The present invention relates to a fuse unit to be used mainly for, for example, an electric circuit for an automobile, and relates particularly to a fuse unit in which a metal part and a resin covering body are integrated by insert molding, and a method of manufacturing the fuse unit.
In the prior art, fuse units have been used to protect an electric circuit mounted in an automobile or the like and various electric components connected to the electric circuit. Specifically, when an unintended overcurrent flows in the electric circuit, a fusing portion fuses due to heat generated by overcurrent to protect the various electric components so as not to allow excess current to flow through the electric components.
There are various kinds of fuse units depending on the application, and, for example, the fuse unit described in Patent Literature 1 is used for connecting an on-board battery and electric wires supplying power to various electric components. In such an on-board fuse unit, there is a possibility that metal parts are damaged by vibration of a vehicle body. Thus, a resin is poured and insert-molded in a state where the metal part is disposed in a molding die, whereby the metal part and a resin covering body are integrated to avoid damage of the metal parts due to vibration.
The fuse unit may be provided with a connector portion used for attaching an external terminal from the outside. More specifically, as shown in a fuse unit 800 in
Here, a method of manufacturing the fuse unit 800 including the metal part 700 will be described. First, the metal part 700 is placed on a fixed side mold plate (not shown), and a movable side mold plate is mated with the fixed side mold plate from above of the metal part 700 to form a cavity. Then, when a resin is injected into the cavity, the fuse unit 800, as shown in
However, as shown in
The present invention provides a fuse unit which facilitates a work such as inspection and a method of manufacturing the fuse unit.
A method of manufacturing a fuse unit according to the present invention is a method of manufacturing a fuse unit, which has a metal part including an input terminal and an external connection terminal and a connector part for attaching an external terminal to the external connection terminal and is manufactured by integrating the metal part and a resin covering body by insert molding. In this manufacturing method, the metal part and the resin covering body are integrated by insert molding such that a distal end of the external connection terminal of the metal part protrudes from the resin covering body, and then, the connector part separate from the resin covering body is attached to the resin covering body so that the external connection terminal protruding from the resin covering body can be connected to the external terminal.
According to the above feature, since the metal part and the resin covering body are integrated by insert molding in a state where the distal end of the external connection terminal of the metal part protrudes from the resin covering body, inspection equipment or the like can be easily connected to the external connection terminal protruding from the resin covering body to the outside. Thus, it is possible to easily perform inspection and measurement work of the fuse unit. When the inspection and measurement work of the fuse unit is terminated, a separate connector part needs only be attached to the resin covering body, so that an external terminal connector can be inserted and attached as before.
Further, in the method of manufacturing a fuse unit according to the present invention, the metal part includes a plurality of the external connection terminals, the distal ends of the external connection terminals are connected to each other by a connecting portion, and the metal part and the resin covering body are integrated by insert molding such that the distal end of the external connection terminal of the metal part and the connecting portion protrude from the resin covering body. Then, the connecting portion of the external connection terminal protruding from the resin covering body is cut and removed.
According to the above feature, since the distal ends of the external connection terminals are connected to each other by the connecting portion, when the metal part and the resin covering body are integrated by insert molding, the external connection terminals are not deformed or deviated from each other, so that occurrence of defective products can be prevented. Since the connecting portion is cut and removed after insert molding, the connecting portion does not become an obstacle when a separate connector part is attached to the resin covering body.
A fuse unit according to the present invention is a fuse unit, which has a metal part including an input terminal and an external connection terminal and a connector part for attaching an external terminal to the external connection terminal and in which the metal part and a resin covering body are integrated. In this fuse unit, a distal end of the external connection terminal of the metal part protrudes from the resin covering body, and the connector part separate from the resin covering body is attached to the resin covering body so that the external connection terminal can be connected to the external terminal.
According to the above feature, inspection equipment or the like can be easily connected to the external connection terminal protruding from the resin covering body to the outside, and it is possible to easily perform inspection and measurement work of the fuse unit. When the inspection and measurement work of the fuse unit is terminated, a separate connector part needs only be attached to the resin covering body, so that an external terminal connector can be inserted and attached as before.
As described above, according to the fuse unit and the method of manufacturing a fuse unit according to the present invention, a work such as inspection of the fuse unit is facilitated.
Hereinafter, embodiment of the present invention will be described with reference to the drawings. The embodiment to be described below exemplifies shapes and materials of respective members included in a fuse unit and will not be limited to the exemplified shapes and materials. In this specification, a “front/front side” is a side where a fuse connection terminal 130 protrudes in a front view of a metal part 100 shown in
One end of each fuse connection terminal (130A to 130C) is connected to the circuit portion 112, and the other end is connected to each corresponding external connection terminal (140A to 140C). Thus, if an overcurrent flows from the power source side connected to the stud bolt hole 111 of the input terminal 110, a fusing portion (not shown) of a fuse attached to each of the fuse connection terminals 130 fuses, so that a load connected to each of the external connection terminals 140 can be protected. The external connection terminal 140D is connected to the circuit portion 112 via a fusing portion 114. Thus, if an overcurrent flows from the power source side connected to the stud bolt hole 111 of the input terminal 110, the fusing portion 114 fuses, so that it is possible to protect a load connected to the external connection terminal 140D.
All distal ends of the external connection terminals (140A to 140D) are connected to each other by the connecting portion 150. As will be described later, the connecting portion 150 is cut and removed, so that only the distal ends of the respective external connection terminals (140A to 140D) remain so as to protrude from an end surface of a resin covering body.
Next, a method of forming the metal part 100 will be briefly described. First, a flat plate-like member formed of a conductive metal such as copper or its alloy and having a uniform thickness is punched out into a predetermined shape with a press machine or the like. Then, when the input terminal 110 is folded by approximately 90 degrees and the fuse connection terminal 130 is also folded by approximately 90 degrees, the metal part 100 shown in
Next, a method of manufacturing a fuse unit 300 will be described with reference to
As shown in
Although not illustrated, the stud bolt hole 111 of the input terminal 110 is exposed at an upper end side of the resin covering body 200 in order to connect to the power source side. As shown in
Then, as shown in
A plurality of locking claws 241 are formed at an edge portion of the end surface 250. A pair of the external connection terminal 140A and the external connection terminal 140B is connected to an external terminal connector C4 to be described later, and a pair of the external connection terminal 140C and the external connection terminal 140D is connected to an external terminal connector C6 to be described later.
Here, a detailed configuration of the connector part 400 engaged with the locking claws 240 and 241 will be described with reference to
A shape of an inner surface of the first opening 410 coincides with a shape of an outer surface of the external terminal connector C4 to be described later such that the external terminal connector C4 is inserted into and attached to the first opening 410. Similarly, a shape of an inner surface of the second opening 420 coincides with a shape of an outer surface of the external terminal connector C6 to be described later such that the external terminal connector C6 is inserted into and attached to the second opening 420. The partition wall 430 partitions between the first opening 410 and the second opening 420, and an insertion opening 431 into which an insertion portion 242 (see
Next, with reference to
Then, as shown in
An external terminal connector can be inserted into the completed fuse unit 300 depending on the application when used. Specifically, as shown in
The external terminals C3 and C5 connected to the respective external connection terminals 140 are connected to an external load or the like. Even when an overcurrent flows from the battery power source side, each corresponding fusing portion (not shown) fuses, so that a load connected via the external terminals C3 and C5 can be protected.
As described above, according to the method of manufacturing the fuse unit 300 according to the present invention, in a state where the distal end of the external connection terminal 140 of the metal part 100 protrudes from the resin covering body 200, the metal part 100 and the resin covering body 200 are integrated by insert molding. Thus, since inspection equipment or the like can be easily connected to the external connection terminal 140 protruding from the resin covering body 200 to the outside, it is possible to easily perform inspection and measurement work of the fuse unit 300. When the inspection and measurement work of the fuse unit 300 is terminated, the separate connector part 400 needs only to be attached to the resin covering body 200, so that an external terminal connector can be inserted and attached as before. In the inspection, for example, it is assumed that inspection equipment is connected to the input terminal 110 on an input side and the external connection terminal 140 on an output side to confirm conduction.
Further, according to the method of manufacturing the fuse unit 300 according to the present invention, since the distal ends of the external connection terminals 140 are connected to each other by the connecting portion 150, when the metal part 100 and the resin covering body 200 are integrated by insert molding, the external connection terminals 140 are not deformed or deviated from each other, so that occurrence of defective products can be prevented. Since the connecting portion 150 is cut and removed after insert molding, the connecting portion 150 does not become an obstacle when the separate connector part 400 is attached to the resin covering body 200. Particularly, since the connecting portion 150 is provided at the distal end of the external connection terminal 140 and protrudes outside so as not to be covered with the resin covering body 200 at the time of insert molding, the connecting portion 150 can be easily cut and removed.
In the fuse unit 300 of the present invention, the external connection terminal 140 protrudes laterally from the lower end side of the resin covering body 200. As shown in
When attempting to form the first opening 410 and the second opening 420 which open toward the side by the fixed side mold plate P1 and the movable side mold plate P2, an undercut portion is formed, so that installation of the placing piece is an indispensable work. The “side (lateral side)” means a direction (see the arrow U in
However, the method of manufacturing the fuse unit 300 according to the present invention is a method of manufacturing in advance the connector part 400 as a separate body without integrally molded with the resin covering body 200, and, after forming the resin covering body 200, attaching the connector part 400 to the resin covering body 200, and therefore, the placing piece may not be used. Thus, it is possible to eliminate the dangerous work of attaching and detaching the placing piece. Since the work of attaching and detaching the placing piece becomes unnecessary, the operation tact is enhanced, and the manufacturing cost can be reduced.
In the state where the distal ends of the external connection terminals 140 are connected to each other by the connecting portion 150, when the placing piece is attached from the side at the time of insert molding, the connecting portion 150 and the placing piece will interfere with each other, so that it becomes difficult to attach the placing piece. That is, in the case of the conventional method of manufacturing a fuse unit using the placing piece, there is a problem that it is difficult to provide the connecting portion 150.
However, since the method of manufacturing the fuse unit 300 according to the present invention is, as described above, a method of attaching the separate connector part 400 to the resin covering body 200, the placing piece may not be used. Thus, it is possible to provide the connecting portion 150.
Further, the fuse unit and the method of manufacturing the fuse unit according to the present invention are not limited to the above-mentioned embodiment, and various modifications and combinations can be performed within a range of claims and within a range of the embodiment. These modifications and combinations are also included in the range of rights.
Number | Date | Country | Kind |
---|---|---|---|
2016-076373 | Apr 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2016/076545 | 9/9/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2017/175404 | 10/12/2017 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5841338 | Yasukuni | Nov 1998 | A |
6509824 | Inaba | Jan 2003 | B2 |
6566599 | Sumida | May 2003 | B2 |
Number | Date | Country |
---|---|---|
2001160347 | Jun 2001 | JP |
2002358864 | Dec 2002 | JP |
2005339965 | Dec 2005 | JP |
2013126285 | Jun 2013 | JP |
Entry |
---|
International Search Report for PCT/JP2016/076545 dated Nov. 15, 2016 with English translation (4 pages). |
Number | Date | Country | |
---|---|---|---|
20180122607 A1 | May 2018 | US |