This invention relates generally to fused connectors, and more particularly, to externally mounted fused connectors.
Fuses may be used to protect electronic devices from power overloads or excess surges in a circuit that includes a fuse and the electronic device. The fuses may be placed in the circuit along the feed line, or conductive pathway, along which electrical power or current is supplied to the device. Some known fuses are designed to fail and open if the electrical power or current exceeds a predetermined power or current threshold of the fuses. For example, if the current supplied along a circuit surges and increases above the threshold of the fuse, a conductive portion of the fuse may melt or break to thereby electrically open the fuse. The open fuse creates a gap along the circuit and electrically opens the circuit. The electric power or current may then no longer be supplied to the electronic devices positioned along the open circuit.
In some known high voltage applications, such as the automotive industry, fuses may be housed inside relatively expensive power distribution boxes or modules. These power distribution boxes may supply high voltage electric power or current to one or more devices in a vehicle, such as a heating or air conditioning unit. Some known power distribution boxes include fuses that are internally mounted in the boxes. For example, the fuses may not be accessible on the exterior or outside surface of the boxes. The fuses may be placed inside the power distribution boxes to ensure that the fuses are located within an shield of the power distribution box.
In the event of a failed or blown fuse, the power distribution boxes must be opened to access the fuses therein. But, the fuses may be permanently fixed within the power distribution box or may be inaccessible due to the location of the fuse within the box. Consequently, in the event of a fuse failure, some known power distribution boxes may need to be entirely replaced. Alternatively, the replacement of an internal fuse that is not easily accessible may be relatively expensive and time intensive.
A need exists for an assembly that provides a more accessible and/or easily replaceable fuse.
In one embodiment, a connector assembly for mating with a power distribution module is provided. The connector assembly includes a header connector assembly and a fuse connector assembly. The header connector assembly is configured to be mounted to the power distribution module. The header assembly includes contacts that are connected to a power supply circuit within the power distribution module. The fuse connector assembly is configured to mate with the header assembly. The fuse connector assembly includes a fuse subassembly that has an insert body configured to hold a fuse and conductive terminals. The conductive terminals are mounted to the insert body and are configured to electrically couple with the fuse to establish a fused conductive pathway. The fuse subassembly mates with the contacts in the header assembly to electrically couple the fused conductive pathway with the power supply circuit of the power distribution module.
In another embodiment, a connector assembly for mating with a power distribution module having an open power supply circuit is provided. The connector assembly includes an outer housing and a fuse subassembly. The outer housing extends from a mating interface to a back end along a longitudinal axis. The mating interface is configured to mate with a header assembly mounted to an exterior surface of the power distribution module. The fuse subassembly is disposed in the outer housing and includes conductive terminals that are configured to mate with contacts in the header assembly of the power distribution module. The fuse subassembly is configured to retain a fuse that is electrically coupled with the conductive terminals. The conductive terminals and the fuse are electrically coupled with the contacts in the header assembly to close the power supply circuit when the outer housing mates with the header assembly.
The connector assembly 100 includes an integrated fuse connector (IFC) assembly 102 and a header assembly 104. The header assembly 104 is externally joined with a power distribution module 106. For example, the header assembly 104 may be mounted to an exterior surface 108 of a high voltage power distribution module 106 for a vehicle, such as a hybrid or electric automobile. The exterior surface 108 represents an outer boundary or exterior perimeter of the power distribution module 106. For example, the exterior surface 108 may represent the outside surfaces of a housing or casing of a power distribution module 106. The IFC assembly 102 mates with the header assembly 104 along a mating direction 110 to electrically couple the IFC assembly 102 with the power distribution module 106. The IFC assembly 102 includes conductive terminals 240, 242 (shown in
The IFC assembly 102 includes an outer housing 112 that extends along a longitudinal axis 114 from a mating interface end 116 to a back end 118. In the illustrated embodiment, the mating interface end 116 is opposite of the back end 118. Alternatively, the mating interface end 116 and the back end 118 may be angled with respect to one another. The mating interface end 116 engages the header assembly 104 to mate the IFC assembly 102 with the header assembly 104. For example, the mating interface end 116 may be received in the header assembly 104 to couple the IFC assembly 102 and the header assembly 104. The back end 118 may be closed and not provide an opening to a fuse subassembly 236 (shown in
The header assembly 104 includes a receptacle shroud 124 that receives the outer housing 112 in the illustrated embodiment. The receptacle shroud 124 may include a latch protrusion 128 that is engaged by a latch 202 (shown in
The outer housing 112 defines an interior chamber 206 that extends from the mating interface end 116 toward the back end 118. In one embodiment, the interior chamber 206 extends through the outer housing 112 along the longitudinal axis 114 from the mating interface end 116 to the back end 118. The mating interface end 116 and the back end 118 circumferentially enclose outer perimeters of the interior chamber 206 at the corresponding mating interface end 116 or back end 118. The mating interface end 116 may include an inwardly extending slot 212 that disposed around the interior chamber 206 at the mating interface end 116. As described below, the slot 212 may receive a seal element 208 and the seal retainer body 210.
In the illustrated embodiment, the IFC assembly 102 includes the seal element 208 disposed at or around the mating interface end 116 of the outer housing 112. For example, the seal element 208 may be provided along the outer perimeter of the interior chamber 206 at the mating interface end 116. At least a portion of the seal element 208 may be located in the slot 212 of the outer housing 112. The seal element 208 includes one or more elastomeric bodies that provide a seal against the ingress of contaminants, such as moisture, into the interior chamber 206 of the outer housing 112 through the mating interface end 116. For example, the seal element 208 may be compressed between the header assembly 104 (shown in
A seal retainer body 210 may be secured to the mating interface end 116 of the outer housing 112 to hold the seal element 208 at the mating interface end 116. The seal retainer body 210 may be a rigid body that at least partially compresses the seal element 208 between the seal retainer body 210 and the outer housing 112. In one embodiment, the seal retainer body 210 is at least partially received in the slot 212 of the outer housing 112 to secure the seal element 208 between the seal retainer body 210 and the outer housing 112 along the outer perimeter of the mating interface end 116.
An electromagnetic shield 214 is disposed within the interior chamber 206 of the outer housing 112. The shield 214 extends between opposite ends 216, 218 along a central axis 220. The shield 214 defines an interior chamber 222 that extends through the shield 214 from one end 216 to the other end 218. Alternatively, the interior chamber 222 may extend from one end 216, 218 toward the other end 216, 218, but not all of the way through the shield 214. The shield 214 may include, or be formed from, a conductive material. For example, the shield 214 may be stamped and formed from a sheet of a tin-plated copper alloy. The shield 214 may be electrically coupled with an electric ground reference of the power distribution module 106 (shown in
An interior housing 224 is disposed within the interior chamber 222 of the shield 214. The interior housing 224 extends along a center axis 226 from a mating interface end 228 to a back end 230. In the illustrated embodiment, the mating interface end 228 is opposite of the back end 230. Alternatively, the mating interface end 228 and the back end 230 may be angled with respect to one another. The mating interface end 228 engages the header assembly 104 (shown in
An electric shunt 234 is disposed at or proximate to the mating interface end 228 of the interior housing 224. The electric shunt 234 may be press-fit into the interior housing 224. Alternatively, the electric shunt 234 may be held in the interior housing 224 using an adhesive or solder. In one embodiment, the electric shunt 234 includes, or is formed from, a conductive material. For example, the electric shunt 234 may be stamped from a metal sheet. The electric shunt 234 may be a conductive body that mates with one or more contacts or conductive terminals (not shown) in the header assembly 104 (shown in
The fuse subassembly 236 is disposed within the interior housing 234 and includes the conductive terminals 240, 242. While two conductive terminals 240, 242 are shown in
The conductive terminals 240, 242 are mounted to the insert body 238. The conductive terminals 240, 242 are electrically interconnected by the fuse 250. For example, each of the conductive terminals 240, 242 may engage an opposite conductive end cap 252, 254 of the fuse 250 and be electrically coupled by the fuse 250. In the illustrated embodiment, the conductive terminal 240 engages the end cap 254 and the conductive terminal 242 engages the end cap 252. The coupling of the conductive terminals 240, 242 to the fuse 250 establishes the fused conductive pathway 720 (shown in
Two or more components of the IFC assembly 102 may nest within one another. For example, the fuse subassembly 236 may be disposed within the inner chamber 232 of the interior housing 224 such that the center axis 244 of the fuse subassembly 236 is disposed along or parallel to the center axis 226 of the interior housing 224. The interior housing 224 may be located within the interior chamber 222 of the shield 214 such that the center axis 226 of the interior housing 224 is aligned with the central axis 220 of the shield 214. The shield 214 may be loaded into the interior chamber 206 of the outer housing 112 such that the central axis 220 of the shield 214 is oriented along the longitudinal axis 114 of the outer housing 112.
The insert body 238 includes two rails 300, 302 that extend parallel to the center axis 244 of the insert body 238. The rails 300, 302 extend from the front end 246 to the rear end 248. An elongated channel 304 is located between the rails 300, 302 and defines an opening that extends from the top side 308 to the bottom side 310 and between the rails 300, 302. As shown in
In the illustrated embodiment, each of the rails 300, 302 includes a latch 312 that opposes the latch 312 of the other rail 300, 302. The latches 312 flex toward and away one another to snapably receive and secure the fuse 250 between the rails 300, 302. For example, each latch 312 may move in opposite directions along a lateral axis 314 that is oriented perpendicular with respect to the center and vertical axes 244, 306. Each latch 312 may flex toward the respective rail 300, 302 to which the latch 312 is coupled to increase the width of the channel 304 along the lateral axis 314 when the fuse 250 is inserted between the rails 300, 302. Conversely, each latch 312 may flex away from the respective rail 300, 302 to which the latch 312 is coupled once the fuse 250 is loaded into the channel 304 between the rails 300, 302 to decrease the width of the channel 304 and secure the fuse 250 between the rails 300, 302. The latches 312 may be spring loaded such that the latches 312 move toward the opposite rail 300, 302 when the fuse 250 is removed from the channel 304 and snap toward one another to apply a restorive force toward one another and against opposite sides of the fuse 250 to secure the fuse 250 in the channel 304.
The conductive terminals 240, 242 engage the rails 300, 302 to mount the conductive terminals 240, 242 to the insert body 238. For example, the conductive terminal 240 includes opposing arms 508, 510 that engage the narrowed portion 500 of the rail 300 while the conductive terminal 242 includes opposing arms 512, 514 that engage the narrowed portion 502 of the rail 302. The conductive terminal 240 may be snapably coupled to the rail 300. For example, the conductive terminal 240 may be secured to the rail 300 by a snap-fit connection between the arms 508, 510 and the narrowed portion 500. The conductive terminal 242 may be snapably coupled to the rail 302. For example, the conductive terminal 242 may be secured to the rail 302 by a snap-fit connection between the arms 512, 514 and the narrowed portion 502. The arms 508, 510 of the conductive terminal 240 are joined to the mating end 256 by an elongated, substantially planar body 516. Similarly, the arms 512, 514 of the conductive terminal 242 are joined to the mating end 258 by an elongated, substantially planar body 518. As the conductive terminal 242 is shorter in length than the conductive terminal 240, the body 518 of the conductive terminal 242 may be shorter than the length of the body 516 of the conductive terminal 240. As shown in
The mating ends 256, 258 of the conductive terminals 240, 242 mate with contacts 126 (shown in
The fused conductive pathway 720 is internal to the IFC assembly 102 in one embodiment. For example, the fuse 250 and the conductive terminals 240, 242 (schematically represented in
The power supply circuit 700 is internal to the power distribution module 106 in one embodiment. For example, the power supply circuit 700 may include the power source 702, the electrical load 704 and several conductive pathways 706 that internally interconnect the power source 702 and electrical load 704. The power supply circuit 700 may be entirely enclosed within the power distribution module 106. For example, the power source 702, electrical load 704 and conductive pathways 706 may not extend beyond the outer or exterior surfaces of the power distribution module 106. The conductive pathways 706 may extend to nodes 708 that are disposed at or near the exterior surface 108 of the power distribution module 106. For example, the conductive pathways 706 may be joined with the contacts 126 (shown in
The IFC assembly 102 mates with the header assembly 104 (shown in
The power distribution module 106 may include a logic device 710 that communicates with the power source 702. The logic device 710 may be embodied in one or more computer logic components, such as a microcontroller, processor, microprocessor, computer, and/or software operating on a processor, microprocessor, or computer. The logic device 710 directs the power source 702 to supply and to cut off supply of current to the electrical load 704. For example, the logic device 710 may direct the power source 702 to begin supplying high voltage current to the electrical load 704 once the IFC assembly 102 is fully mated with the power distribution module 106. The logic device 710 may direct the power source 702 to stop supplying high voltage current to the electrical load 704 when the IFC assembly 102 is partially or no longer mated with the power distribution module 106. The logic device 710 may communicate with the power source 702 via control signals communicated via one or more conductive pathways 712.
An interlock circuit 716 in the power distribution module 106 electrically interconnects the logic device 710 with several conductive pathways 714 in the illustrated embodiment. The conductive pathways 714 electronically couple the logic device 710 with additional contacts (not shown) disposed in the header assembly 104 (shown in
In one embodiment, the mating of the IFC assembly 102 with the power distribution module 106 closes the interlock circuit 716. For example, the mating of the IFC assembly 102 and header assembly 104 (shown in
The electrical shunt 234 and the fused conductive pathway 720 may be positioned relative to one another in the IFC assembly 102 such that the fused conductive pathway 720 closes the power supply circuit 700 prior to the electrical shunt 234 closing the interlock circuit 716. For example, the conductive terminals 240, 242 may protrude farther from the mating interface end 116 (shown in
In one embodiment, the electrical shunt 234 and the fused conductive pathway 720 are positioned relative to one another in the IFC assembly 102 such that upon separation, removal or disassembly of the IFC assembly 102 from the power distribution module 106, the power supply circuit, 700 is opened prior to the opening the interlock circuit 716. For example, the electrical shunt 234 may disengage from the contacts, or nodes 718, of the interlock circuit 716 prior to the conductive terminals 240, 242 disengaging from the contacts 126 (shown in
The IFC assembly 102 provides an external fuse 250 to the power distribution module 106 that may be more easily replaced than a fuse that is internal to the power distribution module 106. For example, replacement of a blown fuse 250 in the IFC assembly 102 may merely require unplugging and replacement of the IFC assembly 102 with another IFC assembly 102. Alternatively, replacement of a blown fuse 250 may merely require unplugging the IFC assembly 102 from the power distribution module 106, removal of the fuse subassembly 236 (shown in
In another embodiment, the IFC assembly 102 may be configured similar to the integrated fuse connector assemblies disclosed in one or more of the '838 and the '766 Applications. For example, the fuse subassembly 236 may be configured similar to the integral fuse connector assemblies described in the '838 and/or '766 Applications. By way of example only, the fuse terminals of the integral fuse connector assembly described in the '838 and/or '766 Application may be joined with the contacts 126 to provide a fused conductive pathway between the contacts 126 of the power distribution module 106.
Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, the terms “first,” “second,” and “third,” etc. are used merely as labels, and are not intended to impose numerical requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This application relates to and claims priority benefit to U.S. Provisional Application No. 61/199,838, filed Nov. 20, 2008, and entitled “Integrated Fuse Connector Assembly” (the “'838 Application”), U.S. Provisional Application No. 61/199,766, filed Nov. 20, 2008, and entitled “Integrated Fuse Terminal Assembly” (the “'766 Application”), and U.S. Provisional Application No. 61/201,605, filed Dec. 12, 2008, and entitled “Connector Assembly With Two Stage Latch” (the “'605 Application”). This application also is a continuation-in-part of co-pending U.S. Nonprovisional Application Ser. No. 12/539,261, filed Aug. 11, 2009, and entitled “Connector Assembly With Two-Stage Latch” (the “261 Application”). The '261 Application relates to and claims priority benefit to the '605 Application. The entire disclosures of the '838, '766, '605 and '261 Applications are incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3218413 | Poehlman, Jr. | Nov 1965 | A |
3320383 | Koetter | May 1967 | A |
3924914 | Banner | Dec 1975 | A |
4178061 | Ahroni | Dec 1979 | A |
4408822 | Nikitas | Oct 1983 | A |
4426127 | Kubota | Jan 1984 | A |
4575704 | Pezold | Mar 1986 | A |
5137473 | Nickola | Aug 1992 | A |
5480323 | Mews et al. | Jan 1996 | A |
5668698 | Jozwiak et al. | Sep 1997 | A |
6095843 | Kaneko et al. | Aug 2000 | A |
6869313 | Gibboney | Mar 2005 | B2 |
7021968 | Lu | Apr 2006 | B1 |
7186146 | Chang et al. | Mar 2007 | B1 |
7613003 | Pavlovic et al. | Nov 2009 | B2 |
20030001715 | Montague | Jan 2003 | A1 |
20050122696 | Weisz et al. | Jun 2005 | A1 |
20070293082 | Sumitani et al. | Dec 2007 | A1 |
20080303625 | Ding | Dec 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100124834 A1 | May 2010 | US |
Number | Date | Country | |
---|---|---|---|
61199838 | Nov 2008 | US | |
61199766 | Nov 2008 | US | |
61201605 | Dec 2008 | US |