The present invention relates in general to furniture support assemblies and more specifically to a wire constructed sprung seat assembly.
Furniture and seat cushions are commonly provided with spring support systems which allow the weight of an occupant to deflect the cushion without damage to the cushion, to provide a comfortable feel and to return the cushion to its initial position when unoccupied. Sinuous wire support systems are currently popular for seat and furniture cushions because they provide adequate support while reducing the cost of previously used coil spring support systems.
Sinuous wire springs form a sinuous or zig-zag shaped pattern and are commonly supported at opposed ends to a furniture support frame. The frame is typically a wooden, generally rectangular-shaped structure having front and rear rails and opposed side rails. The sinuous wire springs are therefore supported only at their ends and allow deflection of the furniture cushion in between the frame members. Stiffening members can also be used which are connected generally transversely to the longitudinal axes of the sinuous springs. The stiffening members maintain a spacing of the sinuous springs to help control total deflection and spring shape.
Several disadvantages of common sinuous spring systems are evident when known support systems are used by heavy patrons. Sinuous spring systems generally allow excessive deflection or travel when a heavier patron uses the system than the spring travel is designed for, or when a user such as a child bounces on the cushions. Heavier patrons are herein defined as people exceeding 400 pounds and generally heavier than 500 pounds. Excessive travel from a greater than 400 pound load applied to a cushion can permanently deflect the springs, damage the cushion and/or leave a permanent contour in the cushion. The quantity or size of the springs can be increased to support the greater load, but this both increases cost and provides a generally stiffer feel for lighter users. Stiffening members now provided can be made strong enough to bear this load if connected to the frame, but generally are not connected at their ends to the frame because this prevents spring travel, producing user contact with the stiffening member(s) and therefore reducing comfort and/or damaging the cushion or support system. Spring systems which combine sinuous and coiled springs can also be used, however, increased cost and system complexity result from such a system.
According to a preferred embodiment of the present invention a furniture spring support system restrictor wire is provided for a system having a frame and a plurality of biasing elements connected to the frame. The biasing elements are each deflectable over a limited range defined between a non-deflected position and a maximum deflected position. A restrictor element overlaps each of the biasing elements. The restrictor element includes opposed ends each connected to the frame and a central curved portion between the opposed ends. A predefined load distributed to the biasing elements deflects the biasing elements to the maximum deflected position defined as the biasing elements being in contact with the central portion of the restrictor element. The biasing elements are thereafter restrained from further deflection by the restrictor element.
According to another preferred embodiment of the present invention, a deflection limitation system for upholstered furniture seat members includes a rectangular-shaped support frame having opposed front and rear members and opposed sides. Sinuous-shaped springs are connected to both the front and rear members. Each spring is deflectable over a limited range defined between a non-deflected position and a maximum deflected position. A wire element crossing below the spring elements has ends each connected to different frame sides. A central portion of the wire element is downwardly curved. A predefined spacing separates the wire element central portion from each of the spring elements in the non-deflected position. The maximum deflected position of the spring elements wherein the spring elements contact the central portion of the wire element is reached when a predefined load is distributed to the spring elements. The spring elements are thereafter restrained from further deflection by the wire element.
According to still another preferred embodiment of the present invention, a seating frame suspension assembly further includes an upholstered element connected to a plurality of spring elements. A support element transversely crosses each of the spring elements. The support element includes opposed ends each connected to the frame, and a central portion defining a curve between the opposed ends. A predefined load distributed to the spring elements through the upholstered element deflects the spring elements to the maximum deflected position defined as the spring elements being in contact with the central portion of the support element. The spring elements are thereafter restrained from further deflection by the support element.
In yet still another preferred embodiment, a seat assembly includes a frame having a front rail, a rear rail and two opposing side rails, each of the rails having a top edge. A plurality of substantially parallel sinuous wire springs traverse the frame between the front and rear rails. The sinuous wire springs include first and second attachment ends connectable to the top edges of the front and rear rails, respectively. At least one stabilizer wire extends substantially perpendicular to the sinuous wire springs and is connected to each of the sinuous wire springs. A restrictor wire has opposed connecting ends, each connected to the top edge of one of the side rails. The restrictor wire also has an arc-shaped central portion between the connecting ends to space the central portion from each of the sinuous wire springs in a non-deflected position of the sinuous wire springs.
In yet another preferred embodiment, a method for restricting a seating assembly spring deflection is provided. The seating frame includes a frame, a plurality of spring elements connected to the frame, an upholstered element connected to the spring elements, and a restrictor element transversely crossing each of the spring elements. The method includes creating a geometrically-shaped body of the restrictor element. The geometrically-shaped body of the restrictor element is positioned below and spatially separated from each of the spring elements. A load is applied to the upholstered element distributable to each of the spring elements and operable to deflect the spring elements. A deflection of the spring elements is limited to a contact position of each spring element with the geometrically-shaped body of the restrictor element.
A furniture support system restrictor wire of the present invention provides several advantages. A restrictor wire of the present invention is easily manufactured and is less expensive than additional sinuous or coiled springs. By predetermining a maximum allowable load or deflection of the sinuous spring system, the restrictor wire can be dimensioned and its wire size selected appropriately to act as a deflection limiter for the sinuous wire springs. By placing a restrictor wire of the present invention below and generally transverse to the axes of the sinuous springs, a normal clearance is provided to allow limited travel of the springs. When the predetermined load is reached the springs contact the restrictor wire and deflection is thereafter restricted. This prevents damage to the springs or the cushion while accommodating heavy patrons with a low cost alternative to more complex spring systems. Bent or hooked ends of the restrictor wire are received in frame members which are positioned transverse to the members supporting the sinuous springs which also distributes cushion loading to alternate frame members.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating specific embodiments of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
According to a preferred embodiment of the present invention and referring generally to
As further shown in
At least one restrictor element 26 is connected to each of the first and second side rails 16, 18, respectively, oriented substantially transverse to the parallel configured biasing members 22 and therefore substantially parallel to the stiffening members 22. Biasing members 22 are generally positioned in contact with cushion 20, and a liner such as a cloth material is provided between biasing members 22 and cushion 20 to reduce frictional wear to cushion 20 when biasing members 22 deflect upon loading. The position of cushion 20 in
In one aspect of the invention, a maximum deflected condition for cushion 20 is established when the biasing members 22 deflected by a load applied to cushion 20 and/or directly to biasing members 22 contact restrictor element 26. Restrictor element 26 thereafter restricts further deflection of biasing members 22. Further minor deflection of restrictor element 26 can occur from an increasing load applied to cushion 20 and/or biasing members 22, however this deflection does not significantly affect the maximum deflected condition up to a yield strength of the material of restrictor element 26.
Referring now to
Each of the biasing members 22 includes a first attachment end 30 connected by a first clip 32 to an upper surface 34 of front rail 14. Similarly, each biasing member 22 also includes a second attachment end 36 connected by a second clip 38 to an upper surface 40 of rear rail 15. In the embodiment shown in
Referring generally to
Referring next to
As best seen in reference to
Referring now to
Referring generally now to
Referring now to
The invention is not limited to the configurations shown in the various Figures herein. The description of the present invention is directed to seat cushions wherein an occupant weight is applied in a vertically downward direction, however, seat back cushions, sofa back cushions, and other chair or seat components can also be supported and restricted in their movement by restrictor elements 26 of the present invention. The quantity of biasing members 22 is also not limited. The quantity of biasing members 22 can range from one to greater than five. The arrangements shown herein can also be varied such that the restrictor wires are supported from the front and rear rails of the frame 12 and the biasing members are supported from the first and second side rails. It is also noted that the configuration of restrictor wires can be varied from the orthogonal arrangement described herein such that one or more restrictor wires positioned at a non-orthogonal angle to the biasing members 22, a crossing pattern or other geometric patterns can also be used.
Using the weight of a heavier patron to design a spring system can provide little or no seat travel and therefore reduced seat comfort for lighter weight patrons. The restrictor wire of the present invention allows use of a seat suspension that provides favorable seat comfort for lighter patrons (patrons weighing less than the weight predetermined load) while permitting heavier patrons to use the same seat/seat suspension without bottoming out or yielding the seat suspension. By limiting the total travel of the seat suspension by a restrictor wire of the present invention, a heavier patron is also properly positioned for the size proportions of the seat, such as the back/lumbar position of the seat and a foot rest position, etc.
A furniture support system restrictor wire of the present invention provides several advantages. A restrictor wire of the present invention is manufactured using simple bending steps and is therefore less expensive than adding sinuous or coiled springs to increase a load carrying capacity of a furniture item. By predetermining a maximum load or a maximum deflection of the sinuous springs, the restrictor wire can be dimensioned and its wire size appropriately selected to act as a deflection limiter for the sinuous wire springs. By extending a restrictor wire of the present invention below and generally transverse to the axes of the sinuous springs, clearance is provided to allow limited travel of the springs. When the predetermined load is reached the springs contact the restrictor wire and deflection is thereafter restricted. This prevents damage to the springs or the cushion or a motion mechanism below the cushion while accommodating heavy patrons with a lower cost alternative to more complex spring systems. Restrictor wires having bent or hooked ends received in frame members other than the frame members supporting the springs help distribute cushion loading throughout the frame.
While various preferred embodiments have been described, those skilled in the art will recognize modifications or variations which might be made without departing from the inventive concept. The examples illustrate the invention and are not intended to limit it. Therefore, the description and claims should be interpreted liberally with only such limitation as is necessary in view of the pertinent prior art.