1. Field of the Invention
The present invention relates generally to air conditioners and more specifically, to an air conditioning unit that will be more efficient by generating its own voltage. The present invention is a way to make an air conditioning unit more efficient by placing an actuator in line with the expanding refrigerant gas in communication with a generator that will generate a direct voltage (DC) that will in turn drive the two fan motors that most air conditioning units have. The motors will run on the DC voltage generated by the generator.
The present invention is an air conditioning circuit having a fan driving a generator with the fan driven by the compressor discharge line gases. The generator has a DC output that powers the blower motor and the condenser fan motor.
2. Description of the Prior Art
There are other electrically generative devices designed for power supply. Typical of these is U.S. Pat. No. 1,583,621 issued to Steinberg on May 4, 1926.
Another patent was issued to U.S. Pat. No. 4,307,575 on Dec. 29, 1981 as U.S. Pat. No. 4,307,575. Yet another U.S. Pat. No. 5,559,379 was issued to Voss on Sep. 24, 1996 and still yet another was issued on Mar. 9, 1999 to Sasaki, et al as U.S. Pat. No. 5,878,584.
Another patent was issued to Bass on Aug. 14, 2001 as U.S. Pat. No. 6,272,873. Yet another U.S. Pat. No. 6,289,665 was issued to Saiz on Sep. 18, 2001. Another was issued to Brasz on Mar. 28, 2006 as U.S. Pat. No. 7,017,357 and still yet another was issued on Dec. 5, 2006 to Kang et al as U.S. Pat. No. 7,145,258.
Another was issued to Miyazaki on May 15, 2001 as Japan Patent No. JP2001130246 and still yet another was issued on Jul. 7, 2004 to Yoon as Korea Patent No. KR20040061403.
A device of the class described used in combination with combustion engines and comprising a casing and an additional larger casing connected by a sleeve, said casings having a common axis, a shaft passing axially thru said casings, a fan rigidly mounted on said shaft in the smaller casing, the fan blades of said fan being curved longitudinally, the larger casing having an opening at the side, a fan rotatably mounted on said shaft in the larger casing, a: hub, angular fan blades on said hub, a flange on said hub, a resilient tongue on the face of said flange, a collar secured to said shaft, a flange on said collar adjacent, the flange of the hub member, a plurality of teeth on the face of the first-named flange, said teeth being adapted to be engaged by the resilient tongue, said teeth when engaged by the tongue being adapted to rotate the flange thru the medium of the fan blades in the larger casing.
In combination with the ground vehicle A powered by a waste heat generating electric motor 16, a cooling system 10 including a generator 17 for driving off refrigerant vapor from a strong refrigerant-absorbent solution, including a solar collector 12, an air-cooled condenser 30 connected with the generator for converting the refrigerant vapor to its liquid state, an air-cooled evaporator 38 connected with the condenser for returning the liquid refrigerant to its vapor state, and an absorber 18 is connected to the generator and to the evaporator for dissolving the refrigerant vapor in the weak refrigerant-absorbent solution, for thus providing a strong refrigerant solution, a pump 22 for establishing a pressurized flow of strong refrigerant-absorbent solution from said absorber through the electric motor, and thence to the collector.
An alternator assembly for use with a port fuel injected internal combustion engine including a battery charging system is driven by a turbine assembly mounted in a variable air intake or throttle valve assembly and converts the change in kinetic energy provided by the inlet combustion air movement across the turbine assembly into rotational movement which drives an electrical generating assembly or alternator to generate current which can be used to supplement a conventional vehicle battery charging system.
An air conditioner equipped with a solar generator is disclosed. The solar generator is capable of converting the DC power generated by a solar cell into the AC power whose voltage and frequency correspond to that of the commercial power source. The electrical power generated by the solar cell and the electrical power consumed by the air conditioner are monitored and may be displayed. The DC power generated by the solar cell is used directly by the air conditioner or used indirectly as the commercial power source by merging the converted AC power to the commercial power source. Further, the converted AC power may be selectively merged to the commercial power source depending on the various states of the air conditioner, and the air conditioning operations may be regulated depending on the electrical power generated by the solar cell.
A motor vehicle with a self-powered air conditioner system. An absorption type air conditioning unit is configured to air condition at least a portion of cab space of the motor vehicle. The unit has at least one electric powered component. There is a generator located outside the cab space for vaporizing a refrigerant. There is a condenser for condensing the refrigerant to produce a condensate, and an evaporator configured to remove heat from the cab space by a process of evaporation of the condensate. There is a combustion unit configured to burn fuel from the fuel tank. The combustion unit provides heat to a hot surface. A plurality of thermoelectric modules is mounted in thermal contact with the hot surface. A heat sink is cooled by the cooling water system. The heat sink is positioned so that it is in thermal contact with said plurality of thermoelectric modules. A temperature difference is produce across the modules to permit them to generate electrical power, and an electric control circuit is configured to utilize electric power generated by the modules to power the at least one electric powered component. In a preferred embodiment, excess electric power is used to keep batteries of the motor vehicle charged up. In a preferred embodiment provision is made for hot water to be circulated from the combustion unit to the cab space to provide heat for the cab space when desired.
The device involves the placement of an air pump turbine and the aircraft outflow valve in a duct through which all the air flows, with the turbine shaft attached to that of an electric generator, to a hydraulic pump, and to the N2 and accessory gearbox inside the engine, the air is also sent through a duct to strike inclined against the tips of the fan blades and against the tips of the first stage of the low speed compressor blades of the turbine engine.
In a comfort system having a combination furnace and air conditioner, the two are operated simultaneously at periods of time in which emergency power is desired, with the air conditioning system being temporarily converted to cause the flow of refrigerant to pass from the evaporator to a high pressure side of said compressor rather than to the low pressure side thereof to thereby drive the compressor in reverse such that it operates as a turbine. The turbine then drives its motor in reverse to generate power to be supplied to the various components of the systems and to other appliances during emergency mode operation.
An electricity generating and air conditioning system including an engine, a generator connected to an output shaft of the engine to generate electricity, an air conditioner, which uses the electricity generated from the generator and includes a compressor, an indoor heat exchanger, an outdoor heat exchanger, and an expansion device, and an exhaust gas waste heat recovering device to recover heat of exhaust gas discharged from the engine and to transfer the recovered heat to a refrigerant passing through a discharge line of the compressor. The electricity generating and air conditioning system has an advantage in that an enhancement in heating performance is achieved.
PROBLEM TO BE SOLVED: To provide an intended cooling ability even with a small generator by controlling a direct current voltage outputted by a converter. SOLUTION: This controller has a phase detecting means 13 detecting a phase of an alternating voltage generated by a permanent magnet generator 2A driven by an engine of an automobile, an alternating current detecting means 14 detecting an amperage and a phase of an alternating current generated by the permanent magnet generator 2A, and a direct current voltage detecting means 16 detecting a direct current voltage outputted by the converter 3. It is provided with the converter 3 converting the alternating voltage generated by the permanent magnet generator 2A into the direct current voltage of a predetermined level in accordance with signals from the phase detecting means 13, the alternating current detecting means 14, and the direct current voltage detecting means 16, and an inverter 5 converting the direct current voltage outputted by the converter 3 into an alternating voltage. A compressor motor 7 of a car air conditioner 6 is driven by an output voltage of the inverter 5.
PURPOSE: A power-saving air conditioner is provided to reduce power consumption by operating a compressor, an outdoor unit fan motor, and an indoor unit fan motor with external commercial power source and by operating an electronic circuit with the power source generated by operating a generator with the driving force of the indoor unit fan motor. CONSTITUTION: A power-saving air conditioner comprises a generator (60) installed to a shaft of an indoor unit fan motor (40), to generate induced electromotive force; a voltage-sensing part (70) measuring the voltage of the induced electromotive force generated from the generator; and an electronic switch (80) selectively supplying the commercial power source and the output of the generator to a control part (30) according to the voltage measured via the voltage-sensing part. The power-saving air conditioner further comprises an electric condenser stores the induced electromotive force output from the generator.
While these devices may be suitable for the purposes for which they were designed, they would not be as suitable for the purposes of the present invention, as hereinafter described.
A primary object of the present invention is to provide an internal power source for an air conditioner fans.
Another object of the present invention is to provide apparatus using the expanding state of the refrigerant gases to drive a generator.
Yet another object of the present invention is to provide said generator with DC output for powering at least one air conditioner fan.
Still yet another object of the present invention is to provide a refrigerant line apparatus wherein the expanding gas impinges upon said apparatus to drive an actuator coupled to a generator shaft.
Another object of the present invention is to provide an air conditioner having a generator supplying DC power to the air conditioners fans in a heat recovery method.
Additional objects of the present invention will appear as the description proceeds.
The present invention overcomes the shortcomings of the prior art by providing an air conditioning unit that will be more efficient by generating its own voltage. The present invention is a way to make an air conditioning unit more efficient by placing an actuator in line with the expanding refrigerant gas in communication with a generator that will generate a direct voltage (DC) that will in turn drive the two fan motors that most air conditioning units have. The present invention is an air conditioning circuit having a fan driving a generator with the fan driven by the compressor discharge line gases. The generator having a DC output that powers the blower motor and the condenser fan motor.
The foregoing and other objects and advantages will appear from the description to follow. In the description reference is made to the accompanying drawings, which forms a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. These embodiments will be described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural changes may be made without departing from the scope of the invention. In the accompanying drawings, like reference characters designate the same or similar parts throughout the several views.
The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is best defined by the appended claims.
In order that the invention may be more fully understood, it will now be described, by way of example, with reference to the accompanying drawing in which:
Turning now descriptively to the drawings, in which similar reference characters denote similar elements throughout the several views, the figures illustrate the Refrigerant Exhaust Driven Generator for Air Cooling Units of the present invention. With regard to the reference numerals used, the following numbering is used throughout the various drawing figures.
The following discussion describes in detail one embodiment of the invention (and several variations of that embodiment). This discussion should not be construed, however, as limiting the invention to those particular embodiments, practitioners skilled in the art will recognize numerous other embodiments as well. For definition of the complete scope of the invention, the reader is directed to appended claims.
It will be understood that each of the elements described above, or two or more together may also find a useful application in other types of methods differing from the type described above.
While certain novel features of this invention have been shown and described and are pointed out in the annexed claims, it is not intended to be limited to the details above, since it will be understood that various omissions, modifications, substitutions and changes in the forms and details of the device illustrated and in its operation can be made by those skilled in the art without departing in any way from the spirit of the present invention.
Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic or specific aspects of this invention.