The invention relates to a furniture hinge for articulated fixing of a furniture door, flap or the like to a furniture carcass, having a hinge member having a hinge cup and a hinge arm which is pivotably connected to the hinge cup and which can be secured to one of the furniture components, and having an assembly member which can be secured to the other furniture component, having a linear damper for damping at least the closure movement of the furniture hinge, having a locking element which can be adjusted into at least two switching positions and by means of which the linear damper is blocked in a locking switching position in the retracted position thereof and is released in a damping switching position, wherein in the locking switching position a locking bolt which is pivotably supported about a rotation axis of the locking element is pivoted into the adjustment region of the linear damper or a component which is connected to the linear damper and in the damping switching position is pivoted out of the adjustment region.
WO 2013/149632 A1 discloses a damping element for installation in a hinge cup of a furniture hinge. A resiliently tensioned damper cylinder may be introduced into the adjustment path of a portion of the furniture hinge and a closure movement of the furniture hinge may thereby be damped. The adjustment region and consequently the damping action of the damping element may be adjusted by means of an adjustment element which is intended to be operated without tools, for example, in predetermined stages. To this end, a blocking portion of the adjustment element is adjusted in terms of its position in such a manner that a stop, which is connected to the damping cylinder and which is moved therewith when the damping cylinder is deployed into a first position of the adjustment element, strikes the blocking portion and is thereby secured and in a second position is not. Depending on the position of the blocking portion, the adjustment region and consequently the damping action of the damping element is accordingly limited. The blocking portion and the stop are constructed in such a manner that the damping cylinder can also be inserted in the first position of the adjustment element. When the furniture hinge is opened, the stop then strikes the blocking portion of the adjustment element and the damping cylinder is not or only partially deployed. WO 2013/149632 A1 sets out two construction variants for the adjustment element. In a first construction variant, the adjustment element is constructed as a rotary arrangement having an operating portion and blocking portion which can be adjusted about a rotation axis. In this instance, the rotation axis is orientated perpendicularly to the movement direction of the damper cylinder and consequently of the stop. The blocking portion is consequently screwed in on a circular path in the movement direction of the damper cylinder in the adjustment path of the stop. The resilient force for deployment of the damper cylinder is consequently transmitted from the stop in an actuation direction of the adjustment element to the blocking portion. There must be provided corresponding locking devices which prevent unintentional adjustment of the adjustment element as a result of the active resilient force from the first position thereof in the direction of the second position thereof. In particular with a cost-effective production of the damping element or the locking devices of plastics material and repeated actuation of the adjustment element, the locking devices may become worn so that a secure fixing of the damping cylinder counter to the acting resilient force is no longer possible. A reduction of the damping action of the furniture hinge is then no longer possible. In a second construction variant for the adjustment element, WO 2013/149632 A1 proposes a linearly adjustable sliding element, wherein a portion of the sliding element can be inserted into the adjustment path of the stop of the damping cylinder transversely relative to the movement direction thereof. The movement directions of the adjustment element and the damping cylinder are accordingly orientated transversely relative to each other, whereby an unintentional adjustment of the sliding element is reliably prevented by the resilient force acting on the stop. However, such a sliding element has a tendency to become caught during adjustment. There is thereby less operating comfort compared with a rotary actuation.
WO 2009/124332 A1 sets out a damping device for a furniture fitting. A curved actuation element is arranged in a hinge cup so as to be supported in a pivotable manner about a rotation axis. The rotation axis is in this instance orientated in accordance with the pivot axis of the furniture hinge. A rotor and a rotation damper are connected to the actuation element laterally and opposite. Both act in a pivot direction of the actuation element. The actuation element is introduced into the adjustment path of an articulated lever of the furniture hinge and is pivoted thereby about the rotation axis thereof when the furniture hinge is folded in. The pivot movement is in this instance damped by the rotation damper. As a result of the rotor, a resilient force opposed to the closure movement is transmitted to the actuation element. When the furniture hinge is folded open, the actuation element is thereby adjusted again into the original position thereof into the adjustment path of the articulated lever. The rotor has at the periphery thereof recesses in which a securing element can be inserted by means of a linear sliding member. The adjustment path of the actuation element can thereby be limited. The embodiment of the damping device with a rotation damper and a rotor is complex and accordingly cost-intensive.
EP 2 766 547 B1 discloses a furniture hinge with a linear damper and a return spring. The damper and the return spring counteract a closure of the furniture hinge. They are constructed separately and act on a common sliding member which is introduced into the adjustment path of a hinge arm. The expansion of the spring can be blocked by means of a blocking element. This element is, for example, constructed as a sliding element. The blocking element may also be constructed as a hook which can be pivoted about an axis which is orientated transversely relative to the movement direction of the return spring and when actuated engages in the windings of the spring.
An object of the invention is to provide a damped furniture hinge which enables reliable switching on and switching off of the damping effect.
The object of the invention is achieved by the rotation axis of the locking element being orientated in the movement direction of the linear damper. The locking bolt of the locking element is consequently pivoted transversely relative to the movement direction or active direction of the linear damper into the adjustment region of the linear damper or the component which is connected to the linear damper. Opening forces of the linear damper orientated in the direction of the deployed position of the linear damper thereby act transversely relative to the adjustment direction of the locking bolt. No forces acting in the adjustment direction of the locking element are consequently transmitted from the linear damper to the locking bolt. The switching position of the locking element therefore cannot be unintentionally adjusted by the linear damper.
A simple and rapid adjustment of the switching position of the locking element can thereby be enabled by the locking element being intended to be adjusted without tools.
According to a preferred construction variant of the invention, there may be provision for the locking element to have a rotary member which is supported so as to be able to be rotated about the rotation axis of the locking element and on which the locking bolt and, in a state offset angularly relative thereto, a handle are secured, preferably formed on. The locking element may thus be orientated to face the linear damper, whilst the handle is orientated for easily accessible operation of the locking element. As a result of the coupling of the locking bolt and the handle to the rotary member, an actuation of the handle is transmitted directly to the locking bolt.
Preferably, there may be provision for the rotary member to be supported on a bearing pin in such a manner that the bearing pin is supported in a locking element housing and the locking bolt and the handle are guided through openings out of the locking element housing. A mechanically protected and nonetheless simple construction of the locking element is thereby produced. This element can be assembled in a simple manner as a structural unit on a furniture hinge. In a particularly preferred manner, the rotary member, the locking bolt and the handle are constructed integrally, for example, as a plastics material component which can be produced in a cost-effective manner.
In order to prevent unintentional adjustment of the locking element by a user and to enable a precise adjustment of the switching positions, there may be provision for the rotation of the locking bolt to be locked in the switching positions of the locking element by means of at least one locking device.
A precise orientation and securing of the locking element to a furniture hinge is enabled by the locking element housing having at least one locking attachment by means of which the locking element housing can be secured to the hinge cup of the furniture hinge. It is consequently ensured that the locking bolt is orientated in accordance with the respective switching position thereof in a precise manner relative to the linear damper.
According to a preferred construction variant of the invention, there may be provision for the locking bolt to have an inclined start-up member and opposite a blocking face, in the locking switching position and with the linear damper deployed for the inclined start-up member to be orientated so as to be facing the linear damper or the component which is connected to the linear damper and, in the locking switching position and with the linear damper retracted, for the blocking face to be orientated so as to face the linear damper or the component which is connected to the linear damper. Preferably, there may further be provision for a blocking attachment to be secured to a movably supported cylinder or a movably supported piston of the linear damper, for the blocking attachment to have an attachment inclination and opposite a blocking counter-face, in the locking switching position and with the linear damper deployed, for the attachment inclination to be orientated to face the locking bolt and, in the locking switching position and with the linear damper retracted, for the blocking counter-face to be orientated so as to face the locking bolt. The locking element can be actuated with the furniture door, flap or the like open. Starting from the damping switching position of the locking element, the linear damper is then deployed. By switching the locking element into its locking switching position, the locking bolt is pivoted into the movement path of the blocking attachment. During subsequent closure of the furniture door, flap or the like and consequently of the furniture hinge, the linear damper is pushed together. In this instance, the blocking attachment with the attachment inclination thereof strikes the inclined start-up member of the locking bolt. The attachment inclination and the inclined start-up member form sliding faces along which the blocking attachment slides past the locking bolt. When the retracted end position of the linear damper is reached, the blocking attachment and the locking bolt are arranged laterally with respect to each other in such a manner that the blocking face of the locking bolt abuts the blocking counter-face of the blocking attachment. Sliding out the linear damper during the next opening of the furniture door, flap or the like and consequently of the furniture hinge is thereby blocked. The blocking face and the blocking counter-face are preferably orientated transversely relative to the movement direction of the linear damper and consequently the blocking attachment. The linear damper is thereby prevented in the locking switching position from being able to slide past the locking bolt from the retracted position thereof or the locking element is prevented from being displaced into the damping switching position thereof as a result of the restoring forces transmitted from the linear damper to the locking bolt. The formation of the locking bolt and the blocking attachment make it possible for the locking element to be able to be operated with the furniture door, flap or the like open, the linear damper also to be able to be retracted in the locking switching position of the locking element and the linear damper to be retained securely in the retracted position thereof when the furniture door, flap or the like is next opened.
If there is provision for the locking bolt to be constructed resiliently at least in the pivot direction of the locking element, the locking bolt in the locking switching position can thus be pressed to the side when the linear damper is retracted by the attachment inclination and inclined start-up member sliding past each other. The path is thereby released so that the blocking attachment can be guided past the locking bolt and consequently the linear damper can be adjusted into the retracted end position thereof. When the end position of the linear damper is reached, the locking bolt returns as a result of the resilience thereof into its original position again so that the blocking face thereof abuts the blocking counter-face of the blocking attachment.
According to a preferred embodiment of the invention, there may be provision for the linear damper to be at least partially arranged and guided in a housing, for the hinge cup of the furniture hinge to have an assembly region which is reduced in terms of the cup depth thereof and which is terminated at the base side by a cover, for the housing in the assembly region to be secured from the outer side to the cover of the hinge cup, for a movably supported portion of the linear damper to be guided through an opening into the inner region of the hinge cup and the pivot region of the hinge arm of the furniture hinge and for the locking element to be secured in a recess of the cover in such a manner that the handle of the locking element is arranged in the inner region and the locking bolt is arranged in the outer region of the hinge cup. The linear damper is thus arranged outside the hinge cup and consequently protected. The inner space of the hinge cup is free and can thereby be easily cleaned. The locking element can be operated from the inner space of the hinge cup and engages outside the hinge cup in the adjustment path of the linear damper or the blocking attachment which is connected to the linear damper.
There is provision for the housing facing the locking element to have a wall recess through which the locking bolt is guided into the housing, the movable components of the linear damper and preferably also of the locking element are thus protected in each case and arranged so as to be able to be easily mounted in housings. The locking bolt can be introduced through the wall recess into the adjustment path of the damper.
A simple assembly of the furniture door, flap or the like on the furniture carcass can be achieved by the hinge arm being able to be indirectly or directly secured to the assembly member by means of a connection system which is intended to be closed without tools. The hinge arm with the hinge cup can thereby be secured, for example, to the furniture door, flap or the like and the assembly member to the furniture carcass. The actual assembly of the furniture door, flap or the like to the furniture carcass is then carried out without tools. A fitter consequently does not have to guide any tool and has both hands free for the assembly of the furniture door, flap or the like. Since he preferably also requires no tool for the adjustment of the switching position of the locking element, the assembly of the furniture door and adjustment of the damping can be carried out in a simple and rapid manner.
The invention is explained in greater detail below with reference to an embodiment illustrated in the drawings:
In the drawings:
A coordinate system 8 shows, with respect to the orientation of the item of furniture 3, three spatial directions, that is to say, an x direction 8.1, a y direction 8.2 and a z direction 8.3. The spatial directions indicate possible adjustment directions of the furniture door 5, as enabled by the furniture hinges 1.
The base carrier 10 serves to secure the assembly body 6 to the item of furniture 2 shown in
Laterally and opposite each other, two lateral guides 15 are formed on the assembly portion 11 of the base carrier 10 in each case. The lateral guides 15 are in this instance arranged along the edges of the assembly portion 11 arranged transversely relative to the assembly direction 9.1. They are angled with respect to the assembly portion 11 and orientated so as to face away from the assembly face 10.1. At the end side, the lateral guides 15 are angled in such a manner that the terminal edges of the lateral guides 15 which are arranged opposite each other face each other. The lateral guides 15 consequently form in each case a lateral portion 15.1 and a covering portion 15.2 which is formed thereon, which portions, together with the assembly portion 11, in each case surround a guiding groove 15.4. The lateral guides 15 opposite guiding grooves 15.4 face each other. They form a sliding guide 15.3. The sliding guide 15.3 is orientated in the assembly direction 9.1.
Via a graduation 16.1, a retention attachment 16 is secured to the assembly portion 11. The retention attachment 16 is formed outside the region delimited by the stops 13, 14 on the assembly portion 11. Two retention webs 17 are formed laterally on the retention attachment 16. The retention webs 17 are constructed as flaps which are angled with respect to the retention attachment 16. Preferably, the retention webs 17 are arranged at an angle of 90° with respect to the retention attachment 16. They are in this instance angled in the direction facing away from the assembly face 10.1. The surface normals of the retention webs 17 are orientated transversely relative to the assembly direction 9.1. Each of the retention webs 17 is penetrated by an axial hole 17.1. The axial holes 17.1 of the retention webs 17 which are arranged opposite each other are orientated in alignment with each other. In the region between the retention webs 17, burled spring guides 18 are formed on the edge of the retention attachment 16.
The blocking element 20 is constructed in a curved manner. It has a planar actuation portion 21 on which laterally angled articulated portions 22 are formed. In the articulated portions 22, an axle receiving member 22.1 in the form of a hole is introduced in each case. The axle receiving members 22.1 are orientated in alignment with each other. The articulated portions 22 are orientated in such a manner that with the assembly member 6 mounted, they are arranged laterally and with slight spacing relative to the retention webs 17 of the base carrier 10. The axle receiving members 22.1 are then orientated in alignment with the axial holes 17.1 of the retention webs 17. In a state concealed or partially concealed by the actuation portion 21, retention portions 23, as shown in
An axle 26 is further associated with the assembly member 6. The axle 26 has at the end sides stops in the form of expansions 26.1. In this instance, at least one of the expansions 26.1 is fitted only during the assembly of the assembly member 6.
Two springs 25 are associated with the blocking element 20. The springs 25 each have an angled region 25.1 which is connected to a resilient curved member 25.3. The ends of the springs 25 are constructed as legs 25.2. The legs 25.2 of the springs 25 are orientated in the direction of the spring abutment face 21.1 of the blocking element 20 and the curved resilient member 25.3 in the direction of the surface of the retention attachment 16.
With reference to the description relating to
As shown in
A portion of the linear damper 60 is introduced through an opening 35 in the centering region 31. In the embodiment shown, a movably supported cylinder 61 of the linear damper 100 is introduced into the centering region 31. The cylinder 61 has at the end side an inclination 62. A locking element 100 is inserted in a recess of the cover 37. Using the locking element 100, the linear damper 60 can be blocked in a retracted position so that the inclination 62 is not guided into the centering region 31.
A second spring 38 is also arranged outside the hinge cup 30. It is guided with the free ends 38.2 thereof through the opening 35 into the centering region 31. The second spring 38 which is constructed as a leg spring has a winding 38.3 and a second curved resilient member 38.1.
The centering region 31 is formed by cup side walls 31.2, a rounded portion 31.4 and a cup base 31.1. In the opposing cup side walls 31.2, articulated receiving members 31.3 in the form of holes are introduced. An articulated pin 39 with end-side stop portions 39.1 is associated with the articulated receiving members 31.3. In this instance, a stop portion 39.1 is formed on the articulated pin 39 only when the hinge member 7 is assembled.
The hinge arm 40 has an articulated lever 43. At the end side and facing the hinge cup 30, a pin receiving member 41 is formed on the articulated lever 43, as shown in greater detail in
The articulated lever 43 is integrally connected to a securing portion 44 of the hinge arm 40. It is also conceivable for the articulated lever 43 and the securing portion 44 to be constructed separately and to be connected to each other, for example, using securing means. Preferably, the securing portion 44 is constructed as a punched component. It has side regions 44.2 which are angled laterally in the direction toward the connection element 50. These regions form guiding faces 41.1 which are orientated in the direction of the longitudinal extent of the hinge arm 40. A threaded receiving member 45 and a recess 46 are introduced into the securing portion 44. Via a graduation, an attachment piece 44.3 is formed on the securing portion 44. The plane of the attachment piece 44.3 is in this instance arranged so as to be offset in the direction toward the intermediate portion 80 with respect to the plane of the securing portion 44. The attachment piece 44.3 is penetrated by an X-cam guide 47 in the form of an elongate hole.
The intermediate portion 80 is arranged between the hinge arm 40 and the connection element 50 and orientated for assembly with the hinge arm 40 and the connection element 50. The intermediate portion 80 has an abutment portion 81 which is constructed in a planar manner and on which an attachment 82 which is also constructed in a planar manner is formed. The plane of the attachment 82 is in this instance offset with respect to the plane of the abutment portion 8.1 in the direction toward the hinge arm 40. The attachment 82 is arranged opposite the attachment piece 44.3 of the hinge arm 40. The attachment 82 is in this instance connected to the abutment portion 81 by means of three webs 81.2 which are orientated in the direction toward the hinge arm 40. Between the webs 81.2, the abutment portion 81 has in each case an extension in the form of guiding flaps 81.1. In the attachment 82, an X-cam bearing 83 in the form of a hole is introduced in alignment with the X-cam guide 47. Opposite the recess 46 of the hinge arm 40, a Y-cam guide 84 in the form of an elongate hole and a through-opening 86 are formed in the abutment portion 81. Opposite the Y-cam guide 84, a Y-guiding cam 89 is fitted to the abutment portion 81. The Y-guiding cam 89 is guided through the abutment portion 81 and rises above the face of the abutment portion 81 in the direction toward the connection element 50. Side flaps are fitted laterally to the abutment portion 81. The side flaps 85 are angled with respect to the abutment portion 81 and orientated in the direction toward the hinge arm 40. Opposite the stop 82, a securing web 87 is formed on the abutment portion 81. The securing web 87 rises in the direction toward the hinge arm 40 above the face of the abutment portion 81. The upper face thereof is arranged at the height of the attachment 82 of the intermediate portion 80. In the surface of the securing web 87, starting from the outer edge thereof, an adjustment screw receiving member 88 in the form of a slot is formed. The adjustment screw receiving member 88 is arranged opposite the thread receiving member 45 of the hinge arm 40.
The connection element 50 has a base member 51 which is constructed in a planar manner. In the assembly direction 9.1, two external retention flaps 55 are formed on the base member 51. The external retention flaps 55 are bent in such a manner from the plane of the base member 51 in the direction toward the hinge arm 40 that they each engage around an external retention groove 55.1 which is open counter to the assembly direction 9.1. Opposite the external retention flaps 55, internal retention flaps 54 are formed on the edge of the base member 51. The internal retention flaps 54 are constructed in a mirror-symmetrical manner with respect to the external retention flaps 55 so that in each case an internal retention groove 54.1 which is surrounded by the internal retention flaps 54 is orientated in the direction toward the opposing external retention groove 55.1 of the external retention flaps 55. As a result of the retention flaps 54, 55, a linear guide which is directed transversely relative to the assembly direction 9.1 is consequently formed. The intermediate portion 80 can be introduced with the edge thereof orientated counter to the assembly direction 9.1 into the internal retention grooves 54.1 and with the edges of the guiding flaps 81.1 thereof orientated in the assembly direction 9.1 into the external retention grooves 55.1 The intermediate portion 80 can thus be displaced transversely relative to the assembly direction 9.1 and in the plane of the abutment portion 81, whilst it is retained in the remaining directions by the retention flaps 54, 55 or the base member 51 of the connection element 50. In this instance, the Y-guiding cam 89 is guided in a Y-guiding elongate hole 58 of the connection element 50.
Laterally and opposite each other, a guiding portion 52 is formed on the base member 51 of the connection element 50. The guiding portions 52 are constructed in a planar manner. They are orientated in the longitudinal extent thereof in the assembly direction 9.1. The side edges of the guiding portions 52 arranged transversely relative to the assembly direction 9.1 form guide edges 52.3. In the direction toward the front end, in each case in extension of the guide edges 52.3 an outwardly facing rounded introduction portion 52.1 is formed on the guiding portions 52. In the region of the, with respect to the assembly direction 9.1, front end of the guiding portions 52, they are in each case penetrated by a locking recess 52.4. The locking recesses 52.4 are introduced in the guiding portions 52 in a groove-like manner and facing each other. Counter to the movement direction 9.1 and opposite the rounded introduction portions 52.1, an abutment portion 52.2 is formed in each case on the guiding portions 52. These delimit the guide edges 52.3
An aperture 53 is introduced in the base member 51. The aperture 53 is arranged opposite the through-opening 86 of the intermediate portion 80 and consequently the recess 46 of the hinge arm 40. At the side of the aperture 53 of the base member 51, a Y-cam bearing 56 in the form of a hole is introduced into the base member 51. The Y-cam bearing 56 is arranged in alignment with the Y-cam guide 84 of the intermediate portion 80. At the opposite side of the aperture 53, the base member 51 is penetrated by the Y-elongate guide hole 58. The Y-elongate guide hole 58 is arranged opposite the Y-guiding cam 89 of the intermediate portion 80.
The hinge member 7 is further associated with an adjustment screw 90 having an adjustment screw tool receiving member 90.1, a thread 90.2, a groove 90.3 and a closure 90.4. The adjustment screw 90 is constructed in such a manner that it can be screwed with the thread 90.2 thereof into the thread receiving member 45 of the hinge arm 40. The groove 90.3 then engages in the adjustment screw receiving member 88 of the intermediate portion 80. Axially, the mounted adjustment screw 90 is retained by means of the closure 90.4 which is increased in diameter with respect to the groove on the securing web 87 of the intermediate portion 80.
An X-cam 91 is associated with the hinge member 7. The X-cam 91 has an X-tool receiving member 91.1, an X-guiding region 91.2 and an X-eccentric cam 91.3. The X-eccentric cam 91.3 is arranged outside the center axis of the X-guiding region 91.2. The X-cam 91 is orientated with respect to the X-cam guide 47 of the hinge arm 40 and the X-cam bearing 83 of the intermediate portion 80. In the assembled state, the X-eccentric cam 91.3 engages in the X-cam bearing 83. The X-guiding region 91.2 is guided in the X-cam guide 47 of the hinge arm 40.
There is further associated with the hinge member 7 a Y-cam 92 which in terms of its construction corresponds to the X-cam 91. It consequently has a Y-tool receiving member 92.1, a Y-guiding region 92.2 and a Y-eccentric cam 92.3. The Y-eccentric cam 92.3 is arranged outside the center axis of the Y-guiding region 92.2. The Y-cam 92 is orientated with respect to the Y-cam guide 84 of the intermediate portion 80 and the Y-cam bearing 56 of the connection element 50. In the assembled state, the Y-eccentric cam 92.3 engages in the Y-cam bearing 56. The Y-guiding region 92.2 is guided in the Y-cam guide 84 of the intermediate portion 80.
As can be seen in particular in
The securing portion 44 of the hinge arm 40 is connected to the intermediate portion 80, as shown in greater detail in
As can be seen clearly in
The adjustment screw 90 and the two cams 91, 92 serve to orientate the assembled furniture door 5 on the furniture carcass 3. In this instance, by means of the adjustment screw 90, the spacing between the securing portion 44 of the hinge arm 40 and the intermediate portion 80 can be changed and consequently the furniture door 5 can be adjusted along the z axis 8.3, as shown in
As can be seen in
As can be seen in particular in the view selected in
As shown in particular in
A blocking attachment 67 is fitted on the cylinder 61 of the linear damper 60. In this instance, the blocking attachment 67 is formed on the cylinder 61. Facing away from the housing base 71, the locking attachment 67 has an inclined start-up member 67.1. The attachment inclination 67.1 is in this instance inclined in the direction of the movement of the cylinder 61 when the linear damper 60 is pushed together. In a state directed in the movement direction of the cylinder 61 when the linear damper 60 is pushed apart, the blocking attachment 67 forms a blocking counter-face 67.2.
In a first assembly step, the connection element 50 is pushed into the sliding guide 15.3 until the guiding portions 52 abut with the front edges thereof the retention portions 23 of the blocking element 20 shown in
The connection element 50 is inserted as a component connected to the hinge arm 40 as far as the assembly position thereof in the sliding guide 15.3 of the assembly member 6. Transversely relative to the assembly direction 9.1, the connection element 50 is retained by the lateral guides 15. In the assembly direction 9.1, the stop portions 52.2 abut the lateral guides 15 which face away from the blocking element 20. Counter to the assembly direction 9.1, the connection element 50 is blocked by the engagement of the retention portions 23 of the blocking element 20 in the locking recesses 52.4 of the guide portions 52 of the connection element 50, as can be seen in particular in the sectioned illustration in
In order to release the hinge member 7 from the assembly member 6, the blocking element 20 can be adjusted into the open position thereof by means of a pressure on the actuation side 21.1 of the actuation portion 21 thereof counter to the resilient force produced by the springs 25. The blocking element 20 is in this instance pivoted in accordance with the actuation direction 9.2 about the axle 26. The retention portions 23 of the blocking element 20 are thus moved out of engagement with the locking recesses 52.4 of the connection element 50. The connection element 50 can now be pulled counter to the assembly direction 9.1 from the sliding guide 15.3.
For assembly of the furniture door 5, the assembly member 6 and the hinge member 7 are in a separate state. Both are preassembled. Firstly, the assembly member 6 is orientated with the outer stop 14 on the frame 4. Subsequently, the assembly member 6 is screwed to the frame 4. The hinge cup 30 is introduced into the hole of the furniture door 5, orientated and screwed to the furniture door 5. When a plurality of furniture hinges 1 are provided, these are accordingly assembled. The furniture hinge(s) 1 is/are folded into the open position thereof. Subsequently, the furniture door 5 is retained at the opening of the furniture carcass 2 and orientated in such a manner that the guiding portions 52 of the respective connection element 50 are orientated with respect to the sliding guide 15.2 arranged on the assembly member 6. The furniture door 5 is now pushed in the direction toward the furniture carcass 2. In this instance, the guiding portions 52 are introduced into the sliding guide 15.3. As a result of the rounded introduction portions 52.1, the guiding portions 52 can also be introduced when a plurality of furniture hinges 1 are provided on the furniture door 5 simply and simultaneously into the sliding guides 15.2.
Firstly, the guiding portions 52 are pushed into the sliding guide 15.3 until they abut the retention portions 23 of the blocking element 20. The connection element 50 is now retained transversely relative to the assembly direction 9.1 in the sliding guide 15.3. The sliding guide 15.3 is orientated in such a manner that the connection element 50 does not slide out of the sliding guide 15.3 as a result of the weight. A fitter can consequently release the furniture door 5 with the connection element 50 partially inserted without it falling down. In another operating step, the connection element 50 is inserted further in the assembly direction 9.1 into the sliding guide 15.3. This may, for example, be carried out by means of a corresponding pressure on the furniture door 5. In this instance, the blocking element 20 is adjusted by means of a corresponding pressure on the actuation portion into the open position thereof. The connection element 50 can now be inserted into the sliding guide 15.3 until the final assembly position is reached. In this assembly position, the stop portions 52.2 of the guiding portions 52 abut the front lateral guides 15 of the base carrier 10. The locking recesses 52.4 on the guiding portions 52 of the connection element 50 are arranged in the region of the retention portion 23 of the blocking element 20. The blocking element 20 is therefore rotated by the springs 25 into the closure position thereof shown in
The locking element housing 102 has locking element housing side walls 102.3 which are arranged opposite each other. The locking element housing side walls 102.3 are connected to each other at the end side by means of a locking element housing outer wall 102.4 and opposite each other by means of a locking element housing inner wall 102.5 which is concealed in the selected view to the greatest possible extent. On the locking element housing side walls 102.3, the locking element housing outer wall 102.4 and the locking element housing inner wall 102.5 there is placed a peripheral abutment flange 102.1 which protrudes outward over the respective walls. Opposite the abutment flange 102.1, the locking element housing 102 is terminated by a locking element housing base which is arranged so as to be concealed. Toward the locking element housing outer wall, a locking switching position 102. 7 is indicated in this instance by a 0 on the abutment flange 102.1. Opposite and orientated in the direction toward the locking element housing inner wall 102.5, a damping switching position 102.8 is marked on the abutment flange 102.1, in this instance by a 1. Locking attachments 102.6 are fitted toward the outer side on the locking element housing side walls 102.3. Toward the inner side, a locking device 102.9 which is in this instance constructed in the manner of a web is formed on the locking element housing side walls 102.3. The locking element housing side walls 102.3 are further penetrated in each case by bearing pin guides 102.2 which are arranged in alignment with each other.
The locking element insert 103 is formed by a cylindrical rotary member 103.1 on the outer periphery of which a handle 103.5 and a locking bolt 103.3 which are arranged angularly offset with respect to each other are formed. The rotary member 103.1 is penetrated along the longitudinal center axis thereof by a bearing pin receiving member 103.2. The locking bolt 103.3 has a blocking face 103.6. The surface normal of the blocking face 103.6 is orientated in the direction of the longitudinal extent of the bearing pin receiving member 103.2. Opposite the blocking face 103.6, the locking bolt 103.3 is constructed in a chamfered manner at the end side by means of an inclined start-up member 103.4. The length of the cylindrical rotary member 103.1 is selected in such a manner that the rotary member 103.1 can be arranged with little play between the two locking element housing side walls 102.3 and the bearing pin receiving member 103.2 can be orientated in alignment with the bearing pin guides 102.2 of the locking element housing 102. The cylindrical bearing pin 101 can thus be inserted through the bearing pin guides 102.2 and the bearing pin receiving member 103.2. The locking element insert 103 is thereby rotatably supported in the locking element housing 102. With the locking element 100 mounted, the handle 103.5 protrudes in the region of the abutment flange 102.1 from the locking element housing 102. The locking bolt 103.3 is guided through an opening which is arranged so as to be concealed in the locking element housing inner wall 102.5 out of the locking element housing 102. Using the handle 103.5, the locking element insert 103 can be rotated about the rotation axis formed by the bearing pin 101. In this instance, the locking bolt 103.3 also pivots about this rotation axis. The locking element insert 103 can in this instance be adjusted in two switching positions, that is to say, the locking switching position 102.7 and the damping switching position 102.8. These are reached when the handle 103.5 in the region of the associated marking (0 or 1) abuts the abutment flange 102.1. In the two switching positions, the locking element insert 103 is retained by the locking device 102.9103.9. Inadvertent adjustment of the locking element 100, for example, by a user of the piece of furniture, can thereby be prevented.
The handle 103.5 is arranged at the side of the rotation axis on a peripheral path about the rotation axis. A lever is thereby formed and also with a small-sized handle 103.5 enables simple tool-free actuation of the locking element 100. As a result of the lateral arrangement of the handle 103.5 with respect to the rotation axis, no actuation device which is arranged in an axial direction of the locking element 100 has to be provided. The locking element 100 can thereby be arranged to a large extent outside the hinge cup 30 and only the handle 103.5 has to be guided in the inner space of the hinge cup 30, as shown in greater detail in
With such a linear damper 60, as a result of a force acting axially on the linear damper 60, the piston 63 is inserted into the cylinder 61, wherein the damping action of the linear damper 60 occurs counter to the acting force. To this end, either the piston 63 or, as provided for in the present installation situation, the cylinder 61 can be moved.
The cylinder 61 is constructed substantially unilaterally in a cylindrical manner and is terminated opposite by a planar cylinder base 64. Laterally on the cylinder 61, a first lower guiding web 65.1 and with spacing therefrom a first upper guiding web 66.1 are formed. Opposite the first lower guiding web 65.1 and the first upper guiding web 66.1, a second lower guiding web 65.2 and a second upper guiding web 66.2 are arranged on the cylinder 61. The guiding webs 65.1, 65.2, 66.1, 66.2 are orientated along the longitudinal extent of the cylinder 61. At the end side and opposite the piston 63, the cylinder 61 has the inclination 62. At the side of the first lower guiding webs 65.1, the blocking attachment 67 is formed on the cylinder 61. The blocking attachment 67 is in this instance constructed in the manner of a web. It is orientated in the longitudinal extent thereof transversely relative to the longitudinal extent of the linear damper 60. In this instance, the blocking attachment 67 is formed in such a manner that it follows the curvature of the cylindrical outer face of the cylinder 61. At one end, the blocking attachment 67 merges into the first lower guiding web 65.1. At the opposite end thereof, the blocking attachment 67 has the attachment inclination 67.1. To this end, the blocking attachment 67 is constructed to be chamfered at the end in the direction toward the housing 70. Opposite the attachment inclination 67.1, the blocking attachment 67 forms the blocking counter-face 67.2. This is consequently arranged so as to face away from the housing 70. The surface normal of the blocking counter-face 67.2 is orientated in the movement direction of the linear damper 60.
The housing 70 has a housing base 71 on which two housing side walls 75, 76 are formed opposite each other. At the end side, the two housing side walls 75, 76 are connected to each other by means of a housing rear wall 74. The housing rear wall 74 terminates with spacing from the housing base 71. Between the housing rear wall 74 and the housing base 71, the spring receiving member 72 is thereby formed in the form of a gap. Opposite the housing rear wall 74 and facing the linear damper 60, the housing 70 is opened by a housing opening 77. Facing away from the housing base 71, the locking elements 73 are formed on the housing side walls 75. 76. The first housing side wall 75 is penetrated by a wall recess 75.1. It serves when the furniture hinge 1 is mounted to guide through the locking bolt 103.3 of the locking element 100 shown in
In the illustration shown, the locking element 100 is positioned in its locking switching position 102.7. The handle 103.5 is consequently pushed in the direction toward the region of the abutment flange 102.1 marked with a 0. As a result of the locking device 102.9 shown in
When the handle 103.5 is adjusted, the locking element insert 103 is rotated about the rotation axis of the locking element 100. The locking bolt 103.3 shown in
In the illustration selected in
By manually adjusting the locking element 100 from the locking switching position 102.7 into the damping switching position 102.8 thereof, the locking bolt 103.3 is pivoted out of the adjustment path of the blocking attachment 67. The blocking attachment 67 and consequently the cylinder 61 of the linear damper 60 are thereby released. The cylinder 61 can thus with the furniture hinge 1 open be adjusted by the acting restoring forces into the extended position thereof. The inclination 62 of the cylinder 61 is thereby pushed into the centering region 31 of the hinge cup 30 and consequently the adjustment path of the articulated lever 43 (see
In the assembled state, an adjustment of the locking element 100 can be carried out only with the furniture door 5, flap or the like open. Starting from a damping switching position 102.8 of the locking element 100, the cylinder 61 is first arranged in the deployed position thereof. When the locking element 100 is switched from the damping switching position 102.8 thereof into the locking switching position 102.7 thereof, the locking bolt 103.3 is pivoted at the side of the blocking attachment 67 opposite the blocking counter-face 67.2 into the adjustment path thereof. Consequently, the inclined start-up member 103.4 of the locking bolt 103.3 and the attachment inclination 67.1 of the blocking attachment 67 face each other. When the furniture hinge 1 is closed, the cylinder 61 of the linear damper 60 is pushed into the inserted position thereof. In this instance, the blocking attachment 67 slides along the attachment inclination 67.1 and the inclined start-up member 103.4 past the locking bolt 103.3. The locking bolt 103.3 is to this end constructed in a correspondingly resilient manner so that it can be displaced by the blocking attachment 67 sliding past by the required distance. When the inserted end position of the cylinder 61 is reached, the resilient locking bolt 103.3 is then adjusted into the tension-free position thereof again so that the blocking face 103.6 and the blocking counter-face 67.2 face each other.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/TR2017/000027 | 2/13/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/147817 | 8/16/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4312098 | Sundermeier | Jan 1982 | A |
6883204 | Salice | Apr 2005 | B2 |
7509708 | Radke et al. | Mar 2009 | B1 |
7552509 | Chen | Jun 2009 | B2 |
8307498 | Krammer | Nov 2012 | B2 |
8561262 | Liang | Oct 2013 | B1 |
8650711 | Chen | Feb 2014 | B1 |
8991010 | Brunnmayr | Mar 2015 | B2 |
9163447 | Liang | Oct 2015 | B1 |
9366067 | Wu | Jun 2016 | B2 |
9874049 | McGregor | Jan 2018 | B1 |
20120167342 | Wu et al. | Jul 2012 | A1 |
20130145580 | Brunnmayr | Jun 2013 | A1 |
20130160242 | Brunnmayr | Jun 2013 | A1 |
20150068126 | Forster et al. | Mar 2015 | A1 |
20150337578 | Peer | Nov 2015 | A1 |
20160138319 | Wu | May 2016 | A1 |
20170107749 | McGregor | Apr 2017 | A1 |
20170152694 | Chen | Jun 2017 | A1 |
20180328093 | Zimmer | Nov 2018 | A1 |
Number | Date | Country |
---|---|---|
106193866 | Dec 2016 | CN |
7924808 | Nov 1979 | DE |
1367203 | Dec 2003 | EP |
1688572 | Aug 2006 | EP |
2766547 | Aug 2014 | EP |
2529250 | Feb 2016 | GB |
9845560 | Oct 1998 | WO |
2009124332 | Oct 2009 | WO |
2013149632 | Oct 2013 | WO |
WO-2015155579 | Oct 2015 | WO |
Entry |
---|
European Patent Office Action of corresponding patent application No. 17 711 378.4,dated Jan. 5, 2022, 5 pages (not prior art). |
Co-Pending U.S. Appl. No. 16/481,737, filed Feb. 13, 2017 (not prior art). |
International Search Report for corresponding PCT/TR2017/000027 dated Oct. 18, 2017, 11 pages (not prior art). |
Number | Date | Country | |
---|---|---|---|
20210277698 A1 | Sep 2021 | US |