The present invention relates generally to safety equipment in the field of power systems. More specifically, the present invention is a fuse cutout monitoring device that is to be used on an electric power distribution system.
In power distribution systems, a fuse cutout is a combination of a fuse and a switch. The fuse cutout is used in primary overhead lines. As an example, one use of the existing fuse cutouts is to protect distribution transformers from current surges and overloads. When an overcurrent is caused by a fault in the transformer or the customer circuit, the fuse melts within the fuse tube. The melting results in the transformer being disconnected from the line. The detachment from the line is executed by detaching a fuse tube of the fuse cutout assembly.
With existing fuse cutout assemblies, the detached fuse tube needs to be discovered prior to executing any repair activities. Searching for a detached fuse tube can be extremely time consuming especially during low light conditions. The amount of time spent on discovering the detached fuse tube can be disadvantageous when the power distribution system needs to be repaired within a short time. Therefore, the need for a method that can promptly notify the authorities regarding the detached fuse tube is necessary.
A fuse cutout monitoring and indication device should not change the overall structure of the existing fuse cutouts or the overall functionality of the existing fuse cutouts. In other words, the fuse cutout monitoring device needs to be used with any existing power distribution system with fuse cutouts. The inability to be used with any existing fuse cutout can be financially disadvantageous since the fuse cutout needs to be redesigned to accommodate the fuse cutout monitoring device.
The objective of the present invention is to address the described issues. More specifically, the present invention introduces an apparatus that promptly notifies an individual of the fuse cutout status. Therefore, the issue can be addressed immediately and the necessary repairs to the power line can be performed accordingly. The present invention is designed to be used as a retrofit. Therefore, the present invention can be used with any existing fuse cutout without making any adjustments to the fuse cutout. Moreover, the mounting method used when installing the present invention on the fuse tube eliminates the need to disconnect the electrical power supply.
All illustrations of the drawings are for the purpose of describing selected versions of the present invention and are not intended to limit the scope of the present invention.
The present invention introduces a fuse cutout monitoring and indication device. More specifically, the present invention is a device that detects the detachment of a fuse tube from the attachment hooks of a fuse cutout and therefore is in a dropped position. When the detachment is detected, the present invention provides a visual alert or other comparable alert so that the location of the detached fuse tube can be found promptly. To do so, the present invention is designed as a retrofit that can be attached to the fuse tube of a fuse cutout.
As illustrated in
The attachment mechanism 4 can vary in different embodiments of the present invention. In the preferred embodiment of the present invention, the attachment mechanism 4 comprises a first mounting clip 5 and a second mounting clip 6 which are connected to the structural body 1. The first mounting clip 5 and the second mounting clip 6 are designed to appropriately grip the fuse tube 200. Since the fuse tube 200 is cylindrical in shape, the first mounting clip 5 and the second mounting clip 6 are designed to receive a cylindrical body as seen in
To prevent the visual indicator 100 from being triggered prior to being attached to the fuse tube 200, the present invention further comprises a reed switch 7 and a deactivation magnet 8. The reed switch 7, which is electrically connected to the power source 3, generally has closed terminals which would open when positioned within a magnetic field. A magnetic field 300 of the deactivation magnet 8 is used to control the reed switch 7 as necessary. The reed switch 7 is positioned within the structural body 1. More specifically, the reed switch 7 is positioned to be within the magnetic field 300 of the deactivation magnet 8 as seen in
The present invention can be designed to wirelessly transmit information regarding the detachment of the fuse tube 200. To do so, the present invention further comprises a wireless communication device 9 and a control circuit 10 as shown in
The present invention can be designed to transmit location information of the detached fuse tube 200. To do so, the present invention further comprises a global positioning system (GPS) module 11 as further illustrated in
When the fuse tube 200 is detached during high-visibility conditions, the detached fuse tube 200 can be clearly seen. Illuminating the visual indicator 100 in such situations may not be essential and can result in the depletion of the power source 3. To avoid such situations, the present invention further comprises a light-sensitive unit 12 as shown in
As illustrated in
The effective design also allows the present invention to be used with electric utility transmission lines or distribution conductors. As an example, the present invention can be used to monitor voltage, current, conductor temperature, ambient temperature, and conductor vibration. In such instances, the present invention further comprises a current sensor 13 as shown in
In addition to the current sensor 13, the present invention can further comprise a voltage sensor 14 to sense line voltage for abnormal voltage conditions. As further seen in
The present invention can also be designed to provide audio alerts when the fuse tube 200 is detached. As shown in
Hot sticks are used in maintenance and other distribution line related activity. The present invention comprises a hot stick attachment loop 15 that allows the present invention to be installed with the use of a hot stick. The hot stick attachment loop 15 is used to mount the present invention in parallel with the fuse tube 200. To do so, the hot stick attachment loop 15 is externally mounted onto the structural body 1. Moreover, the hot stick attachment loop 15 is positioned opposite the attachment mechanism 4 so that the attachment of the present invention onto the fuse tube 200 is not hindered.
When using the present invention, the following process flow is generally followed. If the present invention is being transported from one place to another or if the present invention is not used on the fuse tube 200, the deactivation magnet 8 is used. The deactivation magnet 8 is attached to the structural body 1 so that the reed switch 7 diverts current away from the visual indicator 100. When the present invention is prepared for use, the deactivation magnet 8 is removed. Removing of the deactivation magnet 8 allows the tilt switch 2 to activate the visual indicator 100 when needed.
The first mounting clip 5 and the second mounting clip 6 are used to attach the present invention to the fuse tube 200. In doing so, a twisting motion is executed to attach the first mounting clip 5 and the second mounting clip 6 onto the fuse tube 200. However, the present invention can be attached differently when the attachment mechanism 4 is different in another embodiment of the present invention. When a hot stick is used to position the present invention on a fuse cutout, the hot stick attachment loop 15 is utilized.
As seen in
Although the invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of the invention as hereinafter claimed.
The current application claims a priority to the U.S. Provisional Patent application Ser. No. 62/307,751 filed on Mar. 14, 2016.
Number | Name | Date | Kind |
---|---|---|---|
3810060 | Hubbard | May 1974 | A |
4045762 | Foulkes | Aug 1977 | A |
4661807 | Panaro | Apr 1987 | A |
6144284 | Santa Cruz | Nov 2000 | A |
6527077 | Yamamoto | Mar 2003 | B2 |
6687110 | Murray | Feb 2004 | B2 |
7109877 | Cuk | Sep 2006 | B2 |
7948352 | Tang | May 2011 | B2 |
8059006 | Schweitzer, III | Nov 2011 | B2 |
8168901 | Haj-Maharsi | May 2012 | B2 |
8344844 | Darr | Jan 2013 | B2 |
9099270 | Zulkowski | Aug 2015 | B2 |
9583297 | Benke | Feb 2017 | B2 |
20100230263 | Haj-Maharsi | Sep 2010 | A1 |
20120299739 | Zulkowski | Nov 2012 | A1 |
20130205900 | Nulty | Aug 2013 | A1 |
20150287564 | Benke | Oct 2015 | A1 |
20170059640 | Haensgen | Mar 2017 | A1 |
Number | Date | Country | |
---|---|---|---|
20170263406 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
62307751 | Mar 2016 | US |