the cap 186 that contacts the floor 29 means less surface area of the glide assembly 110 that contacts the floor 29 relative to glide assemblies of the related art. Also, unlike glide assemblies of the related art, the spherical glide assembly 110 does not have any hinges, locking prongs, or seams exposed that would allow dirt, dust, sand, and other debris to collect therein.
The present invention has been described in an illustrative manner. It is to be understood that the terminology that has been used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the present invention may be practiced other than as specifically described.
This is a continuation application and claims benefit to U.S. patent application Ser. No. 12/106,555 filed Apr. 21, 2008, which is a continuation-in-part application of and claims benefit to U.S. patent application Ser. No. 11/784,257 filed Apr. 6, 2007, now U.S. Pat. No. 7,757,346 issued Jul. 20, 2010, and entitled “Furniture-Glide Assembly.”
Number | Date | Country | |
---|---|---|---|
Parent | 12106555 | Apr 2008 | US |
Child | 13233404 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11784257 | Apr 2007 | US |
Child | 12106555 | US |