The present disclosure relates to furniture member movable headrests operated by a power actuator.
This section provides background information related to the present disclosure which is not necessarily prior art.
Conventionally, reclining articles of furniture (i.e., chairs, sofas, loveseats, and the like), referred to hereinafter generally as reclining chairs, utilize a mechanism to bias a leg rest assembly in extended and stowed positions and separate components to allow a back seat member to recline with respect to a seat base. Occupant head rest support is commonly provided by one or more cushion members that abut with or are extensions of further cushion members acting as occupant back rest support members. The head rest support is commonly joined at its ends to vertically oriented backrest side support arms which are in turn rotatably connected to a furniture member chair frame.
Because head rest support is substantially fixed to the back seat member, as the back seat member rotates the head rest cushion(s) will commonly remain in a fixed orientation with respect to the seat back member. This can result in uncomfortable head rest support positions for the different rotated positions of the seat back. For example, with the seat back member rotated to a fully reclined position, the head rest may be rotated too far backward for comfortable viewing of a television or monitor. Also, with the seat back member rotated to a fully upright position, the head rest may be rotated too far forward for the comfort level desired by the occupant. The above head rest support systems are not adjustable by the occupant, and therefore can result in discomfort in either the fully reclined or fully upright positions, or in the leg rest extended position for different occupants.
Mechanical systems are therefore known which permit the headrest to be rotated by manual operation of a lever or link to provide multiple headrest adjustment positions. These systems may not provide for infinite adjustment of the headrest and may be difficult to operate by some occupants of the chair. Power actuated headrest designs are also known, however known power actuated headrest designs do not permit the power actuator to be completely released during headrest return travel should the headrest encounter an object blocking its return path.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
According to several embodiments, a furniture member powered headrest operating system includes a headrest frame assembly rotatably connected to a furniture member seatback frame. An actuation mechanism is connected to the seatback frame. The actuation mechanism has a power actuated member connected to the headrest frame assembly operating to rotate the headrest frame assembly from a fully retracted to a fully forward rotated position inclusive. A biasing member is connected to the furniture member seatback frame and the headrest frame assembly. A biasing force created during rotation of the headrest frame assembly away from the fully retracted position operates without an operating force of the actuation mechanism to bias the headrest frame assembly from the fully forward rotated position to the fully retracted position.
According to other embodiments, a furniture member powered headrest operating system includes a headrest frame assembly rotatably connected to a furniture member seatback frame using first and second rotational pins. An actuation mechanism is rotatably connected to the seatback frame. The actuation mechanism has a power actuated member connected to the headrest frame assembly operating between a retracted to an extended position to rotate the headrest frame assembly from a fully retracted to a fully forward rotated position about a frame assembly axis of rotation defined by the first and second rotational pins. A release system rotatably connects the headrest frame assembly to the actuation mechanism permitting the headrest frame assembly to be retained at any forward rotated position while the actuation mechanism returns the power actuated member from the extended to the retracted positions if the headrest frame assembly encounters an object blocking return to the fully retracted position.
According to further embodiments, a furniture member powered headrest operating system includes a biasing member connected to the furniture member seatback frame and the headrest frame assembly. A biasing force created during rotation of the headrest frame assembly away from the fully retracted position operates without an operating force of the actuation mechanism to bias the headrest frame assembly from the fully forward rotated position to the fully retracted position. A release system rotatably connecting the headrest frame assembly to the actuation mechanism permits the headrest frame assembly to be retained at any forward rotated position while the actuation mechanism returns the power actuated member from the extended to the retracted positions if the headrest frame assembly encounters an object blocking return to the fully retracted position. The biasing member provides the biasing force required to return the headrest frame assembly to the fully retracted position after removal of the object.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
Referring generally to
According several embodiments, furniture member 10 can independently rotate or rock forwardly and rearwardly about a furniture member arc of rotation 32 by motion of the occupant and without requiring powered operation. A lumbar support section 34 can be provided which can be moved either in a lumbar extension direction “A” to increase occupant lumbar support or in a lumbar retraction direction “B” to decrease occupant lumbar support. In the embodiment shown, furniture member 10 is depicted as a chair however the present teachings are not limited to chairs. Furniture member 10 can be any of a plurality of furniture members, including, but not limited to single or multiple person furniture members, sofas, sectional members and/or loveseats.
Referring to
Referring to
Referring to
Referring to
A headrest frame assembly 58 is rotatably connected to both first and second seatback side members 50, 52. Headrest frame assembly 58 includes a first cross member 60 connected to each of first and second side members 62, 64. A second cross member 66 is oppositely positioned with respect to first cross member 60 and is also connected to first and second side members 62, 64. First and second connecting joints 68, 70 made of a polymeric material are connected at second cross member 66 and individually to first and second side members 62, 64. According to several embodiments, the members of headrest frame assembly 58 are molded from a polymeric material to provide rigidity and light weight. According to other embodiments, the members of headrest frame assembly 58 are made from a wood material. A first rotational pin 72 rotatably connects first connecting joint 68 to first seatback side member 50. Similarly, a second rotational pin 74 rotatably connects second connecting joint 70 to first seatback side member 50.
Headrest frame assembly 58 is normally biased to a fully upright, fully retracted position shown by a biasing force of a biasing member 76 such as a compression spring, made for example from a spring steel. Biasing member 76 includes a first hooked end 78 connected to an extending structure 80 integrally or homogeneously connected to first connecting joint 68 and therefore also made of a polymeric material. Biasing member 76 also includes a second hooked end 82 connected to a bracket 84 fastened to an inward directed face of first seatback side member 50.
Headrest frame assembly 58 is power displaced in a forward direction by an actuation mechanism 86 having an electrical actuator 88 and a receiver 90. A power actuated member such as an axially displaceable member 92 is axially extendable and retractable into and out of a receiver 90 by operation of electrical actuator 88. An extending end of axially displaceable member 92 is rotatably pinned by a rotational pin 94 to a pin connecting bracket 96 integrally or homogeneously connected to second connecting joint 70 and therefore also made of a polymeric material. Headrest frame assembly 58 is positioned in the upright, fully retracted position when axially displaceable member 92 is fully retracted into receiver 90 as shown. A mechanism mounting bracket 98 is fastened to an inward directed face of second seatback side member 52. Actuation mechanism 86 is rotatably connected to mechanism mounting bracket 98 using a mechanism mounting pin 100. Mechanism mounting pin 100 permits rotation of actuation mechanism 86 during rotation of headrest frame assembly 58, as will be better described in reference to
Referring to
Referring to
When headrest frame assembly 58 is in the fully retracted position, axially displaceable member 92 is fully retracted within receiver 90. Receiver 90 is, in turn, connected to a housing 122 having for example internal gears (not shown) actuated by operation of electrical actuator 88 to extend or retract axially displaceable member 92. Housing 122 is in contact with bracket base 120 when headrest frame assembly 58 is in the fully retracted position. Also in the fully retracted position, rotational pin 94 contacts a first slot end wall 124 of a semi-circular slot 126 created in each of the first and second pin connecting brackets (only first pin connecting bracket 96 is visible in this view). As previously noted, in the fully retracted position of headrest frame assembly 58, a frame assembly face 112 is positioned substantially co-planar to a seatback side member face 114 of second seatback side member 52.
Referring to
Referring to
Referring to
Referring to
Referring to
With continued reference to
Referring to
Referring to
The furniture member powered headrest and release systems of the present disclosure offer several advantages. By connecting a power actuated member to a headrest frame assembly that is rotatably connected to a furniture seatback frame, the headrest frame assembly can be power rotated between a fully retracted and a fully forward rotated position, inclusive, to provide a power displacement, infinitely adjustable occupant headrest support. By further connecting a biasing member to the headrest frame assembly, the headrest frame assembly can be returned from the fully forward rotated position to the fully retracted position in a non-powered operation using the biasing force of the biasing member. The use of the biasing member for retraction of the headrest frame assembly further permits a release system to be incorporated which stops return rotation of the headrest frame assembly if an object blocks the rotational path of the headrest frame assembly during return. The release system can include a semi-circular slot in which a rotational pin connected to the headrest frame assembly is disposed. The rotational pin can slide in the semi-circular slot to permit the headrest frame assembly to freely rotate independently of the actuation mechanism during a powered retraction motion of the actuation mechanism.
The actuation mechanism 86 is described herein as an electrically operated actuator axially or linearly moving a displaceable member in and out with respect to a receiver. The present disclosure is not limited to electrically operated actuators. Other actuators such as air or hydraulically operated actuators, rotating actuators, and the like can also be used within the scope of the present disclosure. The axially displaceable member 92 can also be replaced by a rotational member, a horizontally displaced member, or the like.
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3936091 | Rabinowitz | Feb 1976 | A |
4190286 | Bentley | Feb 1980 | A |
4466662 | McDonald et al. | Aug 1984 | A |
4515406 | Fujiyama et al. | May 1985 | A |
4711494 | Duvenkamp | Dec 1987 | A |
4822102 | Duvenkamp | Apr 1989 | A |
5120109 | Rangoni | Jun 1992 | A |
5131720 | Nemoto | Jul 1992 | A |
6471296 | Lance | Oct 2002 | B2 |
6709051 | Schambre et al. | Mar 2004 | B2 |
6746078 | Breed | Jun 2004 | B2 |
6962392 | O'Connor | Nov 2005 | B2 |
7017989 | Yamaguchi et al. | Mar 2006 | B2 |
7121625 | Malsch et al. | Oct 2006 | B2 |
7234778 | Toba | Jun 2007 | B1 |
7237843 | Clark et al. | Jul 2007 | B2 |
7390058 | Sakai et al. | Jun 2008 | B2 |
7458640 | Hill | Dec 2008 | B1 |
7631930 | Muller et al. | Dec 2009 | B2 |
7724278 | Maguire, Jr. | May 2010 | B2 |
7845729 | Yamada et al. | Dec 2010 | B2 |
7984945 | Sayama | Jul 2011 | B2 |
8056983 | Adams et al. | Nov 2011 | B2 |
20040195895 | Sedlatschek et al. | Oct 2004 | A1 |
20100156159 | Adams et al. | Jun 2010 | A1 |
20130140866 | Yetukuri et al. | Jun 2013 | A1 |
Number | Date | Country |
---|---|---|
2005177227 | Jul 2005 | JP |
2009096385 | May 2009 | JP |
Entry |
---|
International Search Report for PCT/US2011/047366; Mailed: Apr. 9, 2012. |
Written Opinion of the International Searching Authority for PCT/US2011/047366; Mailed: Apr. 9, 2012. |
Number | Date | Country | |
---|---|---|---|
20120086256 A1 | Apr 2012 | US |