Information
-
Patent Application
-
20040082635
-
Publication Number
20040082635
-
Date Filed
February 18, 200321 years ago
-
Date Published
April 29, 200420 years ago
-
CPC
-
US Classifications
-
International Classifications
Abstract
The present invention provides a fused ring compound of the following formula [I]
1
Description
TECHNICAL FIELD
[0001] The present invention relates to a novel fused ring compound and a pharmaceutically acceptable salt thereof useful as a therapeutic agent for hepatitis C, and to an intermediate compound for the synthesis thereof. The present invention also relates to a novel use of a certain fused ring compound or a pharmaceutically acceptable salt thereof as a therapeutic agent for hepatitis C. More particularly, the present invention relates to a therapeutic agent for hepatitis C, which contains a novel fused ring compound or a pharmaceutically acceptable salt thereof, which is effective for the prophylaxis or treatment of hepatitis C and which shows anti-hepatitis C virus (HCV) activity, particularly anti-HCV activity based on an RNA-dependent RNA polymerase inhibitory activity.
BACKGROUND ART
[0002] In 1989, a main causative virus of non-A non-B posttransfusion hepatitis was found and named hepatitis C virus (HCV). Since then, several types of hepatitis viruses have been found besides type A, type B and type C, wherein hepatitis caused by HCV is called hepatitis C.
[0003] The patients infected with HCV are considered to involve several percent of the world population, and the infection with HCV characteristically becomes chronic.
[0004] HCV is an envelope RNA virus, wherein the genome is a single strand plus-strand RNA, and belongs to the genus Hepacivirus of Flavivirus (from The International Committee on Taxonomy of Viruses, International Union of Microbiological Societies). Of the same hepatitis viruses, for example, hepatitis B virus (HBV), which is a DNA virus, is eliminated by the immune system and the infection with this virus ends in an acute infection except for neonates and infants having yet immature immunological competence. In contrast, HCV somehow avoids the immune system of the host due to an unknown mechanism. Once infected with this virus, even an adult having a mature immune system frequently develops persistent infection.
[0005] When chronic hepatitis is associated with the persistent infection with HCV, it advances to cirrhosis or hepatic cancer in a high rate. Enucleation of tumor by operation does not help much, because the patient often develops recurrent hepatic cancer due to the sequela inflammation in non-cancerous parts. In addition, there is a report on the involvement of HCV infection in dermatosis such as chronic urticaria, lichen planus, cryoglobulinemic purpura and the like (The Japanese Journal of Dermatology, 111(7), 1075-81, 2001).
[0006] Thus, an effective therapeutic method of hepatitis C is desired. Apart from the symptomatic therapy to suppress inflammation with an anti-inflammatory agent, the development of a therapeutic agent that reduces HCV to a low level free from inflammation and that eradicates HCV has been strongly demanded.
[0007] At present, a treatment with interferon is the only effective method known for the eradication of HCV. However, interferon can eradicate the virus only in about one-third of the patient population. For the rest of the patients, it has no effect or provides only a temporary effect. Therefore, an anti-HCV drug to be used in the place of or concurrently with interferon is awaited in great expectation.
[0008] In recent years, Ribavirin (1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide) has become commercially available as a therapeutic agent for hepatitis C, which is to be used concurrently with interferon. It enhances the efficacy of interferon but only to a low efficacy rate, and a different novel therapeutic agent for hepatitis C is desired.
[0009] Also, an attempt has been made to potentiate the immunocompetence of the patient with an interferon agonist, an. interleukin-12 agonist and the like, thereby to eradicate the virus, but an effective pharmaceutical agent has not been found yet.
[0010] In addition, the inhibition of HCV growth, wherein HCV-specific protein is targeted, has been drawing attention these days.
[0011] The gene of HCV encodes a protein such as serine protease, RNA helicase, RNA-dependent RNA polymerase and the like. These proteins function as a specific protein essential for the growth of HCV.
[0012] One of the specific proteins, RNA-dependent RNA polymerase (hereinafter to be also briefly referred to as an HCV polymerase), is an enzyme essential for the growth of the virus. The gene replication of HCV having a plus-strand RNA gene is considered to involve synthesis of a complementary minus-strand RNA by the use of the plus-strand RNA as a template, and, using the obtained minus-strand RNA as a template, amplifying the plus-strand RNA. The portion called NS5B of a protein precursor, that HCV codes for, has been found to show an RNA-dependent RNA polymerase activity (EMBO J., 15, 12-22, 1996), and is considered to play a central role in the HCV gene replication.
[0013] Therefore, an HCV polymerase inhibitor can be a target in the development of an anti-HCV drug, and the development thereof is eagerly awaited. However, an effective HCV polymerase inhibitor has not been developed yet, like in other attempts to develop an anti-HCV drug based on other action mechanisms. As the situation stands, no pharmaceutical agent can treat hepatitis C satisfactorily.
[0014] The following discloses known compounds relatively similar to the compound of the present invention.
[0015] The therapeutic agents for hepatitis C, which have a benzimidazole skeleton, are known from JP-A-2001-247550 (WO01/47883, EP1162196A1) and WO02/04425.
[0016] These publications disclose the following β-ketoamide compounds J etc. and K etc., respectively, as anti-HIV agents having an integrase inhibitory activity:
2
[0017] Note that the earliest publication dates of these publications are Jul. 5, 2001 (WO01/47883) and Jan. 17, 2002 (WO02/04425), and the priority date of the present application is Jun. 26, 2001, antedating these publication dates.
[0018] In addition, a known therapeutic agent for hepatitis C having a benzimidazole skeleton is also disclosed in WO97/36866, Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) and WO99/51619.
[0019] WO97/36866 discloses the following compound D and the like, and HCV helicase inhibitory activity of the compounds.
[0020] Japanese Patent Application under PCT laid-open under kohyo No. 2000-511899 (EP906097) discloses the following compound E and the like, and WO99/51619 discloses the following compound F and the like, in both of which a possibility of these compounds being effective as an HCV inhibitor is mentioned.
[0021] However, these publications do not include the compound disclosed in the present specification, or a disclosure suggestive thereof.
3
[0022] A known anti-hepatitis virus agent having a benzimidazole skeleton is disclosed in Japanese Patent Application under PCT laid-open under kohyo No. 2000-503017 (WO97/25316) and Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 (WO96/7646).
[0023] WO97/25316 discloses the following compound A and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as hepatitis B virus and the like. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.
[0024] Japanese Patent Application under PCT laid-open under kohyo No. 10-505092 discloses the following compound B and the like, wherein the use thereof is for a treatment of viral infection. The target virus is a DNA virus such as herpesvirus and hepatitis B virus. However, this publication does not include the compound disclosed in the present specification or a description regarding or suggestive of HCV.
4
[0025] The benzimidazole derivatives having an antiviral activity have been disclosed in JP-A-3-31264, U.S. Pat. No. 3,644,382 and U.S. Pat. No. 3,778,504. In addition, WO98/37072 discloses, as a production inhibitor of tumor necrosis factor (TNF) and cyclic AMP, a benzimidazole derivative for the use as an anti-human immunodeficiency virus (HIV) agent and an anti-inflammation agent. WO98/05327 discloses, as a reverse transcriptase inhibitor, a benzimidazole derivative for the use as an anti-HIV agent. J. Med. Chem. (13(4), 697-704, 1970) discloses, as a neuraminidase inhibitor, a benzimidazole derivative for the use as an anti-influenza virus agent.
[0026] However, none of these publications includes the compound of the present invention or a description regarding or suggestive of an anti-HCV effect.
[0027] Known benzimidazole derivatives having a pharmaceutical use other than as an antiviral agent are disclosed in JP-A-8-501318 (U.S. Pat. No. 5,814,651) and JP-A-8-134073 (U.S. Pat. No. 5,563,143). These publications disclose the following compound C and the like as a catechol diether compound, and the use thereof as an anti-inflammation agent. However, neither of the publications includes the compound of the present invention, and as the action mechanism, the former discloses phosphodiesterase IV and the latter discloses TNF. These publications do not include a description regarding or suggestive of an anti-HCV effect.
[0028] Japanese Patent Application under PCT laid-open under kohyo No. 2000-159749 (EP882718) discloses the following compound G and the like, and the use thereof for the treatment of bronchitis, glomerulonephritis and the like. However, this publication does not include the compound of the present invention, but discloses only a phosphodiesterase IV inhibitory and hypoglycemic action. This publication does not include a description regarding or suggestive of an anti-HCV effect.
[0029] U.S. Pat. No. 6,211,177 discloses the following compound H and the like with their use as antitumor agents. However, this publication does not encompass the compound of the present invention, and does not disclose or suggest an anti-HCV effect.
5
[0030] WO98/50029, WO98/50030 and WO98/50031 disclose benzimidazole derivatives as an antitumor agent having a protein isoprenyl transferase action. While this publication discloses a wide scope of the claims, at least it does not include a compound analogous to the compound of the present invention or a description regarding or suggestive of an anti-HCV effect.
[0031] JP-A-8-109169 (EP694535) discloses the application of a tachykinin receptor antagonist to treat an inflammatory disease, and WO96/35713 discloses the application thereof as a growth hormone release promoter to treat a growth hormone-related disease such as osteoporosis and the like. However, none of these publications includes a description regarding or suggestive of an anti-HCV effect.
[0032] WO2001/21634 discloses the following compound I in a chemical library. However, this publication does not encompass the compound of the present invention. While it discloses an antimicrobial activity of certain compounds, this publication does not teach or suggest an anti-HCV effect.
6
[0033] JP-A-53-14735 discloses a benzimidazole derivative as a brightener besides its pharmaceutical use, but this publication does not include the compound of the present invention.
SUMMARY OF THE INVENTION
[0034] Based on the findings from the preceding studies, it has been elucidated that a pharmaceutical agent having an anti-HCV activity is effective for the prophylaxis and treatment of hepatitis C, and particularly an anti-HCV agent having an inhibitory activity on RNA-dependent RNA polymerase of HCV can be a prophylactic and therapeutic agent effective against hepatitis C and a prophylactic and therapeutic agent for the disease caused by hepatitis C.
[0035] Accordingly, the present invention provides a pharmaceutical agent having an anti-HCV activity, particularly a pharmaceutical agent having an RNA-dependent RNA polymerase inhibitory activity.
[0036] The present inventors have made an in-depth study of compounds having an anti-HCV activity, particularly RNA-dependent RNA polymerase inhibitory activity, and completed the present invention.
[0037] Thus, the present invention provides the following (1) to (87).
[0038] (1) A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient:
7
[0039] wherein
[0040] a broken line is a single bond or a double bond,
[0041] G1 is C(—R1) or a nitrogen atom,
[0042] G2 is C(—R2) or a nitrogen atom,
[0043] G3 is C(—R3) or a nitrogen atom,
[0044] G4 is C(—R4) or a nitrogen atom,
[0045] G5, G6, G8 and G9 are each independently a carbon atom or a nitrogen atom,
[0046] G7 is C(—R7), an oxygen atom, a sulfur atom, or a nitrogen atom optionally substituted by R8,
[0047] wherein R1, R2, R3 and R4 are each independently,
[0048] (1) hydrogen atom,
[0049] (2) C1-6 alkanoyl,
[0050] (3) carboxyl,
[0051] (4) cyano,
[0052] (5) nitro,
[0053] (6) C1-6 alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino,
[0054] C1-6 alkoxy, C1-6 alkoxy C1-6 alkoxy, C1-6 alkoxycarbonyl and C1-6 alkylamino,
[0055] (7) —COORa1
[0056] wherein Ra1 is optionally substituted C1-6 alkyl (as defined above), C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B or glucuronic acid residue, group B; halogen atom, cyano, nitro, C1-6 alkyl,
[0057] halogenated C1-6 alkyl, C1-6 alkanoyl, —(CH2)r—COORb1, —(CH2)r—CONRb1Rb2, —(CH2)r—NRb1Rb2, —(CH2)r—NRb1—CORb2, —(CH2)r—NHSO2Rb1, —(CH2)r—ORb1, —(CH2)r—SRb1, —(CH2)r—SO2Rb1 and —(CH2)r—SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6,
[0058] (8) —CONRa2Ra3
[0059] wherein Ra2 and Ra3 are each independently hydrogen atom, C1-6 alkoxy or optionally substituted C1-6 alkyl (as defined above),
[0060] (9) —C(═NRa4)NH2
[0061] wherein Ra4 is hydrogen atom or hydroxyl group,
[0062] (10) —NHRa5
[0063] wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl,
[0064] (11) —ORa6
[0065] wherein Ra6 is hydrogen atom or optionally substituted C1-6 alkyl (as defined above),
[0066] (12) —SO2Ra7
[0067] wherein Ra7 is hydroxyl group, amino, C1-6 alkyl or C1-6 alkylamino,
[0068] (13) —P(═O) (ORa31)2
[0069] wherein Ra31 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B
[0070] or
[0071] (14) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, and
[0072] R7 and R8 are each hydrogen atom or optionally substituted
[0073] C1-6 alkyl (as defined above),
[0074] ring Cy is
[0075] (1) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C1-6 alkyl and C1-6 alkoxy,
[0076] (2) C3-8 cycloalkenyl optionally substituted by 1 to 5 substituent(s) selected from the above group C, or
[0077] (3)
8
[0078] wherein u and v are each independently an integer of 1 to 3,
[0079] ring A is
[0080] (1) C6-14 aryl,
[0081] (2) C3-8 cycloalkyl,
[0082] (3) C3-8 cycloalkenyl or
[0083] (4) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,
[0084] R5 and R6 are each independently
[0085] (1) hydrogen atom,
[0086] (2) halogen atom,
[0087] (3) optionally substituted C1-6 alkyl (as defined above) or
[0088] (4) —ORa8
[0089] wherein Ra8 is hydrogen atom, C1-6 alkyl or C6-14 aryl C1-6 alkyl, and
[0090] x is
[0091] (1) hydrogen atom,
[0092] (2) halogen atom,
[0093] (3) cyano,
[0094] (4) nitro,
[0095] (5) amino, C1-6 alkanoylamino,
[0096] (6) C1-6 alkylsulfonyl,
[0097] (7) optionally substituted C1-6 alkyl (as defined above),
[0098] (8) C2-6 alkenyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
[0099] (9) —COORa9
[0100] wherein Ra9 is hydrogen atom or C1-6 alkyl,
[0101] (10) —CONH—(CH2)1—Ra10
[0102] wherein Ra10 is optionally substituted C1-6 alkyl (as defined above), C1-6 alkoxycarbonyl or C1-6 alkanoylamino and 1 is 0 or an integer of 1 to 6,
[0103] (11) —ORa11
[0104] wherein Ra11 is hydrogen atom or optionally substituted C1-6 alkyl (as defined above)
[0105] or
[0106] (12)
9
[0107] wherein
[0108] ring B is
[0109] (1′) C6-14 aryl,
[0110] (2′) C3-8 cycloalkyl or
[0111] (3′) heterocyclic group (as defined above),
[0112] each Z is independently
[0113] (1′) a group selected from the following group D,
[0114] (2′) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
[0115] (3′) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
[0116] (4′) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
[0117] (5′) heterocyclic group optionally substituted by 1 to S substituent(s) selected from the following group D,
[0118] wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or
[0119] (6′) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
[0120] wherein the heterocycle C1-6 alkyl is C1-6 alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, as defined above,
[0121] group D:
[0122] (a) hydrogen atom,
[0123] (b) halogen atom,
[0124] (c) cyano,
[0125] (d) nitro,
[0126] (e) optionally substituted C1-6 alkyl (as defined above),
[0127] (f) —(CH2)t—CORa18,
[0128] (hereinafter each t means independently 0 or an integer of 1 to 6),
[0129] wherein Ra18 is
[0130] (1″) optionally substituted C1-6 alkyl (as defined above),
[0131] (2″) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
[0132] (3″) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B
[0133] wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,
[0134] (g) —(CH2)t—COORa19
[0135] wherein Ra19 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0136] (h) —(CH2)t—CONRa27Ra28
[0137] wherein Ra27 and Ra28 are each independently,
[0138] (1″) hydrogen atom,
[0139] (2″) optionally substituted C1-6 alkyl (as defined above),
[0140] (3″) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0141] (4″) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0142] (5″) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0143] (6″) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0144] wherein the heterocycle C1-6 alkyl is C1-6 alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above,
[0145] (7″) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0146] (8″) C3-8 cycloalkyl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0147] (9″) hydroxyl group or
[0148] (10″) C1-6 alkoxy,
[0149] (i) —(CH2)t—C(═NRa33)NH2
[0150] wherein Ra33 is hydrogen atom, C1-6 alkyl, hydroxyl group or C1-6 alkoxy,
[0151] (j) —(CH2)t—ORa20
[0152] wherein Ra20 is
[0153] (1″) hydrogen atom,
[0154] (2″) optionally substituted C1-6 alkyl (as defined above),
[0155] (3″) optionally substituted C2-6 alkenyl (as defined above),
[0156] (4″) C2-6 alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
[0157] (5″) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0158] (6″) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0159] (7″) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0160] (8″) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0161] (9″) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
[0162] (10″) C3-8 cycloalkyl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0163] (k) —(CH2)t—O—(CH2)p—CORa21
[0164] wherein Ra21 is amino, C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, and p is 0 or an integer of 1 to 6,
[0165] (1) —(CH2)t—NRa22Ra23
[0166] wherein Ra22 and Ra23 are each independently
[0167] (1″) hydrogen atom,
[0168] (2″) optionally substituted C1-6 alkyl (as defined above),
[0169] (3″) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0170] (4″) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0171] (5″) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
[0172] (6″) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0173] (m) —(CH2)t—NRa29CO—Ra24
[0174] wherein Ra29 is hydrogen atom, C1-6 alkyl or C1-6 alkanoyl, and Ra24 is
[0175] (1″) amino,
[0176] (2″) C1-6 alkylamino,
[0177] (3″) optionally substituted C1-6 alkyl (as defined above),
[0178] (4″) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0179] (5″) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B or
[0180] (6″) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0181] (n) —(CH2)t—NRa29SO2—Ra25
[0182] wherein Ra29 is as defined above, and Ra25 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0183] (o) —(CH2)t—S(O)qRa25
[0184] wherein Ra25 is as defined above, and q is 0, 1 or 2,
[0185] (p) —(CH2)t—SO2—NHRa26
[0186] wherein Ra26 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0187] and
[0188] (q) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, and
[0189] w is an integer of 1 to 3, and
[0190] Y is
[0191] (1′) a single bond,
[0192] (2′) C1-6 alkylene,
[0193] (3′) C2-6 alkenylene,
[0194] (4′) —(CH2)m—O—(CH2)n—, (hereinafter m and n are each independently 0 or an integer of 1 to 6),
[0195] (5′) —CO—,
[0196] (6′) —CO2—(CH2)n—,
[0197] (7′) —CONH—(CH2)n—NH—,
[0198] (8′) —NHCO2—,
[0199] (9′) —NHCONH—,
[0200] (10′) —O—(CH2)n—CO—,
[0201] (11′) —O—(CH2)n—O—,
[0202] (12′) —SO2—,
[0203] (13′) —(CH2)m—NRa12—(CH2)n—
[0204] wherein Ra12 is
[0205] (1″) hydrogen atom,
[0206] (2″) optionally substituted C1-6 alkyl (as defined above),
[0207] (3″) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0208] (4″) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0209] (5″) —CORb5
[0210] wherein Rb5 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0211] (6″) —COORb5 (Rb5 is as defined above) or
[0212] (7″) —SO2Rb5 (Rb5 is as defined above),
[0213] (14′) —NRa12CO— (Ra12 is as defined above),
[0214] (15′) —CONRa13—(CH2)n—
[0215] wherein Ra13 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0216] (16′) —CONH—CHRa14—
[0217] wherein Ra14 is C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0218] (17′) —O—(CH2)m—CRa15Ra16—(CH2)n—
[0219] wherein Ra15 and Ra16 are each independently
[0220] (1″) hydrogen atom,
[0221] (2″) carboxyl,
[0222] (3″) C1-6 alkyl,
[0223] (4″) —ORb6
[0224] wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl, or
[0225] (5 ″) —NHRb7
[0226] wherein Rb7 is hydrogen atom, C1-6 alkyl, C1-6 alkanoyl or C6-14 aryl C1-6 alkyloxycarbonyl, or Ra15 is optionally
[0227] (6″)
10
[0228] wherein n′, ring B′, Z′ and w′ are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,
[0229] (18′) —(CH2)n—NRa12—CHRa15—(Ra12 and Ra15 are each as defined above),
[0230] (19′) —NRa17SO2—
[0231] wherein Ra17 is hydrogen atom or C1-6 alkyl,
[0232] (20′) —S(O)e—(CH2)m—CRa15Ra16—(CH2)n—(e is 0, 1 or 2, Ra15 and Ra16 are each as defined above),
[0233] or
[0234] (21′) —(CH2)m—CRa15Ra16—(CH2)n— (Ra15 and Ra16 are each as defined above).
[0235] (2) The therapeutic agent of (1) above, wherein 1 to 4 of the G1, G2, G3, G4, G5, G6, G7, G8 and G9 is (are) a nitrogen atom.
[0236] (3) The therapeutic agent of (2) above, wherein G2 is C(—R2) and G6 is a carbon atom.
[0237] (4) The therapeutic agent of (2) or (3) above, wherein G5 is a nitrogen atom.
[0238] (5) The therapeutic agent of (1) above, wherein, in formula [I], the moiety
11
[0239] is a fused ring selected from
1213
[0240] (6) The therapeutic agent of (5) above, wherein, in formula [I], the moiety
14
[0241] is a fused ring selected from
15
[0242] (7) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-1]
16
[0243] wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.
[0244] (8) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-2]
17
[0245] wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.
[0246] (9) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-3]
18
[0247] wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.
[0248] (10) The therapeutic agent of (6) above, which comprises a fused ring compound of the following formula [I-4]
19
[0249] wherein each symbol is as defined in (1), or a pharmaceutically acceptable salt thereof as an active ingredient.
[0250] (11) The therapeutic agent of any of (1) to (10) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, —COORa1, —CONRa2Ra3, —SO2Ra7 (wherein Ra1, Ra2 Ra3 and Ra7 are as defined in (1)),
20
[0251] (12) The therapeutic agent of (11) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, —COORa1, —CONRa2Ra3 or —SO2Ra7 wherein Ra1, Ra2, Ra3 and Ra7 are as defined in (1).
[0252] (13) The therapeutic agent of any of (1) to (10) above, wherein at least one of R1, R2, R3 and R4 is —COORa1 wherein Ra1 is glucuronic acid residue.
[0253] (14) The therapeutic agent of any of (1) to (10) above, wherein at least one of R1, R2, R3 and R4 is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.
[0254] (15) The therapeutic agent of any of (1) to (14) above, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl,. tetrahydrothiopyranyl or piperidino.
[0255] (16) The therapeutic agent of any of (1) to (14) above, wherein the ring Cy is
21
[0256] wherein each symbol is as defined in (1).
[0257] (17) The therapeutic agent of any of (1) to (16) above, wherein the ring A is C6-14 aryl.
[0258] (18) The therapeutic agent of any of (1) to (17) above, wherein at least one substituent optionally substituted by group A is a substituent substituted by C1-6 alkoxy C1-6 alkoxy.
[0259] (19) The therapeutic agent of any of (1) to (17) above, wherein the Y is —(CH2)m—CRa15Ra16—(CH2)n— wherein each symbol is as defined in (1).
[0260] (20) The therapeutic agent of any of (1) to (19) above, wherein. at least one group represented by Z is heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the group D.
[0261] (21) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by Z is a heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:
22
[0262] wherein E1 is an oxygen atom, a sulfur atom or N(—Ra35), E2 is an oxygen atom, CH2 or N(—Ra35), E3 is an oxygen atom or a sulfur atom, wherein each Ra35 is independently hydrogen atom or C1-6 alkyl, f is an integer of 1 to 3, and h and h′ are the same or different and each is an integer of 1 to 3.
[0263] (22) The therapeutic agent of (21) above, wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D wherein said heterocyclic group is selected from the following groups:
23
[0264] wherein each symbol is as defined in (21).
[0265] (23) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is —(CH2)t—CONRa27Ra28 wherein each symbol is as defined in (1), and at least one of Ra27 and Ra28 is C1-6 alkoxy.
[0266] (24) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is —(CH2)t—C(═NRa33)NH2 wherein each symbol is as defined in (1), and Ra33 is hydroxyl group or C1-6 alkoxy.
[0267] (25) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is —(CH2)t—O—(CH2)p—CORa21, wherein each symbol is as defined in (1), and Ra21 is amino.
[0268] (26) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is —(CH2)t—NRa29CO—Ra24 wherein each symbol is as defined in (1), and Ra24 is amino or C1-6 alkylamino.
[0269] (27) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is —(CH2)t—NRa22Ra23 wherein each symbol is as defined in claim 1, and at least one of Ra22 and Ra23 is amino or C1-6 alkylamino.
[0270] (28) The therapeutic agent of any of (1) to (19) above, wherein at least one group represented by group D is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.
[0271] (29) A fused ring compound of the following formula [II]
24
[0272] wherein the moiety
25
[0273] is a fused ring selected from
26
[0274] wherein R1, R2, R3 and R4 are each independently,
[0275] (1) hydrogen atom,
[0276] (2) C1-6 alkanoyl,
[0277] (3) carboxyl,
[0278] (4) cyano,
[0279] (5) nitro,
[0280] (6) C1-6 alkyl optionally substituted by 1 to 3 substituent(s) selected from the following group A, group A; halogen atom, hydroxyl group, carboxyl, amino,
[0281] C1-6 alkoxy, C1-6 alkoxy C1-6 alkoxy, C1-6 alkoxycarbonyl and C1-6 alkylamino,
[0282] (7) —COORa1
[0283] wherein Ra1 is optionally substituted C1-6 alkyl (as defined above), C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group B or glucuronic acid residue; group B; halogen atom, cyano, nitro, C1-6 alkyl,
[0284] halogenated C1-6 alkyl, C1-6 alkanoyl, —(CH2)r—COORb1, —(CH2)r—CONRb1Rb2, —(CH2)r—NRb1Rb2, —(CH2)r—NRb1—CORb2, —(CH2)r—NHSO2Rb1, —(CH2)r—ORb1, —(CH2)r—SRb1, —(CH2)r—SO2Rb1 and —(CH2)r—SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or C1-6 alkyl and r is 0 or an integer of 1 to 6,
[0285] (8) —CONRa2Ra3
[0286] wherein Ra2 and Ra3 are each independently hydrogen atom, C1-6 alkoxy or optionally substituted C1-6 alkyl (as defined above),
[0287] (9) —C(═NRa4 )NH2
[0288] wherein Ra4 is hydrogen atom or hydroxyl group,
[0289] (10) —NHRa5
[0290] wherein Ra5 is hydrogen atom, C1-6 alkanoyl or C1-6 alkylsulfonyl,
[0291] (11) —ORa6
[0292] wherein Ra6 is hydrogen atom or optionally substituted C1-6 alkyl (as defined above),
[0293] (12) —SO2Ra7
[0294] wherein Ra7 is hydroxyl group, amino, C1-6 alkyl or C1-6 alkylamino,
[0295] (13) —P(═O) (ORa31)2
[0296] wherein Ra31 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0297] or
[0298] (14) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, and
[0299] R7 is hydrogen atom or optionally substitute C1-6 alkyl (as defined above),
[0300] ring Cy′ is
[0301] (1) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group C, group C; hydroxyl group, halogen atom, C1-6 alkyl and C1-6 alkoxy, or
[0302] (2)
27
[0303] wherein u and v are each independently an integer of 1 to 3,
[0304] ring A′ is a group selected from a group consisting of phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl and thienyl,
[0305] R5 and R6 are each independently
[0306] (1) hydrogen atom,
[0307] (2) halogen atom,
[0308] (3) optionally substituted C1-6 alkyl (as defined above) or (4) hydroxyl group
[0309] ring B is
[0310] (1) C6-14 aryl,
[0311] (2) C3-8 cycloalkyl or
[0312] (3) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,
[0313] each Z is independently
[0314] (1) a group selected from the following group D,
[0315] (2) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
[0316] (3) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
[0317] (4) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D,
[0318] (5) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or
[0319] (6) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the following group D wherein the heterocycle C1-6 alkyl is C1-6 alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, as defined above, group D:
[0320] (a) hydrogen atom,
[0321] (b) halogen atom,
[0322] (c) cyano,
[0323] (d) nitro,
[0324] (e) optionally substituted C1-6 alkyl (as defined above),
[0325] (f) —(CH2)t—CORa18, (hereinafter each t means independently 0 or an integer of 1 to 6),
[0326] wherein Ra18 is
[0327] (1′) optionally substituted C1-6 alkyl (as defined above),
[0328] (2′) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
[0329] (3′) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B
[0330] wherein the heterocyclic group has 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,
[0331] (g) —(CH2)t—COORa19
[0332] wherein Ra19 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0333] (h) —(CH2)t—CONRa27Ra28
[0334] wherein Ra27 and Ra28 are each independently,
[0335] (1′) hydrogen atom,
[0336] (2′) optionally substituted C1-6 alkyl (as defined above),
[0337] (3′) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0338] (4′) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0339] (5′) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0340] (6′) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0341] wherein the heterocycle C1-6 alkyl is C1-6 alkyl substituted by heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, as defined above,
[0342] (7′) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0343] (8′) C3-8 cycloalkyl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0344] (9′) hydroxyl group or
[0345] (10′) C1-6 alkoxy,
[0346] (i) —(CH2)t—C(═NRa33)NH2
[0347] wherein Ra33 is hydrogen atom, C1-6 alkyl, hydroxyl group or C1-6 alkoxy,
[0348] (j) —(CH2)t—ORa20
[0349] wherein Ra20 is
[0350] (1′) hydrogen atom,
[0351] (2′) optionally substituted C1-6 alkyl (as defined above),
[0352] (3′) optionally substituted C2-6 alkenyl (as defined above),
[0353] (4′) C2-6 alkynyl optionally substituted by 1 to 3 substituent(s) selected from the above group A,
[0354] (5′) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0355] (6′) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0356] (7′) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0357] (8′) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0358] (9′) C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
[0359] (10′) C3-8 cycloalkyl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0360] (k) —(CH2)t—O—(CH2)p—CORa21
[0361] wherein Ra21 is amino, C1-6 alkylamino or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0362] and p is 0 or an integer of 1 to 6,
[0363] (l) —(CH2)t—NRa22Ra23
[0364] wherein Ra22 and Ra23 are each independently
[0365] (1′) hydrogen atom,
[0366] (2′) optionally substituted C1-6 alkyl (as defined above),
[0367] (3′) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0368] (4′) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0369] (5′) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B or
[0370] (6′) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0371] (m) —(CH2)t—NRa29CO—Ra24
[0372] wherein Ra29 is hydrogen atom, C1-6 alkyl or C1-6 alkanoyl, and
[0373] Ra24 is
[0374] (1′) amino,
[0375] (2′) C1-6 alkylamino,
[0376] (31) optionally substituted C1-6 alkyl (as defined above),
[0377] (4′) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0378] (5′) heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B, or
[0379] (6′) heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0380] (n) —(CH2)t—NRa29SO2—Ra25
[0381] wherein Ra29 is as defined above, and Ra25 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0382] (o) —(CH2)t—S(O)q—Ra25
[0383] wherein Ra25 is as defined above, and q is 0, 1 or 2,
[0384] (p) —(CH2)t—SO2—NHRa26
[0385] wherein Ra26 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0386] and
[0387] (q) heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom,
[0388] w is an integer of 1 to 3, and
[0389] Y is
[0390] (1) a single bond,
[0391] (2) C1-6 alkylene,
[0392] (3) C2-6 alkenylene,
[0393] (4) —(CH2)m—O—(CH2)n—,
[0394] (hereinafter m and n are each independently 0 or an integer of 1 to 6),
[0395] (5) —CO—,
[0396] (6) —CO2—(CH2)n—,
[0397] (7) —CONH—(CH2)n—NH—,
[0398] (8) —NHCO2—,
[0399] (9) —NHCONH—,
[0400] (10) —O—(CH2)n—CO—,
[0401] (11) —O—(CH2)n—O—,
[0402] (12) —SO2—,
[0403] (13) —(CH2)m—NRa12—(CH2)n—
[0404] wherein Ra12 is
[0405] (1′) hydrogen atom,
[0406] (2′) optionally substituted C1-6 alkyl (as defined above),
[0407] (3′) C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0408] (4′) C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0409] (5′) —CORb5
[0410] wherein Rb5 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above), C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0411] (6′) —COORb5 (Rb5 is as defined above) or
[0412] (7′) —SO2Rb5 (Rb5 is as defined above),
[0413] (14) —NRa12CO— (Ra12 is as defined above),
[0414] (15) —CONRa13—(CH2)n—,
[0415] wherein Ra13 is hydrogen atom, optionally substituted C1-6 alkyl (as defined above) or C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0416] (16) —CONH—CHRa14—
[0417] wherein Ra14 is C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from the above group B,
[0418] (17) —O—(CH2)m—CRa15Ra16—(CH2)n—
[0419] wherein Ra15 and Ra16 are each independently
[0420] (1′) hydrogen atom,
[0421] (2′) carboxyl,
[0422] (3′) C1-6 alkyl,
[0423] (4′) —ORb6
[0424] wherein Rb6 is C1-6 alkyl or C6-14 aryl C1-6 alkyl,
[0425] or
[0426] (5′) —NHRb7
[0427] wherein Rb7 is hydrogen atom, C1-6 alkyl, C1-6 alkanoyl or C6-14 aryl C1-6 alkyloxycarbonyl, or Ra15 is optionally
[0428] (6′)
28
[0429] wherein n′, ring B′, Z′ and w′ are the same as the above-mentioned n, ring B, Z and w, respectively, and may be the same as or different from the respective counterparts,
[0430] (18) —(CH2)n—NRa12—CHRa15— (Ra12 and Ra15 are each as defined above),
[0431] (19) —NRa17SO2—
[0432] wherein Ra17 is hydrogen atom or C1-6 alkyl,
[0433] (20) —S(O)e—(CH2)m—CRa15Ra16—(CH2)n— (e is 0, 1 or 2, Ra15 and Ra16 are each as defined above),
[0434] or
[0435] (21) —(CH2)m—CRa15Ra16—(CH2)n— (Ra15 and Ra16 are each as defined above),
[0436] or a pharmaceutically acceptable salt thereof.
[0437] (30) The fused ring compound of (29) above, which is represented by the following formula [II-1]
29
[0438] wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof.
[0439] (31) The fused ring compound of (29) above, which is represented by the following formula [II-2]
30
[0440] wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof.
[0441] (32) The fused ring compound of (29) above, which is represented by the following formula [II-3]
31
[0442] wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof.
[0443] (33) The fused ring compound of (29) above, which is represented by the following formula [II-4]
32
[0444] wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof.
[0445] (34) The fused ring compound of any of (29) to (33) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, —COORa1, —CONRa2Ra3, —SO2Ra7 (wherein Ra1, Ra2, Ra3 and Ra7 are as defined in (29)),
33
[0446] or a pharmaceutically acceptable salt thereof.
[0447] (35) The fused ring compound of (34) above, wherein at least one of R1, R2, R3 and R4 is carboxyl, —COORa1 or —SO2Ra7 wherein Ra1 and Ra7 are as defined in (29), or a pharmaceutically acceptable salt thereof.
[0448] (36) The fused ring compound of (35) above, wherein at least one of R1, R2, R3 and R4 is carboxyl or —COORa1 wherein Ra1 is as defined in (29), or a pharmaceutically acceptable salt thereof.
[0449] (37) The fused ring compound of (36) above, wherein R2 is carboxyl and R1, R3 and R4 are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
[0450] (38) The fused ring compound of any of (29) to (33) above, wherein at least one of R1, R2, R3 and R4 is —COORa1 wherein Ra1 is glucuronic acid residue, or a pharmaceutically acceptable salt thereof.
[0451] (39) The fused ring compound of any of (29) to (33) above, wherein at least one of R1, R2, R3 and R4 is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or a pharmaceutically acceptable salt thereof.
[0452] (40) The fused ring compound of any of (29) to (39) above, wherein the ring Cy′ is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.
[0453] (41) The fused ring compound of (40) above, wherein the ring Cy′ is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
[0454] (42) The fused ring compound of any of (29) to (39) above, wherein the ring Cy′ is
34
[0455] wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof.
[0456] (43) The fused ring compound of any of (29) to (42) above, wherein the ring A′ is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.
[0457] (44) The fused ring compound of (43) above, wherein the ring A′ is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
[0458] (45) The fused ring compound of (44) above, wherein the ring A′ is phenyl, or a pharmaceutically acceptable salt thereof.
[0459] (46) The fused ring compound of any of (29) to (45) above, wherein at least one substituent optionaly substituted by group A is a substituent substituted by C1-6 alkoxy C1-6 alkoxy, or a pharmaceutically acceptable salt thereof.
[0460] (47) The fused ring compound of any of (29) to (46) above, wherein the Y is —(CH2)m—O—(CH2)n—, —NHCO2—, —CONH—CHRa14—, —(CH2)m—NRa12—(CH2)n—, —CONRa13—(CH2)n—, —O—(CH2)m—CRa15Ra16—(CH2)n— or —(CH2)n—NRa12—CHRa15— (wherein each symbol is as defined in (29)), or a pharmaceutically acceptable salt thereof.
[0461] (48) The fused ring compound of (47) above, wherein the Y is —(CH2)m—O—(CH2)n— or —O—(CH2)m—CRa15Ra16—(CH2)n— (wherein each symbol is as defined in (29)), or a pharmaceutically acceptable salt thereof.
[0462] (49) The fused ring compound of (48) above, wherein the Y is —(CH2)m—O—(CH2)n— wherein each symbol is as defined in (29), or a pharmaceutically acceptable salt thereof.
[0463] (50) The fused ring compound of any of (29) to (46) above, wherein the Y is —(CH2)m—CRa15Ra16—(CH2)n— (wherein each symbol is as defined in (29)), or a pharmaceutically acceptable salt thereof.
[0464] (51) The fused ring compound of any of (29) to (50) above, wherein the R2 is carboxyl, R1, R3 and R4 are hydrogen atoms, the ring Cy′ is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A′ is phenyl, or a pharmaceutically acceptable salt thereof.
[0465] (52) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by Z is heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the group D, or a pharmaceutically acceptable salt thereof.
[0466] (53) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:
3536
[0467] wherein E1 is an oxygen atom, a sulfur atom or N(—Ra35), E2 is an oxygen atom, CH2 or N(—Ra35), E3 is an oxygen atom or a sulfur atom, wherein each Ra35 is independently hydrogen atom or C1-6 alkyl, f is an integer of 1 to 3, and h and h′ are the same or different and each is an integer of 1 to 3, or a pharmaceutically acceptable salt thereof.
[0468] (54) The fused ring compound of (53) above, wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:
37
[0469] wherein each symbol is as defined in (53), or a pharmaceutically acceptable salt thereof.
[0470] (55) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by group D is —(CH2)t—CONRa27Ra28 wherein each symbol is as defined in (29), and at least one of Ra27 and Ra28 is C1-6 alkoxy, or a pharmaceutically acceptable salt thereof.
[0471] (56) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by group D is —(CH2)t—C(═NRa33)NH2 wherein each symbol is as defined in (29), and Ra33 is hydroxyl group or C1-6 alkoxy, or a pharmaceutically acceptable salt thereof.
[0472] (57) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by group D is —(CH2)t—O—(CH2)p—CORa21 wherein each symbol is as defined in (29), and Ra21 is amino, or a pharmaceutically acceptable salt thereof.
[0473] (58) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by group D is —(CH2)t—NRa29CO—Ra24 wherein each symbol is as defined in (29), and Ra24 is amino or C1-6 alkylamino, or a pharmaceutically acceptable salt thereof.
[0474] (59) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by group D is —(CH2)t—NRa22Ra23 wherein each symbol is as defined in (29), and at least one of Ra22 and Ra23 is amino or C1-6 alkylamino, or a pharmaceutically acceptable salt thereof.
[0475] (60) The fused ring compound of any of (29) to (51) above, wherein at least one group represented by group D is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and. a sulfur atom, or a pharmaceutically acceptable salt thereof.
[0476] (61) The fused ring compound of the formula. [I] or a pharmaceutically acceptable salt thereof, which is selected from. the group consisting of
[0477] ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 1),
[0478] 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 2),
[0479] ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 3),
[0480] ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 4),
[0481] ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 5),
[0482] 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 6),
[0483] ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 7),
[0484] ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 8),
[0485] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 9),
[0486] ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate (Example 10),
[0487] 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid (Example 11),
[0488] 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 12),
[0489] 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide (Example 13),
[0490] 2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (Example 14),
[0491] 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime (Example 15),
[0492] ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate (Example 16),
[0493] 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 17),
[0494] ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)benzimidazole-5-carboxylate (Example 18),
[0495] ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 19),
[0496] 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 20),
[0497] ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate (Example 21),
[0498] ethyl 2-(4-aminophenyl)-l-cyclopentylbenzimidazole-5-carboxylate (Example 22),
[0499] ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 23),
[0500] 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 24),
[0501] ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 25),
[0502] 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl-}1-cyclohexylbenzimidazole-5-carboxylic acid (Example 26),
[0503] ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 27),
[0504] ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]-benzimidazole-5-carboxylate (Example 28),
[0505] ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylate (Example 29),
[0506] 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 30),
[0507] 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 31),
[0508] ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylate (Example 32),
[0509] 2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide (Example 33),
[0510] 2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide (Example 34),
[0511] 2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazole (Example 35),
[0512] 5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 36),
[0513] 2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochloride (Example 37),
[0514] 2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole (Example 38),
[0515] 5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride (Example 39),
[0516] 5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 40),
[0517] 2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonyl-aminobenzimidazole (Example 41),
[0518] 5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole (Example 42),
[0519] 2-[4-(4-tert-butylbenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 43),
[0520] 2-[4-(4-carboxybenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 44),
[0521] 2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 45),
[0522] 2-{4-[(2-chloro-5-thienyl)methoxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 46),
[0523] 1-cyclopentyl-2-[4-(4-trifluoromethylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 47),
[0524] 1-cyclopentyl-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 48),
[0525] 1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride (Example 49),
[0526] 1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 50),
[0527] 1-cyclopentyl-2-{4-[(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 51),
[0528] 1-cyclopentyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylic acid (Example 52),
[0529] [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid (Example 53),
[0530] 2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 54),
[0531] 2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 55),
[0532] 2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid (Example 56),
[0533] 2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 57),
[0534] 1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]-benzimidazole-5-carboxylic acid (Example 58),
[0535] 2-{4-[(4-chlorophenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 59),
[0536] 2-{4-[(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 60),
[0537] 2-{4-[(4-benzyloxyphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 61),
[0538] trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol (Example 62),
[0539] trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane (Example 63),
[0540] 2-4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole (Example 64),
[0541] 2-[1-benzyloxycarbonyl-4-piperidyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 65),
[0542] 2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 66),
[0543] 1-cyclopentyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 67),
[0544] 1-cyclopentyl-2-[4-(3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 68),
[0545] 1-cyclopentyl-2-[4-(phenylcarbamoylamino)phenyl]benzimidazole-5-carboxylic acid (Example 69),
[0546] 1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 70),
[0547] 1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid (Example 71),
[0548] trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane (Example 72),
[0549] 2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole (Example 73),
[0550] 2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 74),
[0551] 2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 75),
[0552] 2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 76),
[0553] 1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid (Example 77),
[0554] 2-(1-benzyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 78),
[0555] 2-(1-benzoyl-4-piperidyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (Example 79),
[0556] 1-cyclopentyl-2-[1-(p-toluenesulfonyl)-4-piperidyl]-benzimidazole-5-carboxylic acid (Example 80),
[0557] 1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 81),
[0558] 1-cyclohexyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 82),
[0559] 1-cyclohexyl-2-[4-(3,5-di-tert-butylbenzyloxy)phenyl]-benzimidazole-5-carboxylic acid (Example 83),
[0560] 2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid (Example 84),
[0561] 1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 85),
[0562] 1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid (Example 86),
[0563] 1-cyclohexyl-2-[4-(dibenzylamino)phenyl]benzimidazole-5-carboxylic acid (Example 87),
[0564] 2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 88),
[0565] 2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 89),
[0566] 1-cyclohexyl-2-[4-(dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 90),
[0567] 2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 91),
[0568] 2-(4-benzyl-1-piperazinyl)-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 92),
[0569] 1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 93),
[0570] 2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 94),
[0571] 2-(4-benzyloxypiperidino)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 95),
[0572] 1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 96),
[0573] 1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 97),
[0574] 1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid (Example 98),
[0575] 2-(3-benzyloxy-5-isoxazolyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 99),
[0576] 2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 100),
[0577] 1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 101),
[0578] 2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid (Example 102),
[0579] 1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 103),
[0580] 2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 104),
[0581] 2-[4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 105),
[0582] 1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 106),
[0583] 1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 107),
[0584] 1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 108),
[0585] 1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 109),
[0586] 1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 110),
[0587] 1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 111),
[0588] 1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example. 112),
[0589] 1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 113),
[0590] 1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 114),
[0591] 1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 115),
[0592] 1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic acid (Example 116),
[0593] 1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl}benzimidazole-5-carboxylic acid (Example 117),
[0594] 2-{4-[bis(4-chlorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 118),
[0595] 1-cyclohexyl-2-{4-[2-(4-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 119),
[0596] 1-cyclohexyl-2-{4-[2-(2-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 120),
[0597] 1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 121),
[0598] 2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid (Example 122),
[0599] 1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 123),
[0600] 1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 124),
[0601] 1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-carboxylic acid (Example 125),
[0602] 2-(4-benzyloxyphenyl)-1-(3-cyclohexenyl)benzimidazole-5-carboxylic acid (Example 126),
[0603] cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane (Example 127),
[0604] 1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 128),
[0605] 1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid (Example 129),
[0606] 2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 130),
[0607] 1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid (Example 131),
[0608] 2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 132),
[0609] 2-{4-[bis(4-methylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 133),
[0610] 2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 134),
[0611] 1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 135),
[0612] 1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 136),
[0613] 1-cyclohexyl-6-methyl-2-[4-(3-phenylpropoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 137),
[0614] 2-{4-[2-(2-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 138),
[0615] 2-{4-[2-(3-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 139),
[0616] 2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 140),
[0617] 2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 141),
[0618] 2-{4-[3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 142),
[0619] 2-{4-[3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 143),
[0620] 1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid (Example 144),
[0621] 2-{4-[2-(4-tert-butylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 145),
[0622] 2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 146),
[0623] 2-{4-[3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 147),
[0624] 2-{4-[bis(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 148),
[0625] 2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 149),
[0626] 2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 150),
[0627] 2-{4-[3-chloro-6-(2-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 151),
[0628] 2-{4-[(2R)-2-amino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 152),
[0629] 2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 153),
[0630] 2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 154),
[0631] 2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 155),
[0632] 2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 156),
[0633] 2-{4-[3-chloro-6-(3,4,5-trimethoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 157),
[0634] 2-{4-[2-(2-biphenylyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 158),
[0635] 2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 159),
[0636] 1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride (Example 160),
[0637] 1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid hydrochloride (Example 161),
[0638] 2-{4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 162),
[0639] 1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 163),
[0640] 1-cyclohexyl-2-{4-[3-(3-methyl-3-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 164),
[0641] 2-{4-[{(2S)-1-benzyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexyl-benzimidazole-5-carboxylic acid hydrochloride (Example 165),
[0642] 2-{4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 166),
[0643] 2-{4-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 167),
[0644] 2-{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 168),
[0645] 2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 169),
[0646] 2-{4-[3-chloro-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 170),
[0647] 2-{4-[3-chloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 171),
[0648] 2-[4-(4-benzyloxyphenoxy)-3-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 172),
[0649] 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 173),
[0650] 2-{4-[3-chloro-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 174),
[0651] 2-{4-[2-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 175),
[0652] 2-{4-[3-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 176),
[0653] 1-cyclohexyl-2-{4-[3-(2-propynyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 177),
[0654] 1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 178),
[0655] 2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 179),
[0656] 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 180),
[0657] 2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 181),
[0658] 2-{4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 182),
[0659] 2-{4-[3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 183),
[0660] 2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 184),
[0661] 2-{4-[{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 185),
[0662] 2-{2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 186),
[0663] 1-cyclohexyl-2-{4-[3-(2-pyridylmethoxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 187),
[0664] 2-{4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 188),
[0665] 2-{4-[3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 189),
[0666] 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 190),
[0667] 1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 191),
[0668] 1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 192),
[0669] 2-{4-[{(2S)-1-benzenesulfonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 193),
[0670] 2-{4-[{(2S)-1-benzoyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 194),
[0671] 2-{4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 195),
[0672] 1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 196),
[0673] 1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 197),
[0674] 1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}-phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 198),
[0675] 1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl)-4-oxazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 199),
[0676] 2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 200),
[0677] 2-{4-[3-(4-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 201),
[0678] 1-cyclohexyl-2-{4-[3-(4-fluorobenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 202),
[0679] 1-cyclohexyl-2-{4-[{(2S)-1-(4-nitrophenyl)-2-pyrrolidinyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 203),
[0680] 1-cyclohexyl-2-{4-[{(2S)-1-phenyl-2-pyrrolidinyl}methoxy]-phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 204),
[0681] 2-{4-[{(2S)-1-(4-acetylaminophenyl)-2-pyrrolidinyl}methoxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 205),
[0682] 2-{4-[{5-(4-chlorophenyl)-2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 206),
[0683] 2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 207),
[0684] 1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 208),
[0685] 1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 209),
[0686] 1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 210),
[0687] 1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 211),
[0688] 2-{4-[3-(4-tert-butylbenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 212),
[0689] 2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 213),
[0690] 1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid (Example 214),
[0691] 2-{4-[3-(4-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 215),
[0692] 1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 216),
[0693] 1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 217),
[0694] 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 218),
[0695] 2-{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 219),
[0696] 1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 220),
[0697] 1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]-phenyl}benzimidazole-5-carboxylic acid (Example 221),
[0698] 1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}-benzimidazole-5-carboxylic acid (Example 222),
[0699] 2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 223),
[0700] 2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 224),
[0701] 2-{4-[4-carbamoyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 225),
[0702] 2-{4-[4-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 226),
[0703] 2-{4-[3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 227),
[0704] 2-{4-[{(2S)-1-(4-dimethylcarbamoylphenyl)-2-pyrrolidinyl}-methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 228),
[0705] 2-{4-[2-(4-chlorophenyl)-5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 229),
[0706] 1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]-benzimidazole-5-carboxylic acid (Example 230),
[0707] 1-cyclohexyl-2-{4-[{4-(4-dimethylcarbamoylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 231),
[0708] 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 232),
[0709] 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 233),
[0710] 2-{4-[{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 234),
[0711] 2-{4-[{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 235),
[0712] 2-{4-[2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate (Example 236),
[0713] 2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 237),
[0714] 2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 238),
[0715] 1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid (Example 239),
[0716] 2-{4-[4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 240),
[0717] methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 241),
[0718] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-benzimidazole-5-carboxylic acid hydrochloride (Example 242),
[0719] ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 243),
[0720] methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 244),
[0721] methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic (Example 245),
[0722] methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (Example 246),
[0723] methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 247),
[0724] 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 248),
[0725] 2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 249),
[0726] 2-{4-[2-(4-chlorophenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate (Example 250),
[0727] 2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 251),
[0728] 2-[2-(2-biphenylyloxymethyl)-5-thienyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 252),
[0729] 2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 253),
[0730] 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid (Example 254),
[0731] 1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl)-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 255),
[0732] 1-cyclohexyl-2-{2-fluoro-4-[4-fluoro-2-(3-fluorobenzoyl)benzyloxy]phenyl}benzimidazole-5-carboxylic acid (Example 256),
[0733] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-sulfonic acid (Example 257),
[0734] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexylbenzimidazole-4-carboxylic acid (Example 258),
[0735] 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic acid dihydrochloride (Example 259),
[0736] 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid dihydrochloride (Example 260),
[0737] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-4-carboxylic acid (Example 261),
[0738] 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 262),
[0739] 2-{4-[{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 263),
[0740] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 264),
[0741] 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 265),
[0742] 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 266),
[0743] 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride (Example 267),
[0744] 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 268),
[0745] 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 269),
[0746] 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 270),
[0747] 2-{4-[3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 271),
[0748] 2-{4-[3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 272),
[0749] 2-{4-[3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 273),
[0750] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(1-oxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 274),
[0751] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example275),
[0752] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 276),
[0753] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(1-oxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 277),
[0754] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(1,1-dioxo-4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid (Example 278),
[0755] 2-{4-[2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 279),
[0756] 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 280),
[0757] 2-{4-[2-(4-chlorophenyl)-5-methylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 281),
[0758] 2-{4-[2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 282),
[0759] 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 283),
[0760] 2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid. (Example 284),
[0761] 2-{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 285),
[0762] 2-{4-[2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 286),
[0763] 2-{4-[2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 287),
[0764] 2-{4-[2-(4-chlorophenyl)-5-(2-hydroxyethyl)carbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 288),
[0765] 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidino)-carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 289),
[0766] 2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 290),
[0767] 2-{4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 291),
[0768] 2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 292),
[0769] 2-{4-[2-{4-(2-carboxyethyl)phenyl}-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 293),
[0770] 2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 294),
[0771] 2-{4-[3-chloro-6-(4-methoxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 295),
[0772] 2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 296),
[0773] 2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 297),
[0774] 2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 298),
[0775] 2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexyl-benzimidazole-5-carboxylic acid (Example 299),
[0776] 2-{4-[bis(2-pyridyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 300),
[0777] 2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 301),
[0778] 2-{4-[bis (2-thienyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 302),
[0779] methyl 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 303),
[0780] sodium 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 304),
[0781] 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 305),
[0782] 2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 306),
[0783] 2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 307),
[0784] 2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 308),
[0785] 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 309),
[0786] 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 310),
[0787] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 311),
[0788] 2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 312),
[0789] 2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 313),
[0790] methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (Example 314),
[0791] 2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 315),
[0792] 2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 316),
[0793] 2-{4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 317),
[0794] 2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 318),
[0795] 2-{4-[2-(4-chlorophenyl)-5-(N-benzyl-N-methylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 319),
[0796] 2-{4-[5-dimethylaminocarbonyl-2-(4-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 320),
[0797] 2-{4-[2-(4-chlorophenyl)-5-(4-methylpiperazin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 321),
[0798] 2-{4-[2-(4-chlorophenyl)-5-{N-(3-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 322),
[0799] 2-{4-[2-(4-chlorophenyl)-5-{N-(2-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 323),
[0800] 2-{4-[2-(4-chlorophenyl)-5-(cyclohexylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 324),
[0801] 2-{4-[2-(4-chlorophenyl)-5-(2-pyridin-4-ylethylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 325),
[0802] 2-{4-[(4-fluorophenyl){4-(dimethylaminocarbonyl)phenyl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 326),
[0803] 2-{4-[(4-fluorophenyl)(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 327),
[0804] 2-{4-[2-(4-chlorophenyl)-5-(4-oxopiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 328),
[0805] 2-{4-[2-(4-chlorophenyl)-5-hydroxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 329),
[0806] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 330),
[0807] 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 331),
[0808] 2-{4-[2-(4-chlorophenyl)-5-(phenylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 332),
[0809] 2-{4-[2-(4-chlorophenyl)-5-(4-methoxypiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 333),
[0810] 2-{4-[2-(4-chlorophenyl)-5-(3-hydroxypropyloxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 334),
[0811] 2-{4-[2-(4-chlorophenyl)-5-(2-hydroxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 335),
[0812] methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1cyclohexylbenzimidazole-5-carboxylate (Example 336),
[0813] methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 337),
[0814] methyl 2-[4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 338),
[0815] methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 339),
[0816] 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidole-5-carboxylic acid hydrochloride (Example 340),
[0817] 2-{4-[2-(4-chlorophenyl)-5-(4-methylpiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride (Example 341),
[0818] 2-{4-[5-acetyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 342),
[0819] 2-{4-[2-(4-chlorophenyl)-5-{(4-hydroxypiperidin-1-ylcarbonyl)-methoxy}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 343),
[0820] 2-{4-[2-(4-chlorophenyl)-5-(2-methoxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 344),
[0821] 2-{4-[2-(4-chlorophenyl)-5-{2-(2-methoxyethoxy)ethoxy}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 345),
[0822] 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 346),
[0823] 2-{4-[2-(4-chlorophenyl)-5-(2-methylthiazol-4-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 347),
[0824] 2-{4-[2-(4-chlorophenyl)-5-(3,4-dihydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidole-5-carboxylic acid hydrochloride (Example 348),
[0825] 2-{4-[2-(4-chlorophenyl)-5-(3-methyl-1,2,4-oxadiazol-5-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 349),
[0826] 2-{4-[2-(4-chlorophenyl)-4-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 350),
[0827] 2-{4-[2-(4-chlorophenyl)-4-(piperidinocarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 351),
[0828] 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxy-2-methylpropan-2-yl)carbamoyl}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 352),
[0829] 2-{4-[2-(4-chlorophenyl)-5-(4,4-dimethyl-2-oxazolin-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 353),
[0830] 2-{4-[2-(4-chlorophenyl)-4-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 354),
[0831] 2-{4-[2-(4-chlorophenyl)-4-{(2-hydroxyethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 355),
[0832] 2-{4-[2-(4-chlorophenyl)-4-{(4-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 356),
[0833] 2-{4-[2-(4-chlorophenyl)-4-(dimethylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 357),
[0834] 2-{4-[5-(2-aminothiazol-4-yl)-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 358),
[0835] 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylsulfonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 359),
[0836] 2-{4-[5-(dimethylcarbamoyl)-2-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 360),
[0837] 2-{4-[5-(dimethylcarbamoyl)-2-(3-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 361),
[0838] 2-{4-[2-(5-chlorothiophen-2-yl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 362),
[0839] 2-{4-[2-bromo-5-(5-methyloxazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 363),
[0840] 2-{4-[2-bromo-5-(5-methylthiazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 364),
[0841] 2-{4-[2-(4-chlorophenyl)-5-(5-methyloxazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 365),
[0842] 2-{4-[2-(4-chlorophenyl)-5-(5-methylthiazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 366),
[0843] 2-{4-[2-(4-chlorophenyl)-5-tetrazol-5-ylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 367),
[0844] 2-{4-[5-chloro-2-(4-cyanophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 368),
[0845] 2-{4-[5-chloro-2-(4-tetrazol-5-ylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 369),
[0846] 2-{4-[2-(4-chlorophenyl)-5-{2-(4-hydroxypiperidin-1-yl)ethoxy}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 370),
[0847] 2-{4-[2-(4-chlorophenyl)-5-(2-oxopiperidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 371),
[0848] 2-{4-[3-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 372),
[0849] 2-{4-[2-(4-chlorophenyl)-5-(N-hydroxyamidino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 373),
[0850] 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzyloxy]-2fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 374),
[0851] 2-{4-[2-(4-chlorophenyl)-5-(2-oxo-3H-1,2,3,5-oxathiadiazol-4-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexybenzimidazole-5-carboxylic acid hydrochloride (Example 375),
[0852] 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-thiadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 376),
[0853] 2-{4-[2-(4-chlorophenyl)-5-(cyclopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 377),
[0854] 2-{4-[2-(4-chlorophenyl)-5-(cyclobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 378),
[0855] 2-{4-[2-(4-chlorophenyl)-5-(tert-butylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 379),
[0856] 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 380),
[0857] 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxypropan-2-yl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 381),
[0858] 2-{4-[2-(4-chlorophenyl)-5-(methoxycarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 382),
[0859] 2-{4-[2-(4-chlorophenyl)-5-{(2,3-dihydroxypropyl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 383),
[0860] 2-{4-[2-(4-chlorophenyl)-5-(N-ethyl-N-methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 384),
[0861] 2-{4-[2-(4-chlorophenyl)-5-(N-methyl-N-propylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 385),
[0862] 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 386),
[0863] 2-{4-[2-(4-chlorophenyl)-5-(2,6-dimethylpiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 387),
[0864] 2-{4-[5-(butylcarbamoyl)-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 388),
[0865] 2-{4-[2-(4-chlorophenyl)-5-(propylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 389),
[0866] 2-{4-[2-(4-chlorophenyl)-5-(ethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 390),
[0867] 2-{4-[2-(4-chlorophenyl)-5-{(dimethylcarbamoyl)amino}benzyloxyl]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 391),
[0868] 2-{4-[2-(4-chlorophenyl)-5-{(morpholinocarbonyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 392),
[0869] 2-{4-[2-(4-chlorophenyl)-5-ureidobenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 393),
[0870] 2-{4-[2-(4-chlorophenyl)-5-{(ethylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 394),
[0871] 2-{4-[2-(4-chlorophenyl)-5-{(isopropylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 395),
[0872] 2-{4-[2-(3,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 396),
[0873] 2-{4-[2-(2,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 397),
[0874] 2-{4-[2-(3,5-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 398),
[0875] 2-{4-[2-(3-chloro-4-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 399),
[0876] 2-{4-[2-(3,4-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 400),
[0877] 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 401),
[0878] 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 402),
[0879] 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 403),
[0880] 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 404),
[0881] 2-{4-[2-{4-(methylthio)phenyl}-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 405),
[0882] 2-{4-[2-{4-(methylthio)phenyl}-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 406),
[0883] 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 407),
[0884] 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 408),
[0885] 2-{4-[2-(4-chlorophenyl)-5-(isopropylaminosulfonyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 409),
[0886] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 410),
[0887] 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 411),
[0888] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 412),
[0889] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 413),
[0890] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 414),
[0891] 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 415),
[0892] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 416),
[0893] 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 417),
[0894] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 418),
[0895] 2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4)benzimidazole-5-carboxylic acid hydrochloride (Example 419),
[0896] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy)-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid hydrochloride (Example 420),
[0897] 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid (Example 421),
[0898] 2-{4-[2-(4-chlorophenyl)-5-(2-imidazolin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 422),
[0899] 2-{4-[2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 423),
[0900] 2-{4-[2-(4-chlorophenyl)-5-(2-oxoimidazolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 424),
[0901] 2-{4-[2-(4-chlorophenyl)-5-(2-oxazolin-2-ylamino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 425),
[0902] 2-{4-[{2-[{(dimethylcarbamoyl)methoxy}methyl]-4-(4-fluorophenyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 426),
[0903] 2-{4-[{4-(4-fluorophenyl)-2-(4-hydroxypiperidin-1-ylmethyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 427),
[0904] 2-{4-[{4-(4-fluorophenyl)-2-[(carbamoylmethoxy)methyl]thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 428),
[0905] 2-{4-[{4-(4-fluorophenyl)-2-(methylcarbamoyl)thiazol-5-ylmethoxyl-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 429),
[0906] 2-{4-[{4-(4-fluorophenyl)-2-{(2-hydroxyethyl)carbamoyl}thiazol-5-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 430),
[0907] 2-{4-[{2-(4-fluorophenyl)-5-(dimethylcarbamoyl)thiophen-3-yl}methoxyl-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 431),
[0908] 2-{4-[{2-(4-fluorophenyl)-5-(isopropylcarbamoyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 432),
[0909] 2-{4-[{2-(4-fluorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)thiophen-3-yl methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 433),
[0910] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole (Example 10 434),
[0911] 2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole hydrochloride (Example 435),
[0912] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzimidazole hydrochloride (Example 436),
[0913] 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-5-cyano-1-cyclohexylbenzimidazole (Example 437),
[0914] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-5-cyano-l-cyclohexylbenzimidazole (Example 438),
[0915] 2-{4-[{N-(4-dimethylcarbamoyl)-N-(4-fluorophenyl)amino}-methyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 439),
[0916] 2-{5-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 440),
[0917] 2-{3-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 441),
[0918] 2-{4-[(3-dimethylcarbamoylphenyl)(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 442),
[0919] 2-{4-[{3-(4-hydroxypiperidyl-1-ylcarbonyl)phenyl}(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 443),
[0920] 1-{[2-{4-([4-(4-fluorophenyl)-2-methylthiazol-5-yl]methoxy)phenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid (Example 444),
[0921] {[2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid (Example 445),
[0922] 2-{4-[2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 446),
[0923] 3-([4-(5-aminosulfonyl-1-cyclohexylbenzimidazol-2-yl)-3-fluorophenoxy]methyl}-4-(4-chlorophenyl)-N-isopropylbenzamide (Example 447),
[0924] 2-[4-{2-(4-chlorophenyl)-6-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 448),
[0925] 2-[4-{2-(4-chlorophenyl)-4-fluoro-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 449),
[0926] 2-[4-{2-(4-chlorophenyl)-5-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexyl-4-methoxybenzimidazole-5-carboxylic acid hydrochloride (Example 450),
[0927] 2-[4-{2-(4-chlorophenyl)-5-(N-isopropylcarbonyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 451),
[0928] 2-[4-{2-(4-chlorophenyl)-5-(isopropylcarbonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 452),
[0929] 2-[3-{[4-(4-fluorophenyl)-2-methylthiazol-5-yl]methyl}-4-hydroxyphenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 453),
[0930] 2-[4-(2-(4-chlorophenyl)-4-fluoro-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 454),
[0931] 2-[4-{2-(4-chlorophenyl)-5-(methylsulfonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 455),
[0932] 2-[4-{2-(4-chlorophenyl)-5-[N-methyl-N-(methylsulfonyl)amino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 456),
[0933] 2-[4-{[3-(4-chlorophenyl)-6-(2-oxopyrrolidin-1-yl)pyridin-2-yl]methyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 457),
[0934] 2-[4-{2-(4-chlorophenyl)-5-(acetylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 458),
[0935] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-ethylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 459),
[0936] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-propylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 460),
[0937] 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(methylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 461),
[0938] 2-[4-{2-(4-chlorophenyl)-5-[N-(methylsulfonyl)-N-propylamino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 462),
[0939] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 463),
[0940] 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylsulfonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 464),
[0941] 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 465),
[0942] 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylcarbonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 466),
[0943] 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylcarbonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 467),
[0944] 2-[4-{2-(4-chlorophenyl)-5-methoxybenzyloxy}-2-fluorophenyl]-1cyclohexylbenzimidazole-5-acid (Example 468),
[0945] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-isopropylamino)-benzyloxyl-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 469),
[0946] {([2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzoimidazol-5-yl]carbonyl}-β-D-glucuronic acid (Example 470),
[0947] methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylindole-5-carboxylate (Example 501),
[0948] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylic acid (Example 502),
[0949] 2-(4-benzyloxyphenyl)-1-cyclopentyl-1H-indole-5-carboxylic acid (Example 503),
[0950] ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (Example 601),
[0951] 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid (Example 602),
[0952] 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid (Example 701),
[0953] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride (Example 702), and
[0954] 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride (Example 703).
[0955] (62) The fused ring compound of the formula [I] or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of
[0956] 2-{4-[2-(4-chlorophenyl)-5-(4-oxopiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 328),
[0957] 2-{4-[2-(4-chlorophenyl)-5-hydroxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 329),
[0958] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 330),
[0959] 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 331),
[0960] 2-{4-[2-(4-chlorophenyl)-5-(phenylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 332),
[0961] 2-{4-[2-(4-chlorophenyl)-5-(4-methoxypiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 333),
[0962] 2-{4-[2-(4-chlorophenyl)-5-(3-hydroxypropyloxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 334),
[0963] 2-{4-[2-(4-chlorophenyl)-5-(2-hydroxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 335),
[0964] methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl)-1-cyclohexylbenzimidazole-5-carboxylate (Example 336),
[0965] methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 337),
[0966] methyl 2-[4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 338),
[0967] methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (Example 339),
[0968] 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride (Example 340),
[0969] 2-{4-[2-(4-chlorophenyl)-5-(4-methylpiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 341),
[0970] 2-{4-[5-acetyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 342),
[0971] 2-{4-[2-(4-chlorophenyl)-5-{(4-hydroxypiperidin-1-ylcarbonyl)-methoxy{benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 343),
[0972] 2-{4-[2-(4-chlorophenyl)-5-(2-methoxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 344),
[0973] 2-{4-[2-(4-chlorophenyl)-5-{2-(2-methoxyethoxy)ethoxy}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 345),
[0974] 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 346),
[0975] 2-{4-[2-(4-chlorophenyl)-5-(2-methylthiazol-4-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 347),
[0976] 2-{4-[2-(4-chlorophenyl)-5-(3,4-dihydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 348),
[0977] 2-{4-[2-(4-chlorophenyl)-5-(3-methyl-1,2,4-oxadiazol-5-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 349),
[0978] 2-{4-[2-(4-chlorophenyl)-4-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 350),
[0979] 2-{4-[2-(4-chlorophenyl)-4-(piperidinocarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 351),
[0980] 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxy-2-methylpropan-2-yl)carbamoyl}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 352),
[0981] 2-{4-[2-(4-chlorophenyl)-5-(4,4-dimethyl-2-oxazolin-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 353),
[0982] 2-{4-[2-(4-chlorophenyl)-4-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 354),
[0983] 2-{4-[2-(4-chlorophenyl)-4-{(2-hydroxyethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 355),
[0984] 2-{4-[2-(4-chlorophenyl)-4-{(4-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 356),
[0985] 2-{4-[2-(4-chlorophenyl)-4-(dimethylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 357),
[0986] 2-{4-[5-(2-aminothiazol-4-yl)-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 358),
[0987] 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylsulfonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 359),
[0988] 2-{4-[5-(dimethylcarbamoyl)-2-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 360),
[0989] 2-{4-[5-(dimethylcarbamoyl)-2-(3-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 361),
[0990] 2-{4-[2-(5-chlorothiophen-2-yl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 362),
[0991] 2-{4-[2-bromo-5-(5-methyloxazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 363),
[0992] 2-{4-[2-bromo-5-(5-methylthiazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 364),
[0993] 2-{4-[2-(4-chlorophenyl)-5-(5-methyloxazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 365),
[0994] 2-{4-[2-(4-chlorophenyl)-5-(5-methylthiazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 366),
[0995] 2-{4-[2-(4-chlorophenyl)-5-tetrazol-5-ylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 367),
[0996] 2-{4-[5-chloro-2-(4-cyanophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 368),
[0997] 2-{4-[5-chloro-2-(4-tetrazol-5-ylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 369),
[0998] 2-{4-[2-(4-chlorophenyl)-5-{2-(4-hydroxypiperidin-1-yl)ethoxy}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 370),
[0999] 2-{4-[2-(4-chlorophenyl)-5-(2-oxopiperidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 371),
[1000] 2-{4-[3-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 372),
[1001] 2-{4-[2-(4-chlorophenyl)-5-(N-hydroxyamidino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 373),
[1002] 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 374),
[1003] 2-{4-[2-(4-chlorophenyl)-5-(2-oxo-3H-1,2,3,5-oxathiadiazol-4-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride (Example 375),
[1004] 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-thiadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 376),
[1005] 2-{4-[2-(4-chlorophenyl)-5-(cyclopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 377),
[1006] 2-{4-[2-(4-chlorophenyl)-5-(cyclobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 378),
[1007] 2-{4-[2-(4-chlorophenyl)-5-(tert-butylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 379),
[1008] 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 380),
[1009] 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxypropan-2-yl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 381),
[1010] 2-{4-[2-(4-chlorophenyl)-5-(methoxycarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 382),
[1011] 2-{4-[2-(4-chlorophenyl)-5-{(2,3-dihydroxypropyl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 383),
[1012] 2-{4-[2-(4-chlorophenyl)-5-(N-ethyl-N-methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 384),
[1013] 2-{4-[2-(4-chlorophenyl)-5-(N-methyl-N-propylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 385),
[1014] 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 386),
[1015] 2-{4-[2-(4-chlorophenyl)-5-(2,6-dimethylpiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 387),
[1016] 2-{4-[5-(butylcarbamoyl)-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 388),
[1017] 2-{4-[2-(4-chlorophenyl)-5-(propylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 389),
[1018] 2-{4-[2-(4-chlorophenyl)-5-(ethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 390),
[1019] 2-{4-[2-(4-chlorophenyl)-5-{(dimethylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 391),
[1020] 2-{4-[2-(4-chlorophenyl)-5-{(morpholinocarbonyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 392),
[1021] 2-{4-[2-(4-chlorophenyl)-5-ureidobenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 393),
[1022] 2-{4-[2-(4-chlorophenyl)-5-{ethylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 394),
[1023] 2-{4-[2-(4-chlorophenyl)-5-{isopropylcarbamoyl)amino}benzyloxy]2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 395),
[1024] 2-{4-[2-(3,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 396),
[1025] 2-{4-[2-(2,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid. hydrochloride (Example 397),
[1026] 2-{4-[2-(3,5-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 398),
[1027] 2-{4-[2-(3-chloro-4-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 399),
[1028] 2-{4-[2-(3,4-dichlorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 400),
[1029] 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 401),
[1030] 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 402),
[1031] 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 403),
[1032] 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 404),
[1033] 2-{4-[2-{4-(methylthio)phenyl}-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 405),
[1034] 2-{4-[2-{4-(methylthio)phenyl}-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 406),
[1035] 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 407),
[1036] 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 408),
[1037] 2-{4-[2-(4-chlorophenyl)-5-(isopropylaminosulfonyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 409),
[1038] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 410),
[1039] 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 411),
[1040] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 412),
[1041] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 413),
[1042] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 414),
[1043] 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride (Example 415),
[1044] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 416),
[1045] 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]phenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 417),
[1046] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 418),
[1047] 2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride (Example 419),
[1048] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid hydrochloride (Example 420),
[1049] 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid (Example 421),
[1050] 2-{4-[2-(4-chlorophenyl)-5-(2-imidazolin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 422),
[1051] 2-{4-[2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 423),
[1052] 2-{4-[2-(4-chlorophenyl)-5-(2-oxoimidazolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 424),
[1053] 2-{4-[2-(4-chlorophenyl)-5-(2-oxazolin-2-ylamino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 425),
[1054] 2-{4-[{2-[{(dimethylcarbamoyl)methoxy}methyl]-4-(4-fluorophenyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 426),
[1055] 2-{4-[{4-(4-fluorophenyl)-2-(4-hydroxypiperidin-1-ylmethyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride (Example 427),
[1056] 2-{4-[{4-(4-fluorophenyl)-2-[(carbamoylmethoxy)methyl]thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 428),
[1057] 2-{4-[{4-(4-fluorophenyl)-2-(methylcarbamoyl)thiazol-5-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 429),
[1058] 2-{4-[{4-(4-fluorophenyl)-2-{(2-hydroxyethyl)carbamoyl}thiazol-5-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 430),
[1059] 2-{4-[{2-(4-fluorophenyl)-5-(dimethylcarbamoyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 431),
[1060] 2-{4-[{2-(4-fluorophenyl)-5-(isopropylcarbamoyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 432),
[1061] 2-{4-[{2-(4-fluorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 433),
[1062] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole (Example 434),
[1063] 2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole hydrochloride (Example 435),
[1064] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzimidazole hydrochloride (Example 436),
[1065] 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-5-cyano-1-cyclohexylbenzimidazole (Example 437),
[1066] 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-5-cyano-1-cyclohexylbenzimidazole (Example 438),
[1067] 2-{4-[{N-(4-dimethylcarbamoyl)-N-(4-fluorophenyl)amino}-methyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 439),
[1068] 2-{5-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 440),
[1069] 2-{3-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 441),
[1070] 2-{4-[(3-dimethylcarbamoylphenyl) (4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 442),
[1071] 2-{4-[{(3-(4-hydroxypiperidyl-1-ylcarbonyl)phenyl}(4-fluorophenyl)methoxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 443),
[1072] 1-{[2-{4-([4-(4-fluorophenyl)-2-methylthiazol-5-yl]methoxy)phenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid (Example 444),
[1073] {[2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid (Example 445),
[1074] 2-{4-[2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 446),
[1075] 3-{[4-(5-aminosulfonyl-1-cyclohexylbenzimidazol-2-yl)-3-fluorophenoxy]methyl}-4-(4-chlorophenyl)-N-isopropylbenzamide (Example 447),
[1076] 2-[4-{2-(4-chlorophenyl)-6-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 448),
[1077] 2-[4-{2-(4-chlorophenyl)-4-fluoro-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 449),
[1078] 2-[4-{2-(4-chlorophenyl)-5-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexyl-4-methoxybenzimidazole-5-carboxylic acid hydrochloride (Example 450),
[1079] 2-[4-{2-(4-chlorophenyl)-5-(N-isopropylcarbonyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 451),
[1080] 2-[4-{2-(4-chlorophenyl)-5-(isopropylcarbonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 452),
[1081] 2-[3-{[4-(4-fluorophenyl)-2-methylthiazol-5-yl]methyl}-4-hydroxyphenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 453),
[1082] 2-[4-{2-(4-chlorophenyl)-4-fluoro-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 454),
[1083] 2-[4-{2-(4-chlorophenyl)-5-(methylsulfonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 455),
[1084] 2-[4-{2-(4-chlorophenyl)-5-[N-methyl-N-(methylsulfonyl)amino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 456),
[1085] 2-[4-{[3-(4-chlorophenyl)-6-(2-oxopyrrolidin-1-yl)pyridin-2-yl]methyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 457),
[1086] 2-[4-{2-(4-chlorophenyl)-5-(acetylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 458),
[1087] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-ethylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 459),
[1088] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-propylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 460),
[1089] 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(methylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 461),
[1090] 2-[4-{2-(4-chlorophenyl)-5-[N-(methylsulfonyl)-N-propylamino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 462),
[1091] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 463),
[1092] 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylsulfonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 464),
[1093] 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 465),
[1094] 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylcarbonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 466),
[1095] 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylcarbonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 467),
[1096] 2-[4-{2-(4-chlorophenyl)-5-methoxybenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (Example 468),
[1097] 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-isopropylamino)-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride (Example 469),
[1098] {[2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzoimidazol-5-yl]carbonyl}-β-D-glucuronic acid (Example 470),
[1099] 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride (Example 702), and
[1100] 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride (Example 703).
[1101] (63) A pharmaceutical composition comprising a fused ring compound of any of (29) to (62) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[1102] (64) A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of (1) to (28) and (29) to (62) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[1103] (65) An anti-hepatitis C virus agent comprising a fused ring compound of any of (1) to (28) and (29) to (62) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[1104] (66) A therapeutic agent for hepatitis C comprising a fused ring compound of any of (29) to (62) above, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[1105] (67) An anti-hepatitis C virus agent comprising (a) the anti-hepatitis C virus agent of (65) above and (b) at least one agent selected from the group consisting of a different antiviral agent, an antiinflammatory agent and an immunostimulant.
[1106] (68) An anti-hepatitis C virus agent comprising (a) the anti-hepatitis C virus agent of (65) above and (b) interferon.
[1107] (69) A therapeutic agent for hepatitis C comprising (a) the hepatitis C virus polymerase inhibitor of (64) above and (b) at least one agent selected from the group consisting of a different antiviral agent, an antiinflammatory agent and an immunostimulant.
[1108] (70) A therapeutic agent for hepatitis C comprising (a) the hepatitis C virus polymerase inhibitor of (64) above and (b) interferon.
[1109] (71) A benzimidazole compound of the folllowing formula [III]
38
[1110] wherein Ra36 is hydrogen atom or carboxyl-protecting group, Ra37 is cyclopentyl or cyclohexyl, and Ra38 is hydrogen atom or fluorine atom, or a salt thereof.
[1111] (72) A thiazole compound selected from the group consisting of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole and 4-(4-fluorophenyl)-5-chloromethyl-2-methylthiazole, or a pharmaceutically acceptable salt thereof.
[1112] (73) A biphenyl compound selected from the group consisting of 1-(4′-chloro-2-hydroxymethyl-biphenyl-4-yl)-2-pyrrolidinone and 1-(4′-chloro-2-chloromethyl-biphenyl-4-yl)-2-pyrrolidinone, or a pharmaceutically acceptable salt thereof.
[1113] (74) A pharmaceutical composition comprising (a) a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof and (b) at least one agent selected from the group consisting of an antiviral agent other than the compound of (1) above, an antiinflammatory agent and an immunostimulant.
[1114] (75) A pharmaceutical composition comprising (a) a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof and (b) interferon.
[1115] (76) A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof.
[1116] (77) The method of (76) above, further comprising administering an effective amount of at least one agent selected from the group consisting of an antiviral agent other than the compound of (1) above, an antiinflammatory agent and an immunostimulant.
[1117] (78) The method of (76) above, further comprising administering an effective amount of interferon.
[1118] (79) A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof.
[1119] (80) The method of (79) above, further comprising administering an effective amount of at least one agent selected from the group consisting of an antiviral agent other than the compound of (1) above, an antiinflammatory agent and an immunostimulant.
[1120] (81) The method of (79) above, further comprising administering an effective amount of interferon.
[1121] (82) Use of a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
[1122] (83) Use of a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
[1123] (84) A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[1124] (85) A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the formula [I] of (1) above or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
[1125] (86) A commercial package comprising a pharmaceutical composition of (84) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis C.
[1126] (87) A commercial package comprising a pharmaceutical composition of (85) above and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.
[1127] The definitions of respective substituents and moieties used in the present specification are as follows.
[1128] The halogen atom is a fluorine atom, chlorine atom, bromine atom or iodine atom, preferably fluorine atom, chlorine atom or bromine atom.
[1129] Particularly preferably, the halogen atom is fluorine atom at R5, R5′, R6, R6′, group A and group C, and fluorine atom or chlorine atom at X, Z, Z′, group B and group D.
[1130] The C1-6 alkyl is straight chain or branched chain alkyl having 1 to 6 carbon atoms, and is exemplified by methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl, hexyl and the like.
[1131] Preferably, it is straight chain or branched chain alkyl having 1 to 4 carbon atoms, and is particularly preferably methyl at Ra7, Ra8, Ra9, Ra15, Ra16, Ra17, Ra33, Ra35, Rb6 and Rb7 and methyl or tert-butyl at Rb1, Rb2, group B and group C, and methyl, ethyl, propyl or isopropyl at Ra29.
[1132] The halogenated C1-6 alkyl is the above-defined C1-6 alkyl except that it is substituted by the above-defined halogen atom. Preferably, it is halogenated alkyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include fluoromethyl, difluoromethyl, trifluoromethyl, bromomethyl, chloromethyl, 1,2-dichloromethyl, 2,2-dichloromethyl, 2,2,2-trifluoroethyl and the like.
[1133] The halogenated C1-6 alkyl is particularly preferably trifluoromethyl at group B.
[1134] The C1-6 alkylene is straight chain alkylene having 1 to 6 carbon atoms, and is exemplified by methylene, ethylene, trimethylene, tetramethylene, pentamethylene or hexamethylene.
[1135] The C1-6 alkylene is preferably methylene or ethylene at Y.
[1136] The C2-6 alkenylene is straight chain alkenylene having 2 to 6 carbon atoms, and is exemplified by vinylene, propenylene, 1-butenylene, 1,3-butadienylene and the like.
[1137] The C2-6 alkenylene is preferably vinylene at Y.
[1138] The C1-6 alkoxy is alkyloxy wherein the alkyl moiety thereof is the above-defined C1-6 alkyl. Preferably, it is alkoxy wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxy, ethoxy, propoxy, isopropyloxy, butoxy, isobutyloxy, tert-butyloxy, pentyloxy, hexyloxy and the like.
[1139] The C1-6 alkoxy is particularly preferably methoxy at Ra2, Ra3, Ra27, Ra28, Ra33, group A and group C.
[1140] The C1-6 alkoxy C1-6 alkoxy is that wherein C1-6 alkoxy in the above definition is substituted by C1-6 alkoxy defined above and is preferably that wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Specific examples include methoxymethyl, ethoxymethyl, methoxyethoxy, methoxypropoxy, isopropyloxyethoxy and the like.
[1141] The group A is particularly preferably methoxyethoxy.
[1142] The C1-6 alkanoyl is alkylcarbonyl wherein the alkyl moiety thereof is the above-defined C1-6 alkyl. Preferably, it is alkanoyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetyl, propionyl, butyryl, isobutyryl, pivaloyl and the like.
[1143] The C1-6 alkanoyl is particularly preferably acetyl at R1, R2, R3, R4, Ra5, Ra29, Rb7 and group B.
[1144] The C1-6 alkoxycarbonyl is alkyloxycarbonyl wherein the alkoxy moiety thereof is the above-defined C1-6 alkoxy. Preferably, it is alkoxycarbonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropyloxycarbonyl, butoxycarbonyl, isobutyloxycarbonyl, tert-butyloxycarbonyl, pentyloxycarbonyl, hexyloxycarbonyl and the like.
[1145] The C1-6 alkoxycarbonyl is particularly preferably methoxycarbonyl or ethoxycarbonyl at Ra10 and group A.
[1146] The C1-6 alkylamino is alkylamino or dialkylamino wherein the alkyl moiety thereof is the above-defined C1-6 alkyl. Preferably, it is alkylamino or dialkylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylamino, ethylamino, propylamino, isopropylamino, butylamino, isobutylamino, tert-butylamino, pentylamino, hexylamino, dimethylamino, diethylamino, methylethylamino, N-isopropyl-N-isobutylamino and the like.
[1147] The C1-6 alkylamino is particularly preferably methylamino at Ra7, and particularly preferably dimethylamino at Ra21 and group A, and particularly preferably dimethylamino, ethylamino or isopropylamino at Ra24.
[1148] The C1-6 alkanoylamino is alkylcarbonylamino wherein the alkanoyl moiety thereof is the above-defined C1-6 alkanoyl. Preferably, it is alkylcarbonylamino wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include acetylamino, propionylamino, butyrylamino, isobutyrylamino, pivaloylamino and the like.
[1149] The C1-6 alkanoylamino is particularly preferably acetylamino at X and Ra10.
[1150] The C1-6 alkylsulfonyl is alkylsulfonyl wherein the alkyl moiety thereof is the above-defined C-1-6 alkyl. Preferably, it is alkylsulfonyl wherein the alkyl moiety thereof is straight chain or branched chain alkyl having 1 to 4 carbon atoms. Examples thereof include methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, isobutylsulfonyl, tert-butylsulfonyl, pentylsulfonyl, hexylsulfonyl and the like.
[1151] The C1-6 alkylsulfonyl is particularly preferably methylsulfonyl at X and Ra5.
[1152] The C6-14 aryl is aromatic hydrocarbon having 6 to 14 carbon atoms. Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl and the like.
[1153] The C6-14 aryl is preferably phenyl or naphthyl, particularly preferably phenyl at the ring A, ring A′, ring B and ring B′.
[1154] The C3-8 cycloalkyl is saturated cycloalkyl having 3 to 8, preferably 5 to 7, carbon atoms. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl.
[1155] The C3-8 cycloalkyl is particularly preferably cyclohexyl at the ring A, ring A′, ring B and ring B′.
[1156] The C3-8 cycloalkenyl is cycloalkenyl having 3 to 8, preferably 5 to 7, carbon atoms and has at least 1, preferably 1 or 2, double bond(s). Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.
[1157] The C3-8 cycloalkenyl is preferably cyclohexenyl at the ring A and ring A′.
[1158] The heterocyclic group has, as an atom constituting the ring, 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, besides a carbon atom, and includes saturated ring and unsaturated ring, monocyclic ring and fused ring having the number of ring atom constituting the ring of 3 to 14.
[1159] The heterocyclic group as a monocyclic ring includes, for example, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl and the like.
[1160] The heterocyclic group includes the groups of the following formulas.
39
[1161] wherein E1 is an oxygen atom, a sulfur atom or N(—Ra35), E2 is an oxygen atom, CH2 or N(—Ra35), E3 is an oxygen atom or a sulfur atom, wherein Ra35 is independently hydrogen atom or C1-6 alkyl, f is an integer of 1 to 3, and h and h′ are the same or different and each is an integer of 1 to 3.
[1162] Specific examples of the heterocyclic group include
4041
[1163] and the like.
[1164] Examples of the heterocyclic group as a fused ring include quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, 2,3-dihydrobenzimidazolyl, 2,3-dihydro-2-oxobenzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl and the like.
[1165] Preferably, it is a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl
4243
[1166] and the like.
[1167] At R1, R2, R3, R4, Z and group D, tetrazolyl and 5-oxo-Δ2-1,2,4-oxadiazolin-3-yl are particularly preferable.
[1168] The heterocyclic group is preferably pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl which is an aromatic group, and particularly preferably pyridyl at the ring A and ring A′.
[1169] The heterocyclic group is particularly preferably pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, which is an aromatic group, at the ring B and ring B′. More preferably it is pyridyl or thiazolyl, most preferably thiazolyl.
[1170] The C6-14 aryl C1-6 alkyl is arylalkyl wherein the alkyl moiety thereof is the above-defined C1-6 alkyl and the aryl moiety is the above-defined C6-14 aryl. Preferably, it is arylalkyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 4-phenylbutyl and the like.
[1171] The C6-14 aryl C1-6 alkyl is particularly preferably benzyl at Ra8 and Rb6.
[1172] The glucuronic acid residue is glucuronic acid less any hydroxyl group, preferably β-D-glucuronic acid substituted at 1-position.
[1173] The C6-14 aryl C1-6 alkyloxycarbonyl is arylalkyloxycarbonyl wherein the C6-14 aryl C1-6 alkyl moiety thereof is the above-defined C6-14 aryl C1-6 alkyl. Preferably, it is arylalkyloxycarbonyl wherein the alkyl moiety thereof is straight chain alkyl having 1 to 4 carbon atoms and the aryl moiety is phenyl. Examples thereof include benzyloxycarbonyl, phenethyloxycarbonyl, 3-phenylpropyloxycarbonyl, 2-phenylpropyloxycarbonyl, 4-phenylbutyloxycarbonyl and the like.
[1174] The C6-14 aryl C1-6 alkyloxycarbonyl is particularly preferably benzyloxycarbonyl at Rb7.
[1175] The optionally substituted C1-6 alkyl is the above-defined C1-6 alkyl, preferably that wherein straight chain or branched chain alkyl having 1 to 4 carbon atoms is optionally substituted with 1 to 3 substituent(s), and includes unsubstituted alkyl. The substituent(s) is(are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C1-6 alkoxy, the above-defined C1-6 alkoxy C1-6 alkoxy, the above-defined C1-6 alkoxycarbonyl and the above-defined C1-6 alkylamino. Examples of optionally substituted C1-6 alkyl include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, tert-pentyl, neopentyl, 1-ethylpropyl, hexyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 1-hydroxy-1-methylethyl, 1-hydroxypropan-2-yl, 1,3-dihydroxypropan-2-yl, 1-hydroxy-2-methylpropan-2-yl, carboxylmethyl, 2-carboxylethyl, methoxymethyl, methoxyethyl, methoxyethoxyethyl, ethoxycarbonylmethyl, 2-ethoxycarbonylethyl, 2-dimethylaminoethyl and the like.
[1176] Preferably, the optionally substituted C1-6 alkyl is methyl, 1-hydroxy-1-methylethyl, carboxylmethyl or 2-dimethylaminoethyl at R1, R2, R3 and R4, methyl or trifluoromethyl at R5, R5′, R6 and R6′, methyl at R7, R8, Ra31 and Rb5, methyl, ethyl or isopropyl at Ra24, methyl or isopropyl at Ra18, methyl or ethyl at Ra1, Ra19 and Ra25, methyl, carboxylmethyl or 2-dimethylaminoethyl at Ra2 and Ra3, methyl or carboxylmethyl at Ra6, methyl, ethyl, isopropyl, butyl or trifluoromethyl at X, methyl, ethyl, isopropyl, butyl, isobutyl, tert-butyl, isopentyl, neopentyl, 1-ethylpropyl or carboxylmethyl at Ra10, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, trifluoromethyl, 2-hydroxyethyl or carboxylmethyl at Ra11, methyl or 4-hydroxybutyl at Ra12, methyl, ethyl, isopropyl, butyl, 2-hydroxyethyl, 4-hydroxybutyl, ethoxycarbonylmethyl, 2-(ethoxycarbonyl)ethyl or 2-dimethylaminoethyl at Ra13, methyl, propyl, butyl, isopentyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 3-hydroxypropyl, methoxyethyl, methoxyethoxyethyl or carboxymethyl at Ra20, methyl or ethyl at Ra22 and Ra23, methyl isopropyl or tert-butyl at Ra26, methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, isobutyl, 2-hydroxyethyl, 1-hydroxypropan-2-yl, 1-hydroxy-2-methylpropan-2-yl or carboxylmethyl at Ra27 and Ra28, and methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, 2-carboxylethyl, methoxymethyl or ethoxycarbonylmethyl at Z, Z′ and group D.
[1177] It is particularly preferably, trifluoromethyl at R5, R5′, R6 and R6′, methyl or tert-butyl at Ra26, methyl, tert-butyl, trifluoromethyl or hydroxymethyl at Z, Z′ and group D, and methyl at other substituents.
[1178] The optionally substituted C2-6 alkenyl is that wherein straight chain or branched chain alkenyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkenyl. The substituent(s) is (are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C1-6 alkoxy, the above-defined C1-6 alkoxy C1-6 alkoxy, the above-defined C1-6 alkoxycarbonyl and the above-defined C1-6 alkylamino. Examples of optionally substituted C2-6 alkenyl include vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 1,3-butadienyl, 2-isopentenyl, 3-isohexenyl, 4-methyl-3-pentenyl, 2-carboxylethenyl and the like.
[1179] The optionally substituted C2-6 alkenyl is preferably 2-carboxylethenyl at X, and preferably 2-isopentenyl, 3-isohexenyl or 4-methyl-3-pentenyl at Ra20.
[1180] The optionally substituted C2-6 alkynyl is that wherein straight chain or branched chain alkynyl having 2 to 6 carbon atoms is optionally substituted by 1 to 3 substituent(s), and includes unsubstituted alkynyl. The substituent(s) is (are) selected from the above-defined halogen atom, hydroxyl group, carboxyl, amino, the above-defined C1-6 alkoxy, the above-defined C1-6 alkoxycarbonyl and the above-defined C1-6 alkylamino. Examples thereof include ethynyl, 1-propynyl, 2-propynyl, 3-butynyl and the like.
[1181] The optionally substituted C2-6 alkynyl is preferably 2-propynyl at Ra20.
[1182] The C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C6-14 aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C1-6 alkyl, the above-defined halogenated C1-6 alkyl, the above-defined C1-6 alkanoyl, —(CH2)r—COORb1, —(CH2)r—CONRb1Rb2, —(CH2)r—NRb1Rb2, —(CH2)r—NRb1—CORb2, —(CH2)r—NHSO2Rb1, —(CH2)r—ORb1, —(CH2)rSRb1, —(CH2)r—SO2Rb1 and —(CH2)r—SO2NRb1Rb2 (wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined C1-6 alkyl and r is 0 or an integer of 1 to 6).
[1183] Examples thereof include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-nitrophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-carboxylphenyl, 4-carbamoylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-acetylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-methylthiophenyl, 4-methylsulfonylphenyl, 4-aminosulfonylphenyl, 3-nitro-4-methoxyphenyl and 4-nitro-3-methoxyphenyl.
[1184] The aryl moiety is preferably phenyl, the group B here is preferably the above-defined halogen atom, nitro, the above-defined C1-6 alkyl, the above-defined halogenated C1-6 alkyl or —(CH2)r—ORb1. Examples of group B include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl and methoxy. Particularly preferably, it is fluorine atom or chlorine atom.
[1185] With regard to “C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group B”, it is preferably phenyl, 4-tert-butylphenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 4-methoxyphenyl or 4-trifluoromethylphenyl at Ra12, Ra27 and Ra28, phenyl at Ra14, Ra22, Ra23, Ra26 and Rb5, phenyl or 3-fluorophenyl at Ra18, phenyl or 2,4-dichlorophenyl at Ra20, phenyl, 4-chlorophenyl, 4-trifluoromethylphenyl, 3,5-dichlorophenyl, 3-nitro-4-methoxyphenyl or 4-nitro-3-methoxyphenyl at Ra24, and phenyl or 4-methylphenyl at Ra25.
[1186] It is particularly preferably phenyl at other substituents.
[1187] The C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C6-14 aryl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the above-mentioned group D (substituents shown under (a) to (q)).
[1188] Examples of group D here include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl, dimethylaminosulfonyl and tetrazolyl.
[1189] Examples of C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D include phenyl, naphthyl, anthryl, indenyl, azulenyl, fluorenyl, phenanthryl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-dichlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, pentafluorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-cyanophenyl, 4-acetylphenyl, 4-aminophenyl, 4-dimethylaminophenyl, 4-(methylsulfonylamino)phenyl, 4-methylsulfinylphenyl, 4-aminosulfonylphenyl and 3-nitro-4-methoxyphenyl, 4-nitro-3-methoxyphenyl and 4-tetrazol-5-ylphenyl.
[1190] At Z and Z′, the aryl moiety is preferably phenyl.
[1191] The group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C1-6 alkyl, —(CH2)t—COORa19, —(CH2)t—CONRa27Ra28, —(CH2)t—ORa20, —(CH2)t—NRa29CO—Ra24, —(CH2)t—S(O)q—Ra25 or —(CH2)t—SO2—NHRa26.
[1192] Particularly preferably, it is the above-defined halogen atom, the above-defined optionally substituted C1-6 alkyl, —(CH2)t—COORa19, —(CH2)t—CONRa27Ra28, —(CH2)t—ORa20 or —(CH2)t—S(O)q—Ra25, which is specifically fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino. More preferably, it is fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino, most preferably fluorine atom or chlorine atom.
[1193] Examples of C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D preferably include phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, 4-acetylaminophenyl, 4-methylsulfinylphenyl, 4-aminosulfonylphenyl, 4-cyanophenyl and 4-tetrazolylphenyl, particularly preferably 4-chlorophenyl.
[1194] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B-is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the above-defined halogen atom, cyano, nitro, the above-defined C1-6 alkyl, the above-defined halogenated C1-6 alkyl, the above-defined C1-6 alkanoyl, —(CH2)r—COORb1, —(CH2)r—CONRb1Rb2, —(CH2)r—NRb1Rb2, —(CH2)r—NRb1—CORb2, —(CH2)r—NHSO2Rb1, —(CH2)r—ORb1, —(CH2r—SRb1, —(CH2)r—SO2Rb1 and —(CH2)r—SO2NRb1Rb2 wherein Rb1 and Rb2 are each independently hydrogen atom or the above-defined C1-6 alkyl and r is 0 or an integer of 1 to 6.
[1195] Examples thereof include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropyridin-3-yl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, 3-hydroxypyrrolidinyl, imidazolidinyl, azetidinyl, piperidyl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)piperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, 4-methylpiperazinyl, 4-methylsulfonylpiperazinyl, morpholinyl, thiomorpholinyl, 1-oxothiomorpholin-4-yl, 1,1-dioxothiomorpholin-4-yl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl,
4445
[1196] and the like.
[1197] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or a 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the group B here is preferably the above-defined halogen atom, the above-defined C1-6 alkyl, the above-defined halogenated C1-6 alkyl, the above-defined C1-6 alkanoyl, —(CH2)r—COORb1, —(CH2)r—CONRb1Rb2 or —(CH2)r—ORb1.
[1198] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group B preferably include piperidino, 4-methylpiperidino, 2,6-dimethylpiperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-(methylsulfonyl)piperidin-4-yl, 1-pyrrolidinyl, morpholino, 4-thiomorpholinyl, tetrahydropyranyl, pyridyl, thiazolyl,
46
[1199] Particularly preferably, it is piperidino, 4-methylpiperidino, 2,6-dimethylpiperidino, 4-hydroxypiperidino, 1-piperazinyl, 1-pyrrolidinyl, morpholino or 4-thiomorpholinyl at Ra18, tetrahydropyranyl or 4-hydroxypiperidino at Ra20, piperidino, 4-hydroxypiperidino or 3,4-dihydroxypiperidino at Ra21, pyridyl or morpholino at Ra24, pyridyl or 4-hydroxypiperidino at Ra25, pyridyl or thiazolyl at Ra26 and at Ra27 and Ra28, it is 1-(methylsulfonyl)piperidin-4-yl, 3-hydroxypyrrolidinyl, 3-hydroxypiperidino, 4-hydroxypiperidino, 3,4-dihydroxypiperidino, 4-methoxypiperidino, 4-carboxypiperidino, 4-(hydroxymethyl)piperidino, 2-oxopiperidino, 4-oxopiperidino, 2,2,6,6-tetramethylpiperidino, 2,2,6,6-tetramethyl-4-hydroxypiperidino, 4-methylsulfonylpiperazinyl, 1-oxothiomorpholin-4-yl or 1,1-dioxothiomorpholin-4-yl, and 2-oxazolin-2-yl at Ra22 and Ra23.
[1200] The heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined heterocyclic group is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocyclic group. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (q)).
[1201] Examples of the group D here include the substituent(s) exemplified for C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D.
[1202] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridyl, 3-pyridyl, 4-pyridyl, 3-fluoropyridin-4-yl, 3-chloropyridin-4-yl, 4-chloropyridin-3-yl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, 2-thienyl, 3-thienyl, furyl, oxazolyl, 2-methyloxazol-4-yl, isoxazolyl, thiazolyl, 2-methylthiazol-4-yl, 2,5-dimethylthiazol-4-yl, 2,4-dimethylthiazol-5-yl, isothiazolyl, thiadiazolyl, pyrrolinyl, pyrrolidinyl, imidazolidinyl, piperidyl, N-methylpiperidin-4-yl, N-(tert-butoxycarbonyl)piperidin-4-yl, N-acetylpiperidin-4-yl, N-methylsulfonylpiperidin-4-yl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, quinolyl, isoquinolyl, quinazolinyl, quinoxalyl, phthalazinyl, cinnolinyl, naphthyridinyl, 5,6,7,8-tetrahydroquinolyl, indolyl, benzimidazolyl, indolinyl, benzofuranyl, benzothienyl, benzoxazolyl, benzothiazolyl
47
[1203] and the like.
[1204] In addition, the heterocyclic group may be substituted at the 3-, 4-, 5- or 6-position of 2-pyridyl, at the 2-, 4-, 5- or 6-position of 3-pyridyl, at the 2-, 3-, 5- or 6-position of 4-pyridyl, at the 3-, 4- or 5-position of 2-thienyl, or at the 2-, 4- or 5-position of 3-thienyl, by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl, amino or acetylamino.
[1205] At Z and Z′, the heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, 2-oxopyrrolidinyl, 2-oxopiperidyl, pyrazolyl, imidazolyl, 2-imidazolinyl, 2-oxoimidazolidinyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, 2-oxazolinyl, thiazolyl, isothiazolyl, 1,1-dioxoisothiazolidinyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl, tetrahydropyranyl, Δ2-1,2,4-oxadiazolyl, 5-oxo-Δ2-1,2,4-oxadiazolyl, 5-oxo-Δ2-1,2,4-thiadiazolinyl and 2-oxo-3H-1,2,3,5-oxathiadiazolinyl. The group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C1-6 alkyl, —(CH2)t—COORa19, —(CH2)t—CONRa27Ra28, —(CH2)t—ORa20, —(CH2)t—NRa29CO—Ra24, —(CH2)t—S(O)q—Ra25 or —(CH2)t—SO2—NHRa26.
[1206] Examples of heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D preferably include piperidino, 4-hydroxypiperidino, 2-oxopiperidin-1-yl, 1-piperazinyl, 1-pyrrolidinyl, 2-oxopyrrolidin-1-yl, morpholino, 4-thiomorpholinyl, 4-tetrahydropyranyl, 3-pyridyl, 2-pyrimidinyl, 2-imidazolin-2-yl, 2-oxoimidazolidin-1-yl, 2-oxooxazolidin-1-yl, 5-tetrazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 2-methylthiazol-4-yl, 5-methylthiazol-2-yl, 2-aminothiazol-4-yl, 3methyl-1,2,4-oxadiazol-5-yl, 1,1-dioxoisothiazolidin-2-yl, 4,4dimethyl-Δ2-oxazolin-2-yl, 2-thienyl, 5-chlorothiophen-2-yl, 5-methyloxazol-2-yl, 5-oxo-Δ2-1,2,4-oxadiazolin-3-yl, 5-oxo-Δ2-1,2,4-thiadiazolin-3-yl and 2-oxo-3H-1,2,3,5-oxathiazolin-4-yl.
[1207] Particularly preferably, it is pyridyl, pyrimidinyl, tetrazolyl, thienyl, piperidyl, 2-oxopiperidin-1-yl, 2-oxopyrrolidin-1-yl, 2-imidazolin-2-yl, 2-oxoimidazolidin-1-yl, 2-oxooxazolidin-1-yl, 2-methylthiazol-4-yl, 5-methylthiazol-2-yl, 2-aminothiazol-4-yl, 3-methyl-1,2,4-oxadiazol-5-yl, 1,1-dioxoisothiazolidin-2-yl, 4,4-dimethyl-Δ2-oxazolin-2-yl, 5-chlorothiophen-2-yl, 5-methyloxazol-2-yl, 5-oxo-Δ2-1, 2,4-oxadiazolin-3-yl, 5-oxo-Δ2-1,2,4-thiadiazolin-3-yl or 2-oxo-3H-1,2,3,5-oxathiadiazolin-4-yl, more preferably 2-oxopiperidin-1-yl, 2-oxopyrrolidin-1-yl, 2-oxoimidazolidin-1-yl, 2-oxooxazolidin-1-yl, or 1,1-dioxoisothiazolidin-2-yl, most preferably 2-oxopyrrolidin-1-yl.
[1208] The C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is that wherein the above-defined C3-8 cycloalkyl is optionally substituted by the 1 to 5 substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C1-6 alkyl and the above-defined C1-6 alkoxy, which may be unsubstituted. Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-fluorocyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.
[1209] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.
[1210] At the ring Cy and ring Cy′, the C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from group C is preferably cyclopentyl, cyclohexyl, 4-fluorocyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl or 4-methoxycyclohexyl, more preferably cyclopentyl or cyclohexyl, particularly preferably cyclohexyl.
[1211] The C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C3-8 cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituents are selected from the above group B.
[1212] Specific examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-fluorocyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.
[1213] Also exemplified are those wherein cyclopentyl or cyclohexyl is substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.
[1214] At cycloalkyl moiety, it is preferably cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. As the C3-8 cycloalkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B, it is particularly preferably cyclopropyl, cyclobutyl, cyclohexyl or 4-hydroxycyclohexyl at Ra27 and Ra28. The C3-8 cycloalkyl optionally substituted by.1 to 5 substituent(s) selected from group D is that wherein the above-defined C3-8 cycloalkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkyl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (q)).
[1215] The group D here includes the substituents recited with regard to C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D.
[1216] Examples thereof include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, 4-fluorocyclohexyl, 2-methylcyclopentyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 4,4-dimethylcyclohexyl, 3,5-dimethylcyclohexyl, 4-tert-butylcyclohexyl, 4-hydroxycyclohexyl, 4-methoxycyclohexyl and 2,3,4,5,6-pentafluorocyclohexyl.
[1217] The group D may be, for example, cyclopentyl or cyclohexyl substituted by fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.
[1218] The cycloalkyl moiety is preferably cyclopentyl or cyclohexyl, and at Z and Z′, it is particularly preferably cyclohexyl.
[1219] The optionally substituted C3-8 cycloalkenyl is that wherein the above-defined C3-8 cycloalkenyl is optionally substituted by substituent(s) selected from hydroxyl group, the above-defined halogen atom, the above-defined C1-6 alkyl and the above-defined C1-6 alkoxy, which may be unsubstituted. Examples thereof include cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclopentadienyl, cyclohexenyl, 4-fluoro-2-cyclohexenyl, 4-methyl-2-cyclohexenyl, 4-methyl-3-cyclohexenyl, 2,4-cyclohexadien-1-yl, 2,5-cyclohexadien-1-yl, cycloheptenyl and cyclooctenyl and the like, but do not include aryl (e.g., phenyl) or completely saturated cycloalkyl.
[1220] The optionally substituted C3-8 cycloalkenyl is particularly preferably cyclohexenyl at the ring Cy.
[1221] The C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined C6-14 aryl C1-6 alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted arylalkyl. The substituent(s) is(are) selected from the above-mentioned group B.
[1222] Examples thereof include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-nitrobenzyl, 4-cyanobenzyl, 4acetylbenzyl, 4-carboxylbenzyl, 4-carbamoylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-acetylaminobenzyl, 4-(methylsulfonylamino)benzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-methylthiobenzyl, 4-methylsulfonylbenzyl, 4-aminosulfonylbenzyl, 3-nitro-4-methoxybenzyl and 4-nitro-3-methoxybenzyl.
[1223] The C6-14 aryl C1-6 alkyl moiety is preferably benzyl or phenethyl, particularly preferably benzyl. The group B is preferably the above-defined halogen atom, nitro, the above-defined C1-6 alkyl, the above-defined halogenated C1-6 alkyl or —(CH2), —ORb1. Examples thereof include fluorine atom, chlorine atom, nitro, methyl, tert-butyl, trifluoromethyl, methoxy or trifluoromethyloxy, particularly preferably fluorine atom or chlorine atom.
[1224] The specific C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group B at Ra12 and Ra13 is preferably benzyl, phenethyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 3-trifluoromethylbenzyl, it is preferably benzyl at Ra1, Ra19, Ra27, Ra28, Ra31 and Rb5, it is preferably benzyl, phenethyl, 4-fluorobenzyl, 2-chlorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 4-tert-butylbenzyl or 4-trifluoromethylbenzyl at Ra20, and 4-chlorobenzyl, 3,5-dichlorobenzyl or 4-trifluoromethylbenzyl at Ra22 and Ra23.
[1225] It is particularly preferably benzyl at other substituents.
[1226] The C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined C6-14 aryl C1-6 alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted aryl. The substituent(s) is(are) selected from the substituent(s) of the above-mentioned group D (substituents shown under (a) to (q)).
[1227] Examples of group D include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, isopropyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl and dimethylaminosulfonyl.
[1228] Examples of C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group D include benzyl, 1-naphthylmethyl, 2-naphthylmethyl, phenethyl, 3-phenylpropyl, 2-phenylpropyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 2,4-dichlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, pentafluorobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4-(methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-(acetylamino)benzyl, 4-cyanobenzyl, 4-acetylbenzyl, 4-aminobenzyl, 4-dimethylaminobenzyl, 4-(methylsulfonylamino)benzyl, 4-methylsulfinylbenzyl, 4-aminosulfonylbenzyl, (3-nitro-4-methoxyphenyl)methyl and (4-nitro-3-methoxyphenyl)methyl.
[1229] At Z and Z′, the C6-14 aryl C1-6 alkyl moiety is preferably benzyl or phenethyl, and the group D here is preferably the above-defined halogen atom, nitro, the above-defined optionally substituted C1-6 alkyl, —(CH2)t—COORa19, —(CH2)tCONRa27Ra28, —(CH2)t—ORa20, —(CH2)t—NRa29CO—Ra24, —(CH2)t—S(O)q—Ra25 or —(CH2)t—SO2—NHRa26.
[1230] The C6-14 aryl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is preferably benzyl, 3-fluorobenzyl, 4-fluorobenzyl, 3-chlorobenzyl, 4-chlorobenzyl, 3,5-dichlorobenzyl, 4-bromobenzyl, 4-nitrobenzyl, 4-methylbenzyl, 4-tert-butylbenzyl, 2-trifluoromethylbenzyl, 4-trifluoromethylbenzyl, 4-(hydroxymethyl)benzyl, 4-(methoxymethyl)benzyl, 4-(2-carboxylethyl)benzyl, 3-carboxylbenzyl, 4-carboxylbenzyl, 4-methoxybenzyl, 3,4,5-trimethoxybenzyl, 4-carbamoylbenzyl, 4-methylthiobenzyl, 4-(dimethylaminocarbonyl)benzyl, 4-methylsulfonylbenzyl, 4-acetylaminobenzyl, 4-methylsulfinylbenzyl or 4-aminosulfonylbenzyl.
[1231] It is particularly preferably the above-defined halogen atom, the above-defined optionally substituted C1-6 alkyl, —(CH2)t—COORa19, —(CH2)t—CONRa27Ra28, —(CH2)t—ORa20 or —(CH2)t—S(O)q—-Ra25. Examples thereof include fluorine atom, chlorine atom, bromine atom, nitro, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl and acetylamino. It is more preferably fluorine atom, chlorine atom, methyl, tert-butyl, carboxyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl or methylsulfonyl, most preferably fluorine atom or chlorine atom.
[1232] The heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group B is that wherein the above-defined heterocycle C1-6 alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocycle C1-6 alkyl. The substituent(s) is(are) selected from the above-mentioned group B.
[1233] Examples thereof include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, pyrrolylmethyl, imidazolylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-furylmethyl, 2-oxazolylmethyl, 5-isothiazolylmethyl, 2-methyloxazol-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 2-methylthiazol-4-ylmethyl, 2-methylthiazol-5-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4-methylthiazol-2-ylmethyl, 2,4-dimethylthiazol-5-ylmethyl, 2-isothiazolylmethyl, 2-pyrrolinylmethyl, pyrrolidinylmethyl, piperidylmethyl, 4-piperidylmethyl, 1-methylpiperidin-4-ylmethyl, 4-hydroxypiperidinomethyl, 3-hydroxypyrrolidinylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-acetylpiperidin-4-ylmethyl, 1-methylsulfonylpiperidin-4-ylmethyl, piperazinylmethyl, morpholinomethyl, thiomorpholinylmethyl, 1-tetrahydropyranylmethyl, 2-quinolylmethyl, 1-isoquinolylmethyl and the like.
[1234] The heterocyclic moiety is preferably a heterocyclic group which is a 5-membered or 6-membered monocyclic group. Examples thereof include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the alkyl moiety thereof is preferably straight chain alkyl having 1 to 4 carbon atoms. The group B here is preferably the above-defined halogen atom, the above-defined C1-6 alkyl, the above-defined halogenated C1-6 alkyl, the above-defined C1-6 alkanoyl, —(CH2)r-COORb1, —(CH2)r—CONRb1Rb2 or —(CH2)r—ORb1.
[1235] Examples of heterocycle C1-6 alkyl optionally substituted 5 by 1 to 5 substituent(s) selected from group B preferably include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)-piperidin-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 2-methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl and 4-methylthiazol-2-ylmethyl. Particularly preferably, it is 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl or 4-methylthiazol-2-ylmethyl at Ra20, 2-pyridylmethyl at Ra22 and Ra23 , and 4-pyridylmethyl or 4-methylthiazol-2-ylmethyl at Ra27 and Ra28.
[1236] The heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group D is that wherein the above-defined heterocycle C1-6 alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted heterocycle C1-6 alkyl. The substituent(s) is(are) selected from the above-mentioned group D (substituents shown under (a) to (q)).
[1237] Examples of group D here include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, acetyl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, isopropyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, methylsulfonylamino, methylthio, methylsulfonyl, methylsulfinyl, aminosulfonyl, methylaminosulfonyl and dimethylaminosulfonyl.
[1238] Examples of heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, pyrrolylmethyl, imidazolylmethyl, 2-thienylmethyl, 3-thienylmethyl, 2-furylmethyl, 2-oxazolylmethyl, 5-isothiazolylmethyl, 2-methyloxazol-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 5-thiazolylmethyl, 2-methylthiazol-4-ylmethyl, 2-methylthiazol-5-ylmethyl, 2,5-dimethylthiazol-4-ylmethyl, 4methylthiazol-2-ylmethyl, 2,4-dimethylthiazol-5-ylmethyl, 2-isothiazolylmethyl, 2-pyrrolinylmethyl, pyrrolidinylmethyl, piperidylmethyl, 4-piperidylmethyl, 1-methylpiperidin-4-ylmethyl, 4-hydroxypiperidinomethyl, 2-(4-hydroxypiperidino)ethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-acetylpiperidin-4-ylmethyl, 1-methylsulfonylpiperidin-4-ylmethyl, piperazinylmethyl, morpholinomethyl, thiomorpholinylmethyl, 1-tetrahydropyranylmethyl, 2-quinolylmethyl, 1-isoquinolylmethyl, and the like.
[1239] Preferable heterocyclic moiety at Z and Z′ is heterocylic group which is 5-membered or 6-membered monocyclic group. Examples of the heterocyclic moiety include pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isooxazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolidinyl, piperidyl, piperazinyl, morpholinyl, thiomorpholinyl and tetrahydropyranyl, and the alkyl moiety is preferably straight chain alkyl having 1 to 4 carbon atoms, particularly methyl (i.e., methylene).
[1240] Preferable group D is the above-defined halogen atom, nitro, the above-defined optionally substituted C1-6 alkyl, —(CH2)t—COORa19, —(CH2)tCONRa27Ra28, —(CH2)tORa20, —(CH2)t—NRa29CO—Ra24, —(CH2)t—S(O)q—Ra25 or —(CH2)t—SO2—NHRa26.
[1241] Preferable examples of heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from group D include 2-pyridylmethyl, 3-pyridylmethyl, 2-chloropyridin-4-ylmethyl, 4-pyridylmethyl, piperidin-4-ylmethyl, 1-methylpiperidin-4-ylmethyl, 4-hydroxypiperidinomethyl, 2-(4-hydroxypiperidino)ethyl, 1-acetylpiperidin-4-ylmethyl, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyl, 1-(methylsulfonyl)piperidin-4-ylmethyl, 2-thiazolylmethyl, 4-thiazolylmethyl, 2-methylthiazolin-4-ylmethyl, 2,4-dimethylthiazolin-5-ylmethyl and 4-methylthiazol-2-ylmethyl.
[1242] Particularly preferred is 4-hydroxypiperidinomethyl.
[1243] The C3-8 cycloalkyl C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the above group B is that wherein the above-defined C3-8 cycloalkyl C1-6 alkyl is optionally substituted by 1 to 5 substituent(s), and includes unsubstituted cycloalkylalkyl. The substituents are selected from the above group B.
[1244] Specific examples thereof include cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, 2-(cyclopentyl)ethyl, 2-(cyclohexyl)ethyl, cycloheptylmethyl, 4-fluorocyclohexylmethyl, 2-methylcyclopentylmethyl, 3-methylcyclohexylmethyl, 4-methylcyclohexylmethyl, 4,4-dimethylcyclohexylmethyl, 3,5-dimethylcyclohexylmethyl, 4-tert-butylcyclohexylmethyl, 4-hydroxycyclohexylmethyl, 4-methoxycyclohexylmethyl and 2,3,4,5,6-pentafluorocyclohexylmethyl.
[1245] Also exemplified are those wherein cyclopentylmethyl or cyclohexylmethyl is substituted by fluorine atom, chlorine atom, bromine atom, nito, methyl, tert-butyl, carboxyl, trifluoromethyl, hydroxymethyl, methoxymethyl, 2-carboxylethyl, methoxy, carbamoyl, methylthio, dimethylaminocarbonyl, methylsulfonyl or acetylamino.
[1246] At C3-8 cycloalkyl C1-6 alkyl moiety, it is preferably cyclopentylmethyl or cyclohexylmethyl, and at Ra20, Ra27 and Ra28, it is particularly preferably cyclohexylmethyl.
[1247] The carboxyl-protecting group only needs to be suitable for reaction conditions, and is capable of protecting and deprotecting and may be, for example, methyl; substituted methyl group such as methoxymethyl, methylthiomethyl, 2-tetrahydropyranyl, methoxyethoxymethyl, benzyloxymethyl, phenacyl, diacylmethyl, phthalimidomethyl etc.; ethyl; substituted ethyl group such as 2,2,2-trichloroethyl, 2-chloroethyl, 2-(trimethylsilyl)ethyl, 2-methylthioethyl, 2-(p-toluenesulfonyl)ethyl, t-butyl etc.; benzyl; substituted benzyl group such as diphenylmethyl, triphenylmethyl, p-nitrobenzyl, 4-picolyl, p-methoxybenzyl, 2-(9,10-dioxo)anthrylmethyl etc.; silyl group such as trimethylsilyl, t-butyldimethylsilyl, phenyldimethylsilyl etc.; and the like.
[1248] Preferred are industrially effective protecting groups and specifically preferred as Ra36 are methyl and ethyl.
[1249] In formula [I], X is preferably
48
[1250] wherein each symbol is as defined above.
[1251] G1, G2, G3 and G4 are each preferably (C—R1), (C—R2), (C—R3) and (C—R4), G5 is preferably a nitrogen atom, and G6, G8 and G9 are preferably a carbon atom. G7 is preferably C(—R7) or unsubstituted nitrogen atom, wherein R7 is preferably hydrogen atom.
[1252] A preferable combination is G2 of (C—R2) and G6 of a carbon atom, particularly preferably G2 of (C—R2), G6 of a carbon atom and G5 of a nitrogen atom, most preferably G2 of (C—R2), G6 of a carbon atom, G5 of a nitrogen atom and G7 of unsubstituted nitrogen atom.
[1253] In formulas [I] and [II], 1 to 4 of G1 to G9 in the moiety
49
[1254] is(are) preferably a nitrogen atom, specifically preferably
5051
[1255] It is also a preferable embodiment wherein the
52
[1256] moiety is aromatic ring.
[1257] R1 and R3 are preferably hydrogen atom or —ORa6 (Ra6 is as defined above), particularly preferably hydrogen atom. R2 is preferably carboxyl, —COORa1, —CONRa2Ra3, SO2Ra7 (each symbol is as defined above) or heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, particularly preferably carboxyl, —COORa1 or —SO2Ra7, more preferably carboxyl or —COORa1, most preferably carboxyl. R4 is preferably hydrogen atom.
[1258] Ra1 is preferably optionally substituted C1-6 alkyl.
[1259] When R2 is carboxyl or —COORa1, at least one of R1, R3 and R4 is preferably hydroxyl group, halogen atom (particularly fluorine atom, chlorine atom) or —ORa6 (wherein Ra6 is preferably hydrogen atom or methyl).
[1260] The ring Cy and ring Cy′ are preferably cyclopentyl, cyclohexyl, cycloheptyl, tetrahydrothiopyranyl or piperidino, particularly preferably cyclopentyl, cyclohexyl or cycloheptyl, more preferably cyclohexyl.
[1261] The ring A and ring A′ are preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, cyclohexyl, cyclohexenyl, furyl or thienyl, particularly preferably phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, more preferably phenyl or pyridyl, and most preferably phenyl.
[1262] The ring B and ring B′ are preferably C1-6 aryl or heterocyclic group, specifically preferably, phenyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, 1,3,5-triazinyl, pyrrolyl, pyrazolyl, imidazolyl, 1,2,4-triazolyl, tetrazolyl, thienyl, furyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thiadiazolyl, particularly preferably phenyl, pyridyl, pyrimidinyl, 1,3,5-triazinyl or thiazolyl, more preferably, phenyl, pyridyl or thiazolyl, and most preferably phenyl or thiazolyl.
[1263] With regard to R5 and R6, one of them is preferably hydrogen atom and the other is halogen atom, particularly fluorine atom. Alternatively, the both are preferably hydrogen atoms. When ring A is phenyl, R5 and R6 preferably are present at an ortho position from G6. The same applies to R5′ and R6′.
[1264] Y is preferably —(CH2)m—O—(CH2)n—, —NHCO2—, —CONH—CHRa14—, —(CH2)m—NRa12—(CH2)n—, —CONRa13—(CH2)n—, —O—(CH2)m—CRa15Ra16—(CH2)n or —(CH2)n—NRa12CHRa15— (each symbol is as defined above), more preferably, —(CH2)m—O—(CH2)n— or —O—(CH2)n—CRa15Ra16—(CH2)n—, most preferably —(CH2)m—O—(CH2)n—.
[1265] The l, m and n are preferably 0 or an integer of 1 to 4, particularly preferably 0, 1 or 2, at Y. In —(CH2)m—O—(CH2)n—, m=n=0 or m=0 and n=1 is more preferable, most preferably m=0 and n=1. In —O—(CH2)m—CRa15Ra16—(CH2)n—, m=n=0, m=0 and n=1, m=1 and n=0 or m=1 and n=1 is more preferable, most preferably m=0 and n=1.
[1266] When Y is —O—(CH2)m—CRa15Ra16—(CH2)n—, Ra16 is preferably hydrogen atom, Ra15 is preferably
53
[1267] moiety is preferably symmetric. The preferable mode of n, ring B, Z and w and the preferable mode of n′, ring B′, Z′ and w′ are the same.
[1268] When ring A is phenyl, X or Y is preferably present at the para-position relative to G6. When ring B and ring B′ are phenyl, Z is preferably present at the ortho or meta-position relative to Y. It is preferable that the 3-position on phenyl have one substituent or the 2-position and the 5-position on phenyl each have one substituent.
[1269] When ring B is bonded to Y as pyridin-2-yl, Z is preferably substituted at the 3-position and 6-position of pyridyl; when it is bonded to Y as pyridin-3-yl, Z is preferably substituted at the 2-position and 5-position of pyridyl; and when it is bonded to Y as pyridin-4-yl, Z is preferably substituted at the 2-position and 5-position of pyridyl.
[1270] When ring B is thiazolyl, Y is preferably substituted-at the 5-position, and Z is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position. Similarly, when ring B′ is thiazolyl, (CH2)n′ is also preferably substituted at the 5-position, and Z′ is preferably substituted at the 2-position, the 4-position or the 2-position and the 4-position.
[1271] Z and Z′ are preferably group D, “C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D” or “heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D”, particularly preferably group D or “C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D”.
[1272] More preferably, they are the above-defined halogen atom, nitro, the above-defined optionally substituted C1-6 alkyl, —(CH2)t—CORa18, —(CH2)t—COORa19, —(CH2)t—CONRa27Ra28, —(CH2)t—ORa20, —(CH2)t—NRa29CO—Ra24, —(CH2)t—S(O)q—Ra25 or —(CH2)t—SO2—NHRa26, or C6-14 aryl or heterocyclic group optionally substituted by these.
[1273] With regard to Z and Z′, the preferable mode of group D that directly substitutes each ring B and ring B′ and the preferable mode of group D that substitutes C6-14 aryl, C3-8 cycloalkyl, C6-14 aryl C1-6 alkyl or heterocyclic group are the same, wherein they may be the same with or different from each other.
[1274] Specific examples of the substituent preferably include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, ethyl, propyl, isopropyl, tert-butyl, trifluoromethyl, hydroxymethyl, 2-hydroxyethyl, methoxymethyl, 2-carboxylethyl, methoxycarbonylmethyl, ethoxycarbonylmethyl, carbamoylmethoxymethyl, (dimethylaminocarbonyl)methoxymethyl, acetyl, isovaleryl, carboxyl, methoxycarbonyl, ethoxycarbonyl, carbamoyl, methylaminocarbonyl, hydroxyaminocarbonyl, ethylaminocarbonyl, propylaminocarbonyl, isopropylaminocarbonyl, butylaminocarbonyl, isobutylaminocarbonyl, tert-butylaminocarbonyl, (4-hydroxybutyl)aminocarbonyl, (1-hydroxypropan-2-yl)aminocarbonyl, (2,3-dihydroxypropyl)-aminocarbonyl, (1,3-dihydroxypropan-2-yl)aminocarbonyl, methoxyaminocarbonyl, {2-[2-(methoxy)ethoxy]ethyl}aminocarbonyl, N-ethyl-N-methylaminocarbonyl, N-methyl-N-propylaminocarbonyl, N-isopropyl-N-methylaminocarbonyl, dimethylaminocarbonyl, diethylaminocarbonyl, (2-hydroxyethyl)aminocarbonyl, (2-hydroxy-2-methylpropan-2-yl)aminocarbonyl, (carboxylmethyl)aminocarbonyl, hydroxyl group, methoxy, ethoxy, propyloxy, isopropyloxy, butyloxy, isopentyloxy, 2-isopentenyloxy, 3-isohexenyloxy, 4-methyl-3-pentenyloxy, 2-propynyloxy, trifluoromethyloxy, hydroxymethyloxy, carboxylmethyloxy, (dimethylaminocarbonyl)-methyloxy, amino, methylamino, dimethylamino, diethylamino, acetylamino, N-acetyl-N-methylamino, N-acetyl-N-ethylamino, N-acetyl-N-propylamino, N-acetyl-N-isopropylamino, N-ethylcarbonyl-N-methylamino, N-ethyl-N-(ethylcarbonyl)amino, ureido, isopropylcarbonylamino, isobutylcarbonylamino, tert-butylcarbonylamino, (ethylamino)carbonylamino, (isopropylamino)-carbonylamino, (dimethylamino)carbonylamino, (4-hydroxypiperidino)carbonylamino, [(4-hydroxypiperidino)methyl]-carbonylamino, [(3-hydroxypyrrolidinyl)methyl]carbonylamino, methylsulfonylamino, isopropylsulfonylamino, N-(methylsulfonyl)-N-methylamino, N-(ethylsulfonyl)-N-methylamino, N-(isopropylsulfonyl)-N-methylamino, N-(methylsulfonyl)-N-ethylamino, N-(methylsulfonyl)-N-propylamino, N-(ethylsulfonyl)-N-ethylamino, methylthio, methylsulfonyl, isopropylsulfonyl, isobutylsulfonyl, methylsulfinyl, isopropylsulfinyl, aminosulfonyl, methylaminosulfonyl, dimethylaminosulfonyl, isopropylaminosulfonyl, tert-butylaminosulfonyl, hydroxyamidino, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 2,4-difluorophenyl, 3,4-difluorophenyl, 3,4-dichlorophenyl, 3,5-dichlorophenyl, 4-chloro-3-fluorophenyl, 4-chloro-2-fluorophenyl, 4-bromophenyl, 4-nitrophenyl, 4-cyanophenyl, 4-methylphenyl, 4-ethylphenyl, 4-propylphenyl, 4-isopropylphenyl, 4-tert-butylphenyl, 2-trifluoromethylphenyl, 4-trifluoromethylphenyl, 4-(hydroxymethyl)phenyl, 4-(2-hydroxyethyl)phenyl, 4-(methoxymethyl)phenyl, 4-(2-carboxylethyl)phenyl, 4-(methoxycarbonylmethyl)phenyl, 4-(ethoxycarbonylmethyl)phenyl, 4-acetylphenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-(methoxycarbonyl)phenyl, 4-(ethoxycarbonyl)phenyl, 4-carbamoylphenyl, 4-(methylaminocarbonyl)phenyl, 4-(isopropylaminocarbonyl)phenyl, 4-(dimethylaminocarbonyl)phenyl, 4-(diethylaminocarbonyl)phenyl, 4-[(2-hydroxyethyl)aminocarbonyl]phenyl, 4-[(carboxylmethyl)aminocarbonyl]phenyl, 4-hydroxyphenyl, 4-methoxyphenyl, 3,4,5-trimethoxyphenyl, 4-ethoxyphenyl, 4-propyloxyphenyl, 4-isopropyloxyphenyl, 4-butyloxyphenyl, 4-isopentyloxyphenyl, 4-(2-isopentenyloxy)phenyl, 4-(3-isohexenyloxy)phenyl, 4-(4-methyl-3-pentenyloxy)phenyl, 4-(2-propynyloxy)phenyl, 4-(trifluoromethyloxy)phenyl, 4-(hydroxymethyloxy)phenyl, 4-(carboxylmethyloxy)phenyl, 4-[(dimethylaminocarbonyl)methyloxy]phenyl, 4-aminophenyl, 4-(methylamino)phenyl, 4-(dimethylaminophenyl), 4-(diethylamino)-phenyl, 4-(acetylamino)phenyl, N-acetyl-N-methylamino, 4-(N-acetyl-N-methylamino)phenyl, 4-(N-acetyl-N-ethylamino)phenyl, 4-(N-acetyl-N-propylamino)phenyl, 4-(N-acetyl-N-isopropylamino)phenyl, 4-(N-ethylcarbonyl-N-methylamino)phenyl, 4-[N-ethyl-N-(ethylcarbonyl)amino]phenyl, 4-(methylsulfonylamino)phenyl, 4-(methylthio)phenyl, 4-(methylsulfonyl)phenyl, 4-(methylsulfinyl)phenyl, 4-(aminosulfonyl)phenyl, 4-(methylaminosulfonyl)phenyl, 4-(dimethylaminosulfonyl)phenyl, 4-(tert-butylaminosulfonyl)phenyl, tetrazol-5-ylphenyl, cyclohexyl, benzyl, 4-chlorobenzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 2-chlorobenzyloxy, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-tert-butylbenzyloxy, 4-trifluoromethylbenzyloxy, phenethyloxy, 2-thienyl, 2-thiazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 6-fluoropyridin-3-yl, 5-fluoropyridin-2-yl, 6-chloropyridin-3-yl, 6-methylpyridin-3-yl, 2-pyrimidinyl, 5-tetrazolyl, piperidino, 2-oxopiperidin-1-yl, 2-oxopyrrolidin-1-yl, 2-imidazolin-2-yl, 2-oxoimidazolidin-1-yl, 2-oxooxazolidin-1-yl, 2-methylthiazol-4-yl, 5-methylthiazol-2-yl, 2-aminothiazol-4-yl, 3-methyl-1,2,4-oxadiazol-5-yl, 1,1-dioxoisothiazolidin-2-yl, 4,4-dimethyl-Δ2-oxazolin-2-yl, 5-chlorothiophen-2-yl, 5-methyloxazol-2-yl, 5-oxo-Δ2-1,2,4-oxadiazolin-3-yl, 5-oxo-Δ2-1,2,4-thiadiazolin-3-yl, 2-oxo-3H-1,2,3,5-oxathiadiazolin-4-yl, 4-hydroxypiperidinomethyl, piperidinocarbonyl, 4-hydroxypiperidinocarbonyl, 3,4-dihydroxypiperidinocarbonyl, 1-piperazinylcarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, phenoxy, 2,4-dichlorophenoxy, tetrahydropyranyloxy, 2-pyridylmethyloxy, 3-pyridylmethyloxy, 2-chloropyridin-4-ylmethyloxy, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 1-(tert-butoxycarbonyl)piperidin-4-ylmethyloxy, 1-(methylsulfonyl)piperidin-4-ylmethyloxy, 2-methylthiazolin-4-yloxy, 2,4-dimethylthiazolin-5-yloxy, dimethylaminocarbonyl-methyloxy, piperidinocarbonylmethyloxy, 4-hydroxypiperidino-carbonylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl)methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, benzoyl, 3-fluorobenzoyl, 4-chlorobenzylamino, 3,5-dichlorobenzylamino, 4-trifluoromethylbenzylamino, 2-pyridylmethylamino, benzoylamino, 4-chlorobenzoylamino, 4-trifluoromethylbenzoylamino, 3,5-dichlorobenzoylamino, 3-nitro-4-methoxybenzoylamino, 4-nitro-3-methoxybenzoylamino, 3-pyridylcarbonylamino, morpholinocarbonyl-amino, 2-oxazolinylamino, 4-hydroxypiperidinosulfonyl, 4-methylphenylsulfonylamino, 2-thiazolylaminosulfonyl, 2-pyridylaminosulfonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)aminocarbonyl or (cyclohexylmethyl)aminocarbonyl, 2-hydroxyethyloxy, 3-hydroxypropyloxy, 2-methoxyethoxy, 2-(2-methoxyethoxy)ethoxy, azetidinylcarbonyl, 3-hydroxypyrrolidinylcarbonyl, 3-hydroxypiperidinocarbonyl, 4-hydroxypiperidinocarbonyl, 3,4-dihydroxypiperidinocarbonyl, 4-methoxypiperidinocarbonyl, 4-carboxypiperidinocarbonyl, 4-(hydroxymethyl)piperidinocarbonyl, 2-oxopiperidinocarbonyl, 4-oxopiperidinocarbonyl, 2,6-dimethylpiperidinocarbonyl, 2,2,6,6-tetramethylpiperidinocarbonyl, 2,2,6,6-tetramethyl-4-hydroxypiperidinocarbonyl, 1-oxothiomorpholin-4-ylcarbonyl, 1,1-dioxothiomorpholin-4-ylcarbonyl, 1-(methylsulfonyl)piperidin-4-ylaminocarbonyl, 4-methylsulfonylpiperazinylcarbonyl, 4-methylpiperazinylcarbonyl, N,N-bis(2-hydroxyethyl)aminocarbonyl, phenylaminocarbonyl, cyclopropylaminocarbonyl, cyclobutylaminocarbonyl, cyclohexylaminocarbonyl, 4-hydroxycyclohexylaminocarbonyl, 4-methylthiazol-2-ylmethylaminocarbonyl, 2-(4-hydroxypiperidino)-ethyloxy, 2-pyridylmethylaminocarbonyl, 3-pyridylmethylamino-carbonyl, N-methyl-N-(4-pyridylmethyl)aminocarbonyl, cyclohexylmethyloxy, 4-hydroxypiperidinocarbonylmethyloxy and 4-methylthiazol-2-ylmethyloxy.
[1275] Particularly preferable examples of the substituent include fluorine atom, chlorine atom, bromine atom, nitro, cyano, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, isopropylaminocarbonyl, dimethylaminocarbonyl, diethylamino-carbonyl, (2-hydroxylethyl)aminocarbonyl, (carboxymethyl)-aminocarbonyl, methoxy, 2-isopentenyloxy, 2-propynyloxy, methylthio, methylamino, dimethylamino, acetylamino, N-acetyl-N-methylamino, N-acetyl-N-ethylamino, N-acetyl-N-propylamino, N-acetyl-N-isopropylamino, N-ethylcarbonyl-N-methylamino, N-ethyl-N-(ethylcarbonyl)amino, methylsulfonylamino, methylsulfonyl, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-nitrophenyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-(methoxymethyl)-phenyl, 4-(2-hydroxylethyl)phenyl, 3-carboxylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl, benzyl, phenethyl, benzyloxy, 4-fluorobenzyloxy, 4-chlorobenzyloxy, 2-thiazolyl, 3-pyridyl, 4-pyridyl, 4-pyridylmethyloxy, 2-piperidylmethyloxy, 3-piperidylmethyloxy, 4-piperidylmethyloxy, 1-methylpiperidin-4-ylmethyloxy, 1-acetylpiperidin-4-ylmethyloxy, 2-chloropiperidin-4-ylmethyloxy, 1-(methylsulfonyl)piperidin-4-ylmethyloxy, 2-methylthiazol-4-yl, (2-methylthiazol-4-yl)methyloxy, (2,4-dimethylthiazol-5-yl)methyloxy, 5-tetrazolyl, 3-fluorobenzoyl, piperidinocarbonyl, 4-hydroxylpiperidinocarbonyl, 1-pyrrolidinylcarbonyl, morpholinocarbonyl, 4-thiomorpholinylcarbonyl, benzylaminocarbonyl, N-benzyl-N-methylaminocarbonyl, (4-pyridylmethyl)aminocarbonyl and (cyclohexylmethyl)aminocarbonyl.
[1276] Most preferable substituents are fluorine atom, chlorine atom, methyl, hydroxymethyl, carboxyl, carbamoyl, methylaminocarbonyl, dimethylaminocarbonyl, methoxy, methylamino, acetylamino, aminosulfonyl, dimethylaminosulfonyl, tert-butylaminosulfonyl, phenyl, 3-fluorophenyl, 4-fluorophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,5-dichlorophenyl, 4-methylphenyl, 4-tert-butylphenyl, 4-trifluoromethylphenyl, 4-carboxylphenyl, 4-methoxyphenyl, 4-carbamoylphenyl, 4-methylthiophenyl, 4-(dimethylaminocarbonyl)phenyl, 4-methylsulfonylphenyl and 2-oxopyrrolidin-1-yl.
[1277] The w is preferably 1 or 2, r and t are preferably 0, 1 or 2, particularly preferably 0 or 1, more preferably 0, p is preferably 1, and q is preferably 0 or 2.
[1278] In formula [I], when X is
54
[1279] wherein each symbol is as defined above and w is 2 or above, one of Z is preferably C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D or heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D, particularly preferably C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D.
[1280] When ring B is phenyl, w is 2 and phenyl is bonded to Y at the 1-position, one of the most preferable embodiments is that wherein Z is bonded to the 2-position and 5-position of phenyl, Z at the 2-position is “C6-14 aryl optionally substituted by 1 to 5 substituent(s) selected from group D” and Z at the 5-position is “heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from group D”.
[1281] The pharmaceutically acceptable salt may be any as long as it forms a non-toxic salt with a compound of the above-mentioned formula [I] or [II]. Such salt can be obtained by reacting the compound with an inorganic acid, such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and the like, or an organic acid, such as oxalic acid, malonic acid, citric acid, fumaric acid, lactic acid, malic acid, succinic acid, tartaric acid, acetic acid, trifluoroacetic acid, gluconic acid, ascorbic acid, methylsulfonic acid, benzylsulfonic acid, meglumine acid and the like, or an inorganic base, such as sodium hydroxide, potassium hydroxide, calcium hydroxide, magnesium hydroxide, ammonium hydroxide and the like, or an organic base, such as methylamine, diethylamine, triethylamine, triethanolamine, ethylenediamine, tris(hydroxymethyl)methylamine, guanidine, choline, cinchonine and the like, with an amino acid, such as lysine, arginine, alanine and the like. The present invention encompasses water-retaining product, hydrate and solvate of each compound.
[1282] The compounds of the above-mentioned formula [I] or [II] have various isomers. For example, E compound and Z compound are present as geometric isomers, and when the compound has an asymmetric carbon, an enantiomer and a diastereomer are present due to the asymmetric carbon. A tautomer may be also present. The present invention encompasses all of these isomers and mixtures thereof.
[1283] The present invention also encompasses prodrug and metabolite of each compound.
[1284] A prodrug means a derivative of the compound of the present invention, which is capable of chemical or metabolic decomposition, which shows inherent efficacy by reverting to the original compound after administration to a body, and which includes salts and complexes without a covalent bond.
[1285] When the inventive compound is used as a pharmaceutical preparation, the inventive compound is generally admixed with pharmaceutically acceptable carriers, excipients, diluents, binders, disintegrators, stabilizers, preservatives, buffers, emulsifiers, aromatics, coloring agents, sweeteners, thickeners, correctives, solubilizers, and other additives such as water, vegetable oil, alcohol such as ethanol, benzyl alcohol and the like, polyethylene glycol, glycerol triacetate, gelatin, lactose, carbohydrate such as starch and the like, magnesium stearate, talc, lanolin, petrolatum and the like, and prepared into a dosage form of tablets, pills, powders, granules, suppositories, injections, eye drops, liquids, capsules, troches, aerosols, elixirs, suspensions, emulsions, syrups and the like, which can be administered systemically or topically and orally or parenterally.
[1286] While the dose varies depending on the age, body weight, general condition, treatment effect, administration route and the like, it is from 0.1 mg to 1 g for an adult per dose, which is given one to several times a day.
[1287] The prophylaxis of hepatitis C means, for example, administration of a pharmaceutical agent to an individual found to carry an HCV by a test and the like but without a symptom of hepatitis C, or to an individual who shows an improved disease state of hepatitis after a treatment of hepatitis C, but who still carries an HCV and is associated with a risk of recurrence of hepatitis.
[1288] The therapeutic agent for hepatitis C of the present invention is expected to provide a synergestic effect when concurrently used with other antiviral agents, antiinflammatory agents or immunostimulants.
[1289] The medicaments with the prospect of synergestic effect include, for example, interferon-α, interferon-β, interferon-γ, interleukin-2, interleukin-8, interleukin-10, interleukin-12, TNFα, recombinant or modified products thereof, agonists, antibodies, vaccines, ribozymes, antisense nucleotides and the like.
[1290] As evidenced in the combination therapy of anti-HIV agents, which is also called a cocktail therapy, the combined use of various anti-virus agents againt viruses showing frequent genetic mutations is expected to show effect for suppressing emergence and increase of drug tolerant viruses. For example, 2 or 3 agents from HCV-IRES inhibitors, HCV-NS3 protease inhibitors, HCV-NS2NS3 protease inhibitors, HCV-NS5A inhibitors and HCV polymerase inhibitor may be used in combination. Specifically, the combined use with Ribavirin(R), interferon-α (IFN-α, Roferon(R), Intron A(R), Sumiferon(R), MultiFeron(R), Infergen(R), Omniferon(R), Pegasys(R), PEG-Intron A(R)), interferon-β (Frone(R), Rebif(R), AvoneX(R), IFNβMOCHIDA(R)), interferon-ω, 1-β-L-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide, 16α-bromo-3β-hydroxy-5α-androstan-17-one, 1H-imidazole-4-ethanamide dihydrochloride, HCV ribozyme Heptazyme(R), polyclonal antibody Civacir(R), lactoferrin GPX-400, (1S,2R,8R,8aR)-1,2,8-trihydroxyoctahydroindolizidinium chloride, HCV vaccine (MTH-68/B, Innivax C(R), Engerix B(R)), antisense oligonucleotide ISIS-14803, HCV-RNA transcriptase inhibitor VP-50406, tetrachlorodecaoxide (high concentration Oxoferin(R)), tetrahydrofuran-3-yl (S)—N-3-[3-(3-methoxy-4-oxazol-5-ylphenyl)ureido]benzylcarbamate, 4-amino-2-ethoxymethyl-α,α-dimethyl-1H-imidazo[4,5-c]quinoline-1-ethanol, interleukin-2 (Proleukin(R)), thymosin α1 and the like is exemplified, wherein (R) shows product names.
[1291] Furthermore, the combined use with the compounds disclosed in JP-A-08-268890, JP-A-10-101591, JP-A-07-069899, WO99/61613 and the like as HCV IRES inhibitors; the compounds disclosed in WO98/22496, WO99/07733, WO99/07734, WO00/09543, WO00/09558, WO01/59929, WO98/17679, EP932617, WO99/50230, WO00/74768, WO97/43310, U.S. Pat. No. 5,990,276, WO01/58929, WO01/77113, WO02/8198, WO02/8187, WO02/8244, WO02/8256, WO01/07407, WO01/40262, WO01/64678, WO98/46630, JP-A-11-292840, JP-A-10-298151, JP-A-11-127861, JP-A-2001-103993, WO98/46597, WO99/64442, WO00/31129, WO01/32961, WO93/15730, U.S. Pat. No. 7,832,236, WO00/200400, WO02/8251, WO01/16379, WO02/7761 and the like as HCV protease inhibitors; the compounds disclosed in WO97/36554, U.S. Pat. No. 5,830,905, WO97/36866, U.S. Pat. No. 5,633,388, WO01/07027, WO00/24725 and the like as HCV helicase inhibitors; the compounds disclosed in WO00/10573, WO00/13708, WO00/18231, WO00/06529, WO02/06246, WO01/32153, WO01/60315, WO01/77091, WO02/04425, WO02/20497, WO00/04141 and the like as HCV polymerase inhibitors; the compounds disclosed in WO01/58877, JP-A-11-180981, WO01/12214 and the like as interferon agonists or enhancers; and the like is also exemplified.
[1292] Inasmuch as HCV is known to be a virus associated with many genetic mutations, a compound effective for many genotypes is one of the preferable modes. If a compound ensures high blood concentration when administered as a pharmaceutical agent to an animal infected with HCV, it is also one of the preferable modes. From these aspects, a compound having high inhibitory activity on both HCV type 1a and type 1b and high blood concentration, such as 2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, is particularly preferable.
[1293] Examples of the production method of the compound to be used for the practice of the present invention are given in the following. However, the production method of the compound of the present invention is not limited to these examples.
[1294] Even if no directly corresponding disclosure is found in the following Production-Methods, the steps may be modified for efficient production of the compound, such as introduction of a protecting group into a functional group with deprotection in a subsequent step, and changing the order of Production Methods and steps.
[1295] The treatment after reaction in each step may be conventional ones, for which typical methods, such as isolation and purification, crystallization, recrystallization, silica gel chromatography, preparative HPLC and the like, can be appropriately selected and combined.
[1296] Production Method 1
[1297] In this Production Method, a benzimidazole compound is formed from a nitrobenzene compound.
[1298] Production Method 1-1
55
[1299] wherein Hal is halogen atom, such as chlorine atom, bromine atom and the like, Rcl is halogen atom, such as chlorine atom, bromine atom and the like, or hydroxyl group, and other symbols are as defined above.
[1300] Step 1
[1301] A compound [1] obtained by a conventional method or a commercially available compound [1] is reacted with amine compound (2] in a solvent such as N,N-dimethylformamide (DMF), acetonitrile, tetrahydrofuran (THF), toluene and the like in the presence or absence of a base such as potassium carbonate, triethylamine, potassium t-butoxide and the like at room temperature or with heating to give compound [3].
[1302] Step 2
[1303] The compound [3) is hydrogenated in a solvent such as methanol, ethanol, THF, ethyl acetate, acetic acid, water and the like in the presence of a catalyst such as palladium carbon, palladium hydroxide, platinum oxide, Raney nickel and the like at room temperature or with heating to give compound [4]. In addition, compound [3] is reduced with a reducing agent such as zinc, iron, tin(II) chloride, sodium sulfite and the like, or reacted with hydrazine in the presence of iron(III) chloride to give compound [4]. The compound [4] can be also obtained by reacting compound (3] with sodium hydrosulfite under alkaline conditions.
[1304] Step 3
[1305] The compound [4] is condensed with carboxylic acid compound [5] in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride, toluene and the like using a condensing agent such as dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride, diphenylphosphoryl azide and the like and, where necessary, adding N-hydroxysuccinimide, 1-hydroxybenzotriazole and the like to give amide compound (6]. Alternatively, amide compound [6] can be obtained from compound [5] as follows. The carboxylic acid compound [5] is converted to an acid halide derived with thionyl chloride, oxalyl chloride and the like, or an active ester (e.g., mixed acid anhydride derived with ethyl chlorocarbonate and the like), which is then reacted in the presence of a base, such as triethylamine, potassium carbonate, pyridine and the like, or in an amine solvent, such as pyridine and the like, to give amide compound [6].
[1306] Step 4
[1307] The compound [6] is heated in a solvent such as ethanol, methanol, toluene, DMF, chloroform and the like or without a solvent in the presence of an acid such as acetic acid, formic acid, hydrochloric acid, dilute sulfuric acid, phosphoric acid, polyphosphoric acid, p-toluenesulfonic acid and the like, a halogenating agent such as zinc chloride, phosphorus oxychloride, thionyl chloride and the like or acid anhydride such as acetic anhydride and the like, to allow cyclization to give compound [I-2].
[1308] Production Method 1-2
[1309] This Production Method is an alternative method for producing compound [I-2].
56
[1310] wherein each symbol is as defined above.
[1311] Step 1
[1312] The compound [3] obtained in the same manner as in Step 1 of Production Method 1-1 is subjected to amide condensation with compound [5] in the same manner as in Step 3 of Production Method 1-1 to give compound [7].
[1313] Step 2
[1314] The compound [7] is reduced in the same manner as in Step 2 of Production Method 1-1 to give compound [8].
[1315] Step 3
[1316] The compound [8] is subjected to cyclization in the same manner as in Step 4 of Production Method 1-1 to give compound [I-2].
[1317] Production Method 1-3
57
[1318] wherein Rc2 is alkyl such as methyl, ethyl and the like, and other symbols are as defined above.
[1319] The compound [4] is reacted with imidate compound [9] in a solvent such as methanol, ethanol, acetic acid, DMF, THF, chloroform and the like at room temperature or with heating to give compound [I-2).
[1320] In addition, compound [4] may be reacted with aldehyde compound [10] in a solvent such as acetic acid, formic acid, acetonitrile, DMF, nitrobenzene, toluene and the like in the presence or absence of an oxidizing agent such as benzofuroxan, manganese dioxide, 2,3-dichloro-5,6-dicyano-p-benzoquinone, iodine, potassium ferricyanide and the like with heating to give compound [I-2].
[1321] Alternatively, compound [4] and carboxylic acid compound [11] may be heated to allow reaction in the presence of polyphosphoric acid, phosphoric acid, phosphorus oxychloride, hydrochloric acid and the like to give compound [I-2].
[1322] Production Method 2
[1323] In this Production Method, conversion of the substituents (R1, R2, R3, R4) on the benzene ring of benzimidazole is shown. While a method of converting R2 when R1, R3 and R4 are hydrogen atoms is shown, this Production Method is applicable irrespective of the position of substitution.
[1324] Production Method 2-1
[1325] Conversion of Carboxylic Acid Ester Moiety to Amide
58
[1326] wherein E is a single bond, —(CH2)s—, —O—(CH2)s— or —NH—(CH2)s— (wherein s is an integer of 1 to 6), Rc3, Rc4 and Rc5 are C1-6 alkyl, and other symbols are as defined above.
[1327] Step 1
[1328] The compound [I-2-1] obtained in the same manner as in the above-mentioned Production Method is subjected to hydrolysis in a solvent such as methanol, ethanol, THF, dioxane and the like, or in a mixed solvent of these solvents and water under basic conditions with sodium hydroxide, potassium hydroxide, potassium carbonate, lithium hydroxide and the like or under acidic conditions with hydrochloric acid, sulfuric acid and the like to give compound [I-2-2].
[1329] Step 2
[1330] The compound [I-2-2] is reacted with compound [12] in the same manner as in Step 3 of Production Method 1-1 to give compound [I-2-3].
[1331] Production Method 2-2
[1332] Conversion of Cyano Group to Substituted Amidino Group
59
[1333] wherein each symbol is as defined above.
[1334] The compound [I-2-4] obtained in the same manner as in the above-mentioned Production Method is reacted with hydroxylamine in a solvent such as water, methanol, ethanol, THF, DMF and the like to give compound [I-2-5]. When a salt of hydroxylamine such as hydrochloride and the like is used, the reaction is carried out in the presence of a base such as sodium hydrogencarbonate, sodium hydroxide, triethylamine and the like.
[1335] Production Method 2-3
[1336] Conversion of Sulfonic Acid Ester Moiety to Sulfonic Acid
60
[1337] wherein Rc6 is C1-6 alkyl, and other symbols are as defined above.
[1338] The compound [I-2-6] obtained in the same manner as in the above-mentioned Production Method is reacted with iodide salt such as sodium iodide, lithium iodide and the like, bromide salt such as sodium bromide, trimethylammonium bromide and the like, amine such as pyridine, trimethylamine, triazole and the like, phosphine such as triphenylphosphine and the like in a solvent such as DMF, dimethyl sulfoxide (DMSO), acetonitrile, methanol, ethanol, water and the like with heating to give compound [I-2-7].
[1339] Production Method 3
[1340] This Production Method relates to convertion of the substituent(s) on phenyl group at the 2-position of benzimidazole. This Production Method can be used even when phenyl is a different ring.
[1341] Production Method 3-1
[1342] Conversion of Hydroxyl Group to Ether
61
[1343] wherein Rc7 is optionally substituted alkyl corresponding to Ra11, G1 is a single bond, *-(CH2)n—, *-(CH2)n—O—, *-(CH2)n—CO— or *-(CH2)m—CRa15Ra16)—(CH2)n, wherein * show the side to be bonded to Rc1, and other symbols are as defined above.
[1344] When Rc1 of compound [13] is halogen atom, compound [I-2-8] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [13] in a solvent such as DMF, DMSO, acetonitrile, ethanol, THF and the like in the presence of a base such as sodium hydride, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium ethoxide, potassium t-butoxide and the like at room temperature or with heating to give compound [II-2-1].
[1345] When Rc1 of compound [13] is hydroxyl group, the hydroxyl group of compound [13] is converted to halogen atom with thionyl chloride, phosphorus tribromide, carbon tetrabromide-triphenylphosphine and the like and reacted with compound [I-2-8] by the aforementioned method to give compound [II-2-1]. In this case, compound [I-2-8] may be subjected to Mitsunobu reaction with compound [13] in a solvent such as DMF, acetonitrile, THF and the like using triphenylphosphine-diethyl azodicarboxylate and the like to give compound [II-2-1].
[1346] The compound [I-2-9] can be obtained in the same manner from compound [I-2-8] and compound [14].
[1347] Production Method 3-2
[1348] Conversion of Nitro to Substituted Amino Group
62
[1349] wherein Rc8 is C1-6 alkyl, G2 is *-(CH2)n— or *-CHRa15—, G3 is —CO—, *-CO2—, *-CONH— or —SO2—, and other symbols are as defined above.
[1350] Step 1
[1351] The nitro compound [I-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 2 of Production Method 1-1 to give compound [I2-11].
[1352] Step 2
[1353] The compound [I-2-11] is alkylated with compound [15] in the same manner as in Production Method 3-1 to give compound [II-2-2].
[1354] Step 3
[1355] When G3 of compound [16] is —CO—, —CO2— or —CONH—, compound [I-2-11] is acylated with compound [16] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-3].
[1356] When G3 of compound [16] is —SO2—, sulfonylation is conducted using sulfonyl halide instead of acid halide used in Step 3 of Production Method 1-1 to give compound [II-2-3].
[1357] The compound [I-2-11] is acylated with compound [17] in the same manner as above to give compound [I-2-12].
[1358] This Production Method is applied in the same manner as above to give disubstituted compounds (tertiary amine) of compound (II-2-2], compound [II-2-3] and compound [I-2-12].
[1359] Production Method 3-3
[1360] Conversion of Carboxylic Acid Ester Moiety to Amide
63
[1361] wherein Rc9 is C1-6 alkyl, G4 is #-(CH2)n—, #-(CH2)n—NH— or #-CHRa14— wherein # shows the side that is bounded to amine and other symbols are as defined above.
[1362] Step 1
[1363] The compound [I-2-13] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in Step 1 of Production Method 2-1 to give compound [I-2-14].
[1364] Step 2
[1365] The compound [1-2-14] is reacted with compound [18] in the same manner as in Step 2 of Production Method 2-1 to give compound [II-2-4].
[1366] The compound [I-2-15] is obtained from compound [1-2-14] and compound [19] in the same manner as above.
[1367] Production Method 4
[1368] In this Production Method, additional substituent(s) is(are) introduced into ring B on phenyl group that substitutes the 2-position of benzimidazole. This Production Method is applicable even when phenyl is a different ring.
[1369] Production Method 4-1
[1370] Direct Bonding of Ring Z″ to Ring B
64
[1371] wherein ring Z″-M is aryl metal compound, ring Z″ moiety is optionally substituted C6-14 aryl or optionally substituted heterocyclic group corresponding to substituent Z, and the metal moiety contains boron, zinc, tin, magnesium and the like, such as phenylboronic acid and 4-chlorophenylboronic acid, w″ is 0, 1 or 2, and other symbols are as defined above.
[1372] The compound [II-2-5] obtained in the same manner as in the above-mentioned Production Method is reacted with aryl metal compound [20] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like in the presence of a palladium catalyst such as tetrakis(triphenylphosphine)-palladium, bis(triphenylphosphine)palladium(II) dichloride, palladium acetate-triphenylphosphine and the like, a nickel catalyst such as nickel chloride, [1,3-bis(diphenylphosphino)-propane]nickel(II) chloride and the like, and a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like at room temperature or with heating, to give compound [II-2-6].
[1373] Production Method 4-2
[1374] Conversion of Hydroxyl Group to Ether
65
[1375] wherein Rc10 is —Ra20 or —(CH2)p—CORa21 corresponding to substituent Z, and other symbols are as defined above.
[1376] The compound [II-2-7] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [21] in the same manner as in Production Method 3-1 to give compound [II-2-8].
[1377] Production Method 4-3
[1378] Synthesis in Advance of Ring B Part such as Compound [13] in Production Method 3-1
66
[1379] wherein Rc11 is leaving group such as chlorine atom, bromine atom, iodine atom, trifluoromethanesulfonyloxy and the like, Rc12 is formyl, carboxyl or carboxylic acid ester such as methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl and the like, and other symbols are as defined above.
[1380] Step 1
[1381] Commercially available compound [22] or compound [22] obtained by a conventional method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [23].
[1382] Step 2
[1383] The compound [23] obtained in the same manner as in the above-mentioned Production Method is reduced according to a conventional method to give compound [24].
[1384] For example, compound [23] is reacted with in a solvent such as methanol, ethanol, THF and the like in the presence of a reducing agent such as lithium aluminum hydride, sodium borohydride and the like under cooling to heating to give compound [24].
[1385] Step 3
[1386] The compound [24] obtained in the same manner as in the above-mentioned Production Method is reacted in a solvent such as 1,4-dioxane, diethyl ether, THF, dichloromethane, chloroform, toluene and the like with a halogenating agent, such as phosphorus pentachloride, phosphorus tribromide, thionyl chloride and the like, to give compound [25]. For an accerelated reaction, the reaction may be carried out in the presence of a tertiary amine such as DMF, pyridine and the like, or under heating.
[1387] Step 4
[1388] The compound [24] or [25] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [I-2-8] in the same manner as in Production Method 3-1 to give compound [II-2-9].
[1389] Production Method 4-4
67
[1390] wherein M′ is a metal such as magnesium, lithium, zinc and the like, and other symbols are as defined above.
[1391] Step 1
[1392] Commercially available compound [41] or compound [41] obtained by a conventional method is converted to aryl metal reagent by a conventional method to give compound [42].
[1393] For example, when M′ is magnesium, magnesium is reacted with compound [41] in a solvent such as THF, diethyl ether, benzene, toluene and the like, preferably THF, from cooling to heating preferably at −100° C. to 100° C. to give compound [42].
[1394] Step 2
[1395] The compound [42] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [43] to give compound [44].
[1396] The compound [42] is reacted in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at −100° C. to 30° C. to give compound [44].
[1397] Step 3
[1398] The compound [44] obtained in the same manner as in the above-mentioned Production Method is halogenated in the same manner as in Step 3 of Production Method 4-3 to give compound [45].
[1399] The compound [44] is reacted with thionyl chloride and pyridine preferably in toluene solvent to give compound [45].
[1400] When compound [45] is symmetric, namely, when the ring B-(Z)w moiety and the ring B′-(Z′)w′ moiety are the same, compound [42] is reacted with formate such as methyl formate, ethyl formate and the like, preferably ethyl formate, in a solvent such as diethyl ether, benzene, toluene, THF and the like, preferably THF, from cooling to room temperature, preferably at −100° C. to 30° C., to give compound [45].
[1401] Production Method 4-5
[1402] Method Including Steps to Introduce a Protecting Group into a Functional Group
6869
[1403] wherein Rc13 is carboxylic acid protecting group such as tertbutyl and the like, Rc14 is carboxylic acid protecting group such as methyl and the like and other symbols are as defined above.
[1404] Step 1
[1405] Commercially available compound (26] or compound [26] obtained by a conventional method is protected by a conventional method to give compound [27].
[1406] For example, when Rc13 is tert-butyl, compound [26] is converted to acid halide with thionyl chloride, oxalyl chloride and the like in a solvent such as THF, chloroform, dichloromethane, toluene and the like, and reacted with potassium tert-butoxide to give compound [27].
[1407] As used herein, Rc13 may be a different protecting group as long as it is not removed during the Step 2 or Step 3 but removed in Step 4 without affecting −CO2Rc14.
[1408] Step 2
[1409] The methyl group of compound [27] obtained in the same manner as in the above-mentioned Production Method is converted to bromomethyl with N-bromosuccinimide and N,N′-azobisisobutyronitrile and reacted with compound [I-2-16] in the same manner as in Production Method 3-1 to give compound [II-2-10].
[1410] Step 3
[1411] The compound [II-2-10] obtained in the same manner as in the above-mentioned Production Method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [II-2-11].
[1412] Step 4
[1413] The Rc13 of the compound [II-2-11] obtained in the same manner as in the above-mentioned Production Method is removed by a conventional method to give compound [II-2-12].
[1414] The protecting group of carboxylic acid can be removed by a conventional deprotection method according to the protecting group. In this Step, the conditions free from reaction of Rc14 are preferable. For example, when Rc13 is tert-butyl, compound [II-2-11] is treated with trifluoroacetic acid in a solvent such as dichloromethane, chloroform and the like to give compound [II-2-12].
[1415] Step 5
[1416] The compound [II-2-12] obtained in the same manner as in the above-mentioned Production Method is subjected to amide condensation with compound [28] in the same manner as in Step 3 of Production Method 1-1 to give compound [II-2-13].
[1417] Step 6
[1418] The compound [II-2-13] obtained in the same manner as in the above-mentioned Production Method is deprotected in the same manner as in Step 1 of Production Method 2-1 to give compound [II-2-14].
[1419] As used herein, Rc14 is preferably a protecting group that does not react during the Step 1 through Step 5 but removed in this Step.
[1420] For example, when Rc14 is methyl, compound [II-2-13] is reacted in an alcohol solvent such as methanol, ethanol, n-propanol, isopropanol and the like or a mixed solvent of alcohol solvent and water in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide and the like from cooling to heating for deprotection, followed by acidifying the reaction solution to give compound [II-2-14].
[1421] Production Method 4-6
70
[1422] wherein g is an integer of 1 to 5, and other sumbols are as defined above.
[1423] Step 1
[1424] The compound [I-2-16] obtained by the above-mentioned Production Method is reacted with toluene derivative [41] in the same manner as in Step 2 of Production Method 4-5 to give compound [II-2-17].
[1425] Step 2
[1426] The compound [II-2-17] obtained by the above-mentioned Production Method is reacted with aryl metal compound [20] in the same manner as in Production Method 4-1 to give compound [II-2-18].
[1427] Step 3
[1428] The compound [II-2-18] obtained by the above-mentioned Production Method is reduced in the same manner as in Step 2 of Production Method 1-1 to give compound [II-2-19].
[1429] Step 4
[1430] The compound [II-2-19] obtained by the above-mentioned Production Method is amide condensed with compound [42] in the same manner as in Step 3 of Production Method 1-1 and subjected to cyclization in the same manner as in Step 1 of Production Method 1-1 to give compound [II-2-20].
[1431] Step 5
[1432] The compound [II-2-20] obtained by the above-mentioned Production Method is hydrolyzed in the same manner as in Step 1 of Production Method 2-1 to give compound [II-2-21].
[1433] Production Method 4-7
7172
[1434] wherein each symbol is as defined above.
[1435] Step 1
[1436] Commercially available product or compound [46] obtained by a conventional method is reacted with compound [20] in the same manner as in Production Method 4-1 to give compound [47].
[1437] Step 2
[1438] The compound [47] obtained in the same manner as in the above-mentioned Production Method is reduced in the same manner as in the above-mentioned Production Method 4-3 Step 2 to give compound [48].
[1439] Step 3
[1440] The compound [48] obtained in the same manner as in the above-mentioned Production Method is reduced in the same manner as in the above-mentioned Production Method 1-1 Step 2 to give compound [49].
[1441] Step 4
[1442] The compound [49] obtained in the same manner as in the above-mentioned Production Method is reacted with compound [42] in a solvent such as DMF, acetonitrile, THF, chloroform, ethyl acetate, methylene chloride and toluene to give compound [50]. To enhance the reaction selectivity for amino group, acetic acid and sodium acetate may be added in an equivalent amount ratio.
[1443] Step 5
[1444] The compound [50] obtained in the same manner as in the above-mentioned Production Method is subjected to cyclization reaction in the same manner as in the above-mentioned Production Method 1-1 Step 1 to give compound [51].
[1445] Step 6
[1446] The compound [51] obtained in the same manner as in the above-mentioned Production Method is halogenated in the same manner as in the above-mentioned Production Method 4-3 Step 3 to give compound [52].
[1447] Step 7
[1448] The compound [52] obtained in the same manner as in the above-mentioned Production Method is reacted in the same manner as in the above-mentioned Production Method 3-1 with compound [I-2-16] obtained in the same manner as in the above-mentioned Production Method to give compound [II-2-20].
[1449] Step 8
[1450] The compound [II-2-20] obtained in the same manner as in the above-mentioned Production Method is hydrolyzed in the same manner as in the above-mentioned Production Method 2-1 Step 1 to give compound [II-2-21].
[1451] Production Method 5
[1452] Formation of Indole Ring
73
[1453] wherein Rc15 is protecting group such as trimethylsilyl, tertbutyldimethylsilyl, tert-butyldiphenylsilyl and the like, and other symbols are as defined above.
[1454] Step 1
[1455] The compound [29] obtained in the same manner as in the above-mentioned Production Method or conventional method is reacted with compound [30] in a solvent such as DMF, acetonitrile, 1,2-dimethoxyethane, THF, toluene, water and the like using a palladium catalyst such as tetrakis(triphenylphosphine)palladium, bis(triphenylphosphine)palladium(II) dichloride, palladium acetate-triphenylphosphine and the like, a copper catalyst such as copper(I) iodide and the like or a mixture thereof, and in the presence of a base such as potassium carbonate, potassium hydrogencarbonate, sodium hydrogencarbonate, potassium phosphate, triethylamine and the like to give compound [31].
[1456] Step 2
[1457] The compound [31] obtained in the same manner as in the above-mentioned Production Method is reacted in an alcohol solvent such as methanol, ethanol and the like or a mixed solvent of an alcohol solvent and a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like at room temperature or with heating for deprotection, and reacted with compound [32] obtained in the same manner as in Step 1 of Production Method 1-1 in the same manner as in Step 1 of Production Method 5 to give compound [33].
[1458] Step 3
[1459] The compound [33] obtained in the same manner as in the above-mentioned Production Method was subjected to cyclization in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, methylene chloride, toluene and the like in the presence of a copper catalyst such as copper(I) iodide and the like or a palladium catalyst such as palladium(II) chloride and the like at room temperature or with heating to give compound [II-2-15].
[1460] Production Method 6
[1461] Formation of imidazo[1,2-a]pyridine Ring
74
[1462] wherein Rc16 and Rc17 are each independently alkyl, such as methyl, ethyl and the like, and other symbols are as defined above.
[1463] Step 1
[1464] The compound [34] obtained by the above-mentioned Production Method or a conventional method is subjected to amide condensation with compound [35] in the same manner as in Step 3 of Production Method 1-1 to give compound [36].
[1465] Step 2
[1466] The compound [36] obtained by the above-mentioned Production Method is reacted with Grignard reagent [37] obtained by a conventional method to give compound [38].
[1467] Alternatively, an acid halide of compound [34] may be used instead of compound [36].
[1468] Step 3
[1469] The compound [38] obtained by the above-mentioned Production Method is subjected to halogenation by a conventional method to give compound [39].
[1470] For example, when Hal is a bromine atom, compound [38] is reacted with bromine under cooling or at room temperature in a solvent such as DMF, acetonitrile, THF, chloroform, dichloromethane, ethyl acetate, toluene and the like to give compound [39].
[1471] Alternatively, a halogenating agent such as hypohalite (e.g., hypochlorite and the like), N-bromosuccinimide and the like may be used instead of bromine for halogenation.
[1472] Step 4
[1473] The compound [39] obtained by the above-mentioned Production Method is subjected to cyclization with compound [40] obtained by a conventional or known method (JP-A-8-48651) in the presence of a base such as potassium carbonate, sodium carbonate, lithium hydroxide, sodium hydroxide, potassium hydroxide, lithium hydride, sodium hydride, potassium hydride and the like in a solvent or without a solvent at room temperature or with heating to give compound [II-2-16].
[1474] In the compounds of the formulas [I] and [II], a desired heterocyclic group can be formed according to a method similar to the methods disclosed in known publications. Examples of such heterocyclic group and reference publications are recited in the following.
[1475] 5-oxo-Δ2-1,2,4-oxadiazolin-3-yl (or 2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl), 5-oxo-Δ2-1,2,4-thiadiazolin-3-yl (or 2,5-dihydro-5-oxo-4H-1,2,4-thiadiazol-3-yl), 2-oxo-Δ3-1,2,3,5-oxathiadiazolin-4-yl (or 2-oxo-Δ3-1,2,4-oxathiadiazol-4-yl): Journal of Medicinal Chemistry, 39(26), 5228-35, 1996,
[1476] 5-oxo-Δ2-1,2,4-triazolin-3-yl: J Org Chem, 61(24), 8397-8401, 1996,
[1477] 1-oxo-Δ3-1,2,3,5-thiatriazolin-4-yl: Liebigs Ann Chem, 1376, 1980,
[1478] 3-oxo-Δ4-1,2,4-oxadiazolin-5-yl: EP145095,
[1479] 5-oxo-Δ2-1,3,4-oxadiazolin-2-yl: J Org Chem, 20, 412, 1955,
[1480] 5-oxo-Δ3-1,2,4-dioxazolin-3-yl: J Prakt Chem, 314, 145, 1972,
[1481] 3-oxo-Δ4-1,2,4-thiadiazolin-5-yl: JP-A-61-275271,
[1482] 5-oxo-Δ3-1,2,4-dithiazolin-3-yl: J Org Chem, 61(19), 6639-6645, 1996,
[1483] 2-oxo-Δ4-1,3,4-dioxazolin-5-yl: J Org Chem, 39, 2472, 1974,
[1484] 2-oxo-Δ4-1,3,4-oxathiazolin-5-yl: J Med Chem, 35(20), 3691-98, 1992,
[1485] 5-oxo-Δ2-1,3,4-thiadiazolin-2-yl: J Prakt Chem, 332(1), 55, 1990,
[1486] 5-oxo-Δ2-1,4,2-oxathiazolin-3-yl: J Org Chem, 31, 2417, 1966,
[1487] 2-oxo-Δ4-1,3,4-dithiazolin-5-yl: Tetrahedron Lett, 23, 5453, 1982,
[1488] 2-oxo-Δ4-1,3,2,4-dioxathiazolin-5-yl: Tetrahedron Lett, 319, 1968,
[1489] 3,5-dioxoisooxazolidin-4-yl: Helv Chim Acta, 1973, 48, 1965,
[1490] 2,5-dioxoimidazolidin-4-yl: Heterocycles, 43(1), 49-52, 1996,
[1491] 5-oxo-2-thioxoimidazolidin-4-yl: Heterocycles, 5, 391, 1983,
[1492] 2,4-dioxooxazolidin-5-yl: J Am Chem Soc, 73, 4752, 1951,
[1493] 4-oxo-2-thioxooxazolidin-5-yl: Chem Ber, 91, 300, 1958,
[1494] 2,4-dioxothiazolidin-5-yl: JP-A-57-123175,
[1495] 4-oxo-2-thioxothiazolidin-5-yl: Chem Pharm Bull, 30, 3563, 1982,
[1496] The Production Methods shown in the above-mentioned Production Methods 2 to 4 can be used for the synthesis of compounds other than benzimidazole of the formulas [I] and [II], such as compounds [II-2-15] and [II-2-16].
[1497] The compounds of the formulas [I], [II] and [III], 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole and 4-(4-fluorophenyl)-5-chloromethyl-2-methylthiazole and production methods thereof of the present invention are explained in detail in the following by way of Examples. It is needless to say that the present invention is not limited by these Examples.
EXAMPLE 1
[1498] Production of ethyl 2-(4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1499] Step 1: Production of ethyl 4-chloro-3-nitrobenzoate
[1500] 4-Chloro-3-nitrobenzoic acid (300 g) was dissolved in ethyl alcohol (1500 ml) and concentrated sulfuric acid (100 ml) was added with ice-cooling. The mixture was refluxed under heating for 7 hr. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (332 g, yield 97%).
[1501]
1
H-NMR (300 MHz, CDCl3): 8.50(1H, d, J=2.1 Hz), 8.16(1H, dd, J=8.4, 2.1 Hz), 7.63(1H, d, J=8.4 Hz), 4.43(2H, q, J=7.5 Hz), 1.42(3H, t, J=7.5 Hz)
[1502] Step 2: Production of ethyl 4-cyclohexylamino-3-nitrobenzoate
[1503] Ethyl 4-chloro-3-nitrobenzoate (330 g) obtained in the previous step was dissolved in acetonitrile (1500 ml), and cyclohexylamine (220 g) and triethylamine (195 g) were added. The mixture was refluxed under heating overnight. The reaction mixture was poured into ice-cold water and the precipitated crystals were collected by filtration to give the title compound (400 g, yield 94%).
[1504]
1
H-NMR (300 MHz, CDCl3): 8.87(1H, d, J=2.1 Hz), 8.35-8.46(1H, m), 8.02(1H, dd, J=9.1, 2.1 Hz), 6.87(1H, d, J=9.1 Hz), 4.35(2H, q, J=7.1 Hz), 3.65−3.50(1H, m), 2.14−1.29(10H, m), 1.38(3H, t, J=7.1 Hz)
[1505] Step 3: Production of ethyl 3-amino-4-cyclohexylaminobenzoate
[1506] Ethyl 4-cyclohexylamino-3-nitrobenzoate (400 g) obtained in the previous step was dissolved in ethyl acetate (1500 ml) and ethyl alcohol (500 ml), and 7.5% palladium carbon (50% wet, 40 g) was added. The mixture was hydrogenated for 7 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Diisopropyl ether was added to the residue and the precipitated crystals were collected by filtration to give the title compound (289 g, yield 80%).
[1507]
1
H-NMR (300 MHz, CDCl3): 7.57(1H, dd, J=8.4, 1.9 Hz), 7.41(1H, d, J=1.9 Hz), 6.59(1H, d, J=8.4 Hz), 4.30(2H, q, J=7.1 Hz), 3.40−3.30(1H, m), 2.18−2.02(2H, m), 1.88−1.15(8H, m), 1.35(3H, t, J=7.1 Hz)
[1508] Step 4: Production of ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4-cyclohexylaminobenzoate
[1509] 4-(3-Bromophenoxy)benzoic acid (74 g) was dissolved in chloroform (500 ml), and oxalyl chloride (33 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 4 hr at room temperature. The reaction mixture was concentrated under reduced pressure and dissolved in dichloromethane (150 ml). The resulting solution was added dropwise to a solution of ethyl 3-amino-4-cyclohexylaminobenzoate (66 g) obtained in the previous step in dichloromethane (500 ml) and triethylamine (71 ml), and the mixture was stirred for 1 hr at room temperature. The reaction mixture was poured into water and extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Diethyl ether was added to the residue for crystallization and the crystals were collected by filtration to give the title compound (129 g, yield 95%).
[1510]
1
H-NMR (300 MHz, CDCl3): 8.00−7.78(4H, m), 7.66(1H, brs), 7.37−7.18(3H, m), 7.13−6.59(3H, m), 6.72(1H, d, J=8.7 Hz), 4.50(1H, brs), 4.29(2H, q, J=7.2 Hz), 3.36(1H, m), 2.12−1.96(2H, m), 1, 83-1.56(3H, m), 1.47−1.12(5H, m), 1.37(3H, t, J=7.2 Hz)
[1511] Step 5: Production of ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1512] Ethyl 3-[4-(3-bromophenoxy)benzoyl]amino-4cyclohexylaminobenzoate (129 g) obtained in the previous step was suspended in acetic acid (600 ml) and the resulting suspension was refluxed under heating for 3 hr. The reaction mixture was concentrated under reduced pressure. Water was added to the residue and the precipitated crystals were collected by filtration to give the title compound (124 g, yield 99%).
[1513]
1
H-NMR (300 MHz, CDCl3): 8.51(1H, d, J=1.5 Hz), 8.00(1H, dd, J=8.4, 1.5 Hz), 7.67(1H, d, J=8.4 Hz), 7.63(2H, d, J=8.7 Hz), 7.35−7.21(3H, m), 7.17(2H, d, J=8.7 Hz), 7.14(1H, m), 4.42(2H, q, J=7.2 Hz), 4.38(1H, m), 2.43−2.22(2H, m), 2.07−1.87(4H, m), 1.80(1H, m), 1.42(3H, t, J=7.2 Hz), 1.40−1.27(3H, m)
EXAMPLE 2
[1514] Production of 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid
[1515] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (1.0 g) obtained in Example 1 was dissolved in tetrahydrofuran (10 ml) and ethyl alcohol (10 ml), and 4N sodium hydroxide (10 ml) was added. The mixture was refluxed under heating for 1 hr. The reaction mixture was concentrated under reduced pressure and water was added to the residue. The mixture was acidified with 6N hydrochloric acid and the precipitated crystals were collected by filtration to give the title compound (0.9 g, yield 96%).
[1516] melting point: 255-256° C.
[1517] FAB-Ms: 491(MH+)
[1518]
1
H-NMR (300 MHz, DMSO-d6): (12.75(1H, brs), 8.24(1H, s), 7.96(1H, d, J=8.7 Hz), 7.86(1H, d, J=8.7 Hz), 7.71(2H, d, J=8.6 Hz), 7.47−7.34(3H, m), 7.24(2H, d, J=8.6 Hz), 7.20(1H, m), 4.31(1H, m), 2.38−2.18(2H, m), 2.02−1.79(4H, m), 1.65(1H, m), 1.44−1.20(3H, m)
EXAMPLE 3
[1519] Production of ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate
[1520] Ethyl 3-amino-4-cyclohexylaminobenzoate (130 g) obtained in Example 1, Step 3, and methyl 4-hydroxybenzimidate hydrochloride (139 g) were added to methyl alcohol (1500 ml), and the mixture was refluxed under heating for 4 hr. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (131 g, yield 72%).
[1521]
1
H-NMR (300 MHz, CDCl3): 10.02(1H, brs), 8.21(1H, d, J=1.4 Hz), 7.93(1H, d, J=8.6 Hz), 7.83(1H, dd, J=8.6, 1.4 Hz), 7.48(2H, d, J=8.6 Hz), 6.95(2H, d, J=8.6 Hz), 4.39−4.25(1H, m), 4.33(1H, q, J=7.0 Hz), 2.35−2.18(2H, m), 1.98−1.79(4H, m), 1.70−1.60(1H, m), 1.46−1.19(3H, m), 1.35(3H, t, J=7.0 Hz)
EXAMPLE 4
[1522] Production of ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1523] 2-Bromo-5-chlorobenzyl bromide prepared from 2-bromo-5chlorotoluene (50 g), N-bromosuccinimide and N,N′-azobisisobutyronitrile, and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (50 g) obtained in Example 3 were suspended in dimethylformamide (300 ml). Potassium carbonate (38 g) was added and the mixture was stirred for 1 hr at 80° C. with heating. The reaction mixture was allowed to cool and then added to a mixed solvent of water-ethyl acetate. The precipitated crystals were collected by filtration to give the title compound (50 g, yield 64%).
[1524]
1
H-NMR (300 MHz, CDCl3): 8.50(1H, d, J=1.4 Hz), 7.97(1H, dd, J=8.6, 1.4 Hz), 7.70−7.57(5H, m), 7.20(1H, dd, J=8.4, 2.5 Hz), 7.14(2H, d, J=8.7 Hz), 5.17(2H, s), 4.46−4.30(1H, m), 4.41(2H, q, J=7.1 Hz), 2.40−2.20(2H, m), 2.02−1.21(8H, m), 1.42(3H, t, J=7.1 Hz)
EXAMPLE 5
[1525] Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1526] Ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (49 g) obtained in Example 4,4-chlorophenylboronic acid (18 g) and tetrakis-(triphenylphosphine)palladium (10 g) were suspended in 1,2-dimethoxyethane (600 ml). Saturated aqueous sodium hydrogencarbonate solution (300 ml) was added and the mixture was refluxed under heating for 2 hr. Chloroform was added to the reaction mixture. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate solution, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, chloroform:ethyl acetate=97:3). Ethyl acetate and diisopropyl ether were added to the resulting oil for crystallization and the resulting crystals were collected by filtration to give the title compound (44 g, yield 85%).
[1527]
1
H-NMR (300 MHz, CDCl3): 8.49(1H, d, J=1.4 Hz), 7.97(1H, dd, J=8.6, 1.6 Hz), 7.70−7.60(2H, m), 7.55(2H, d, J=8.7 Hz), 4.95(2H, s), 4.48−4.28(1H, m), 4.40(2H, m), 2.02−1.20(8H, m), 1.41(3H, t, J=7.1 Hz)
EXAMPLE 6
[1528] Production of 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
[1529] Ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (43 g) obtained in Example 5 was treated in the same manner as in Example 2 to give the title compound (33 g, yield 76%).
[1530] melting point: 243-244° C.
[1531] FAB-Ms: 571(MH+)
[1532]
1
H-NMR (300 MHz, DMSO-d6): 8.32(1H, s), 8.28(1H, d, J=8.9 Hz), 8.05(1H, d, J=8.8 Hz), 7.76−7.72(3H, m), 7.58−7.46(5H, m), 7.40(1H, d, J=8.3 Hz), 7.24(2H, d, J=8.9 Hz), 5.11(2H, s), 4.36(1H, m), 2.40−2.15(2H, m), 2.15−1.95(2H, m), 1.95−1.75(2H, m), 1.75−1.55(1H, m), 1.55−1.15(3H, m)
EXAMPLE 7
[1533] Production of ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1534] Ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate obtained in Example 3 and 2-bromo-5-methoxybenzyl bromide were treated in the same manner as in Example 4 to give the title compound (59 g).
EXAMPLE 8
[1535] Production of ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1536] Ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate obtained in Example 7 was treated in the same manner as in Example 5 to give the title compound (48 g, yield 77%).
[1537]
1
H-NMR (300 MHz, CDCl3): 8.49(1H, d, J=1.4 Hz), 7.97(1H, dd, J=8.6, 1.4 Hz), 7.64(1H, d, J=8.6 Hz), 7.54(2H, d, J=8.7 Hz), 7.37(2H, d, J=8.6 Hz), 7.31(2H, d, J=8.6 Hz), 7.25(1H, d, J=8.4 Hz), 7.19(1H, d, J=2.7 Hz), 7.00(2H, d, J=8.7 Hz), 6.97(1H, dd, J=8.4, 2.7 Hz), 4.98(2H, s), 4.41(2H, q, J=7.1 Hz), 4.42−4.29(1H, m), 3.88(3H, s), 2.40−2.20(2H, m), 2.01−1.88(4H, m), 1.83−1.73(1H, m), 1.42(3H, t, J=7.1 Hz), 1.41−1.25(3H, m)
EXAMPLE 9
[1538] Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
[1539] Ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (52 g) obtained in Example 8 was treated in the same manner as in Example 2 to give the title compound (44 g, yield 89%).
[1540] melting point: 248-249° C.
[1541] FAB-Ms: 568(MH+)
[1542]
1
H-NMR (300 MHz, DMSO-d6): 8.20(1H, s), 7.88(1H, d, J=8.7 Hz), 7.85(1H, d, J=8.7 Hz), 7.57(d, 2H, J=8.6 Hz), 7.46(2H, d, J=8.6 Hz), 7.44(2H, d, J=8.6 Hz), 7.29(1H, d, J=8.5 Hz), 7.24(1H, d, J=2.6 Hz), 7.11(2H, d, J=8.6 Hz), 7.06(1H, dd, J=8.5, 2.6 Hz), 5.04(2H, s), 4.26(1H, m), 3.83(3H, s), 2.38−2.29(2H, m)
EXAMPLE 10
[1543] Production of ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate
[1544] Ethyl 3-amino-4-cyclohexylaminobenzoate (500 mg) obtained in Example 1, Step 3, was dissolved in methyl alcohol (6 ml) and trans-4-stilbenecarbaldehyde (397 mg) was added under ice-cooling. The mixture was stirred overnight at room temperature. The reaction mixture was ice-cooled and benzofuroxan (259 mg) dissolved in acetonitrile (2 ml) was added. The mixture was stirred for 7 hr at 50° C. The reaction mixture was ice-cooled. After 1N sodium hydroxide (0.1 ml) was added, ethyl acetate was added and the mixture was extracted. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=4:1) to give the title compound (540 mg, yield 63%).
[1545]
1
H-NMR (300 MHz, DMSO-d6): 8.28(1H, d, J=1.4 Hz), 8.01(1H, d, J=8.7 Hz), 7.90−7.80(3H, m), 7.75−7.65(4H, m), 7.50−7.25(5H, m), 4.35(2H, q, J=7.0 Hz), 4.31(1H, m), 2.40−2.20(2H, m), 2.00−1.80(4H, m), 1.63(1H, m), 1.40−1.20(3H, m), 1.36(3H, t, J=7.0 Hz)
EXAMPLE 11
[1546] Production of 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylic acid
[1547] Ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}-benzimidazole-5-carboxylate (127 mg) obtained in Example 10 was treated in the same manner as in Example 2 to give the title compound (116 mg, yield 97%).
[1548] melting point: not lower than 300° C.
[1549] FAB-Ms: 423(MH+)
[1550]
1
H-NMR (300 MHz, DMSO-d6): 8.25(1H, s), 7.96−7.29(13H, m), 4.33(1H, brt), 2.41−2.23(2H, m), 2.03−1.78(4H, m), 1.71−1.59(1H, m), 1.49−1.20(3H, m)
EXAMPLE 12
[1551] Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid
[1552] In the same manner as in Examples 1 and 2, the title compound (700 mg) was obtained.
[1553] FAB-Ms: 413(MH+)
[1554]
1
H-NMR (300 MHz, CDCl3): 8.60(1H, s), 8.04(1H, d, J=9.0 Hz), 7.63(2H, d, J=8.4 Hz), 7.51−7.32(6H, m), 7.14(2H, d, J=9.0 Hz), 5.16(2H, s), 5.03−4.89(1H, m), 2.41−1.63(8H, m)
EXAMPLE 13
[1555] Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide
[1556] 2-(4-Benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid (700 mg) obtained in Example 12 was dissolved in dimethylformamide (10 ml), and ammonium chloride (108 mg), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (390 mg), 1-hydroxybenzotriazole (275 mg) and triethylamine (0.3 ml) were added. The mixture was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Ethyl acetate and diisopropyl ether were added to the residue for crystallization and the crystals were collected by filtration to give the title compound (571 mg, yield 81%).
[1557] melting point: 232-233° C.
[1558] FAB-Ms: 412(MH+)
[1559]
1
H-NMR (300 MHz, CDCl3): 8.23(1H, d, =1.5 Hz), 7.86(1H, dd, J=8.5, 1.5 Hz), 7.65−7.30(8H, m), 7.13(2H, d, J=8.8 Hz), 5.16(2H, s), 4.93(1H, quint, J=8.8 Hz), 2.40−1.60(8H, m)
EXAMPLE 14
[1560] Production of 2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole
[1561] In the same manner as in Example 1, the title compound (400 mg) was obtained.
[1562] FAB-Ms: 394(MH+)
[1563]
1
H-NMR (300 MHz, CDCl3): 8.11(1H, s), 7.68−7.30(9H, m), 7.13(2H, s), 5.16(2H, s), 4.94(1H, quint, J=8.9 Hz), 2.35−1.60(8H, m)
Example 15
[1564] Production of 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime
[1565] 2-(4-Benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole (400 mg) obtained in Example 14 was suspended in ethyl alcohol (3 ml) and water (1.5 ml), and hydroxylamine hydrochloride (141 mg) and sodium hydrogencarbonate (170 mg) were added. The mixture was refluxed under heating overnight. The reaction mixture was allowed to cool and the precipitated crystals were collected by filtration to give the title compound (312 mg, yield 71%).
[1566] melting point: 225-226° C.
[1567] FAB-Ms: 456(MH+)
[1568]
1
H-NMR (300 MHz, DMSO-d6): 8.20(1H, s), 7.50−7.31(9H, m), 7.12(2H, d, J=8.7 Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7 Hz), 3.61(3H, s), 3.40(3H, s), 2.41−1.42(8H, m)
EXAMPLE 16
[1569] Production of ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate
[1570] Step 1: Production of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole
[1571] Ethyl 4-(4-fluorophenyl)-2-methyl-5-thiazolecarboxylate (59 g) prepared by a known method (Chem. Pharm. Bull., 43(6), 947, 1995) was dissolved in tetrahydrofuran (700 ml). Lithium aluminum hydride (13 g) was added under ice-cooling and the mixture was stirred for 30 min. Water (13 ml), 15% sodium hydroxide (13 ml) and water (39 ml) were added successively to the reaction mixture, and the precipitated insoluble materials were filtered off. The filtrate was concentrated under reduced pressure to give the title compound (37 g, yield 71%).
[1572]
1
H-NMR (300 MHz, CDCl3): 7.60(2H, dd, J=8.7, 6.6 Hz), 7.11(2H, t, J=8.7 Hz), 4.80(2H, s), 2.70(3H, s)
[1573] Step 2: Production of 5-chloromethyl-4-(4-fluorophenyl)-2-methylthiazole
[1574] 4-(4-Fluorophenyl)-5-hydroxymethyl-2-methylthiazole (37 g) obtained in the previous step was dissolved in chloroform (500 ml), and thionyl chloride (24 ml) and pyridine (2 ml) were added. The mixture was stirred for 3 hr at room temperature. The reaction mixture was poured into ice-cold water. The mixture was extracted with chloroform, and washed with water and saturated brine. The organic layer was dried over sodium sulfate, and concentrated under reduced pressure to give the title compound (29 g, yield 76%).
[1575]
1
H-NMR (300 MHz, CDCl3): 7.67(2H, dd, J=8.8, 5.4 Hz), 7.16(2H, t, J=8.7 Hz), 4.79(2H, s), 2.73(3H, s)
[1576] Step 3: Production of ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-4-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole -5-carboxylate
[1577] 5-Chloromethyl-4-(4-fluorophenyl)-2-methylthiazole (28 g) obtained in the previous step and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (36 g) obtained in Example 3 were treated in the same manner as in Example 4 to give the title compound (61 g, yield 100%).
[1578] APCI-Ms: 570(MH+)
[1579]
1
H-NMR (300 MHz, DMSO-d6): 8.25(1H, d, J=1.5 Hz), 7.97(1H, d, J=8.7 Hz), 7.86(1H, dd, J=8.6, 1.6 Hz), 7.74(2H, dd, J=8.8, 5.5 Hz), 7.62(2H, d, J=8.7 Hz), 7.33(2H, t, J=8.9 Hz), 7.22(2H, t, J=8.9 Hz), 5.41(2H, s), 4.34(2H, q, J=7.1 Hz), 4.31(1H, m), 2.71(3H, s), 2.40−2.15(2H, m), 2.05−1.75(4H, m), 1.55−1.15(3H, m), 1.36(3H, t, J=7.1 Hz)
EXAMPLE 17
[1580] Production of 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid
[1581] Ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-4-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 16 was treated in the same manner as in Example 2 to give the title compound (39g, yield 69%).
[1582] melting point: 196-198° C.
[1583] FAB-Ms: 542(MH+)
[1584]
1
H-NMR (300 MHz, DMSO-d6): 13.1(1H, brs), 8.34(1H, s), 8.29(1H, d, J=8.8 Hz), 8.06(1H, d, J=8.7 Hz), 7.80−7.72(4H, m), 7.36−7.31(4H, m), 5.46(2H, s), 4.38(1H, m), 2.72(3H, s), 2.45−2.15(2H, m), 2.15−1.95(2H, m), 1.95−1.75(2H, m), 1.75−1.55(1H, m), 1.55−1.20(3H, m)
EXAMPLE 18
[1585] Production of ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate
[1586] In the same manner as in Example 3, the title compound (50 g) was obtained.
EXAMPLE 19
[1587] Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1588] Step 1 : Production of 3,3′-difluorobenzhydrol
[1589] To a stirred solution of magnesium strip (35.4 g) in THF (200 ml), iodine strip was added and the mixture was heated with stirring under nitrogen stream until most of color of iodine was disappeared. A solution of 3-fluoro-bromobenzene (250.0 g) in THF (1000 ml) was added dropwise over 2.5 hr while the temperature of the solution was maintained at 60° C. After the completion of the addition of the solution, the resulting mixture was refluxed for 1 hr with heating. The resulting Grignard solution was ice-cooled and a solution of ethyl formate (63.2 g) in THF (200 ml) was added dropwise over 1 hr. After a stirring of the reaction solution for an additional 30 min, saturated aqueous ammonium chloride solution (700 ml) was added dropwise with ice-cooling and water (300 ml) was added. The mixture was stirred for 10 min. The organic layer and water layer were separated. Water layer was extracted with ethyl acetate, and the combined organic layer was washed with 2N hydrochloric acid, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, and the solvent was evaporated off under reduced pressure to give the title compound (156.2 g, yield 99%).
[1590]
1
H-NMR (300 MHz, CDCl3): 7.31(2H, td, J=7.9, 5.8 Hz), 7.15-7.80(4H, m), 6.97−6.94(2H, m), 5.82(1H, d, J=3.3 Hz), 2.30(1H, d, J=3.3 Hz)
[1591] Step 2: Production of 3,3′-difluorobenzhydryl chloride
[1592] To a solution of 3,3′-difluorobenzhydrol (150.0 g) obtained in the previous step in toluene (400 ml), pyridine (539 mg) was added at room temperature. To the solution, thionyl chloride (89.1 g) was added dropwise over 1 hr at room temperature and the resulting solution was stirred for an additional 2 hr. The solution was heated so that the temperature of the solution was at 40° C., and then stirred for an additional 1.5 hr. Thionyl chloride (8.1 g) was added again and the mixture was stirred for 30 min. To the reaction mixture, water was added. The organic layer was separated, and washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, filtered, the solvent was evaporated off under reduced pressure to give the title compound (158.2 g, yield 97%).
[1593]
1
H-NMR (300 MHz, CDCl3): 7.32(2H, td, J=8.0, 5.9 Hz), 7.18−7.10(4H, m), 7.01(2H, tdd, J=8.2, 2.5, 1.2 Hz), 6.05(1H, s)
[1594] Step 3: Production of ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1595] Ethyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)-benzimidazole-5-carboxylate (50 g) obtained in Example 18 and 3,3′-difluorobenzhydryl chloride (34 g) obtained in the previous step were treated in the same manner as in Example 4 to give the title compound (76 g, yield 99%).
[1596] FAB-Ms: 585(MH+)
[1597]
1
H-NMR (300 MHz, DMSO-d6): 8.24(1H, d, J=1.4 Hz), 7.98(1H, d, J=8.7 Hz), 7.88(1H, d, J=8.7 Hz), 7.56(1H, t, J=8.6 Hz), 7.50−7.40(6H, m), 6.82(1H, s), 4.34(2H, q, J=7.1 Hz), 3.95(1H, m), 2.20−2.10(2H, m), 1.90−1.80(4H, m), 1.6(1H, m), 1.35(3H, t, J=7.2 Hz), 1.30−1.20(3H, mz)
EXAMPLE 20
[1598] Production of 2-{4-(bis[3-fluorophenyl]methoxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
[1599] Ethyl 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate (75 g) obtained in Example 19 was treated in the same manner as in Example 2 to give the title compound (48 g, yield 62%).
[1600] melting point: 242-243° C.
[1601] FAB-Ms: 557(MH+)
[1602]
1
H-NMR (300 MHz, DMSO-d6): 8.29(1H, s), 8.16(1H, d, J=8.8 Hz), 7.99(1H, d, J=8.7 Hz), 7.66(1H, t, J=8.7 Hz), 7.51−7.40(6H, m), 7.30(1H, d, J=12.1 Hz), 7.20−7.14(3H, m), 6.88(1H, s), 4.07(1H, m), 2.40−2.10(2H, m), 2.00−1.75(4H, m), 1.70−1.55(1H, m), 1.50−1.15(3H, m)
EXAMPLE 21
[1603] Production of ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate
[1604] In the same manner as in Example 1, the title compound (12 g) was obtained.
EXAMPLE 22
[1605] Production of ethyl 2-(4-aminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate
[1606] Ethyl 1-cyclopentyl-2-(4-nitrophenyl)benzimidazole-5-carboxylate (12 g) obtained in Example 21 was dissolved in tetrahydrofuran (200 ml) and ethyl alcohol (50 ml), 7.5% palladium carbon (50% wet, 1 g) was added. The mixture was hydrogenated for 1 hr at atmospheric pressure. The catalyst was filtered off and the filtrate was concentrated under reduced pressure. Tetrahydrofuran was added to the residue to allow crystallization and the crystals were collected by filtration to give the title compound (11 g, yield 98%).
[1607]
1
H-NMR (300 MHz, CDCl3): 8.49(1H, d, J=1.3 Hz), 7.95(1H, dd, J=8.5, 1.3 Hz), 7.50−7.40(3H, m), 6.79(2H, d, J=4.6 Hz), 4.97(1H, quint, J=8.9 Hz), 4.40(2H, q, J=7.1 Hz), 3.74(2H, brs), 2.40−1.60(8H, m), 1.41(3H, t, J=7.1 Hz)
EXAMPLE 23
[1608] Production of ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate
[1609] Ethyl 1-cyclopentyl-2-(4-aminophenyl)benzimidazole-5-carboxylate (300 mg) obtained in Example 22 was dissolved in pyridine (3 ml) and chloroform (3 ml), and benzoyl chloride (127 mg) was added. The mixture was stirred for 30 min at room temperature. The reaction mixture was concentrated under reduced pressure and water was added to the residue to allow crystallization. The crystals were collected by filtration to give the title compound (403 mg, yield 100%).
[1610]
1
H-NMR (300 MHz, CDCl3): 8.58(1H, s), 8.00(1H, d, J=9.0 Hz), 7.84(2H, d, J=7.5 Hz), 7.60−7.40(6H, m), 7.14(2H, d, J=7.5 Hz), 4.84(1H, quint, J=8.7 Hz), 4.41(2H, q, J=7.5 Hz), 2.20−1.30(8H, m), 1.41(3H, t, J=7.5 Hz)
EXAMPLE 24
[1611] Production of 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid
[1612] Ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate (200 mg) obtained in Example 23 was treated in the same manner as in Example 2 to give the title compound (131 mg, yield 70%).
[1613] melting point: not lower than 300° C.
[1614] FMB-Ms: 426(MH+)
[1615]
1
H-NMR (300 MHz, DMSO-d6): 10.75(1H, s), 8.35(1H, s), 8.15 and 7.85(4H, ABq, J=8.9 Hz), 8.10−7.98(4H, m), 7.70−7.55(3H, m), 5.02(1H, quint, J=8.7 Hz), 2.36−2.15(4H, m), 2.14−1.95(2H, m), 1.80−1.62(2H, m)
EXAMPLE 25
[1616] Production of ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1617] Ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (65 g) obtained in Example 1 and 3-chlorophenylboronic acid (23 g) were treated in the same manner as in Example 5 to give the title compound (59 g, yield 85%).
[1618]
1
H-NMR (300 MHz, CDCl3): 8.51(1H, d, J=1.8Hz), 7.99(1H, dd, J=8.7, 1.8 Hz), 7.71−7.55(4H, m), 7.51−7.43(2H, m), 7.43−7.27(4H, m), 7.19(1H, d, J=8.4 Hz), 7.12(1H, m), 4.41(2H, q, J=7.2 Hz), 4.39(1H, m), 2.42−2.22(2H, m), 2.03−1.87(4H, m), 1.79(1H, m), 1.42(3H, t, J=7.2 Hz), 1.39−1.29(3H, m)
EXAMPLE 26
[1619] Production of 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid
[1620] Ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (59 g) obtained in Example 25 was treated in the same manner as in Example 2 to give the title compound (43 g, yield 76%).
[1621] melting point: 253-254° C.
[1622] FAB-Ms: 523(MH+)
[1623]
1
H-NMR (300 MHz, DMSO-d6): 12.82(1H, brs), 8.24(1H, d, J=1.3 Hz), 7.98(1H, d, J=8.7 Hz), 7.89(1H, dd, J=8.7, 1.3 Hz), 7.78(1H, s), 7.72(2H, d, J=9.7 Hz), 7.70(1H, m), 7.64−7.42(5H, m), 7.25(2H, d, J=8.7 Hz), 7.20(1H, m), 4.33(1H, m), 2.39−2.17(2H, m), 2.00−1.76(4H, m), 1.65(1H, m), 1.50−1.22(3H, m)
EXAMPLE 27
[1624] Production of ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1625] In the same manner as in Example 1, the title compound (87 g) was obtained.
EXAMPLE 28
[1626] Production of ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)-phenyl]benzimidazole-5-carboxylate
[1627] Ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (87 g) obtained in Example 27 was dissolved in methyl alcohol (250 ml) and tetrahydrofuran (250 ml), and potassium carbonate (31 g) was added. The mixture was stirred for 30 min at room temperature. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. Water was added to the residue and the mixture was neutralized with 2N hydrochloric acid. The precipitated crystals were collected by filtration to give the title compound (78 g, yield 97%).
[1628]
1
H-NMR (300 MHz, DMSO-d6): 9.71(1H, s), 7.98(1H, d, J=8.7 Hz), 7.87(1H, d, J=8.7 Hz), 7.68(2H, d, J=8.6 Hz), 7.24(1H, t, J=8.1 Hz), 7.18(2H, d, J=8.6 Hz), 6.63(1H, d, J=8.1 Hz), 6.57(1H, d, J=8.1 Hz), 6.51(1H, s), 4.38−4.23(1H, m), 4.35(2H, q, J=6.9Hz), 2.36−2.18(2H, 20 m), 1.99−1.78(4H, m), 1.71−1.59(1H, m), 1.45−1.20(3H, m), 1.36(3H, t, J=6.9 Hz)
EXAMPLE 29
[1629] Production of ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)-phenyloxy]phenyl}benzimidazole-5-carboxylate
[1630] Ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]-benzimidazole-5-carboxylate (78 g) obtained in Example 28 was suspended in dimethylformamide (800 ml), and sodium hydride (60% oil, 14 g) was added under ice-cooling. The mixture was stirred for 1 hr at room temperature. After the reaction mixture was ice-cooled, 4-chloromethylpyridine hydrochloride (29 g) was added and the mixture was stirred for 30 min. The mixture was then stirred overnight at room temperature. Water was added to the reaction mixture and the precipitated crystals were collected by filtration. The resulting crystals were recrystallized from ethyl alcohol to give the title compound (77 g, yield 82%).
[1631]
1
H-NMR (300 MHz, CDCl3): 8.63(2H, d, J=6.0 Hz), 8.51(1H, s), 7.99(1H, d, J=8.7 Hz), 7.66(2H, d, J=8.7 Hz), 7.62(2H, d, J=8.7 Hz), 7.36(2H, d, J=8.7 Hz), 7.31(1H, t, J=8.2 Hz), 7.26(1H, s), 7.16(2H, d, J=8.7 Hz), 6.79−6.70(3H, m), 5.09(2H, s), 4.47−4.31(1H, m), 4.42(2H, q, J=7.0 Hz), 2.42−2.22(2H, m), 2.04−1.71(5H, m), 1.45−1.25(3m), 1.42(3H, t, J=7.0 Hz)
EXAMPLE 30
[1632] Production of 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]-phenyl}benzimidazole-5-carboxylic acid
[1633] Ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]-phenyl}benzimidazole-5-carboxylate (60 g) obtained in Example 29 was treated in the same manner as in Example 2 to give the title compound (54 g, yield 75%).
[1634] melting point: 235-237° C.
[1635] FAB-Ms: 520(MH+)
[1636]
1
H-NMR (300 MHz, DMSO-d6): 8.58(2H, d, J=6.0 Hz), 8.23(1H, s), 7.96 and 7.86(2H, ABq, J=8.7 Hz), 7.68 and 7.17(4H, A′B′q, J=8.7 Hz), 7.44(2H, d, J=8.7 Hz), 7.39(1H, t, J=8.3 Hz), 6.90(1H, d, J=8.1 Hz), 6.84(1H, s), 6.75(1H, d, J=8.1 Hz), 5.22(2H, s), 4.40−4.22(1H, m), 2.40−2.19(2H, m), 2.00−1.80(4H, m)
EXAMPLE 241
[1637] Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1638] Step 1: Production of 2-bromo-5-methoxybenzaldehyde
[1639] 3-Methoxybenzaldehyde (15 g) was dissolved in acetic acid (75 ml), and a solution of bromine (5.7 ml) dissolved in acetic acid (15 ml) was added dropwise. The mixture was stirred overnight at room temperature and water (150 ml) was added to the reaction mixture. The precipitated crystals were collected by filtration, washed with water and dried under reduced pressure to give the title compound (21 g, yield 88%).
[1640]
1
H-NMR (300 MHz, CDCl3): 10.31(1H, s), 7.52(1H, d, J=8.8 Hz), 7.41(1H, d, J=3.3 Hz), 7.03(1H, dd, J=8.8, 3.3 Hz), 3.48(3H, s)
[1641] Step 2: Production of 2-(4-chlorophenyl)-5-methoxybenzaldehyde
[1642] 2-Bromo-5-methoxybenzaldehyde (10 g) obtained in the previous step was treated in the same method as in Example 5 to give the title compound (11 g, yield 96%).
[1643]
1
H-NMR (300 MHz, CDCl3): 9.92(1H, s), 7.50(1H, d, J=2.6 Hz), 7.48−7.14(6H, m), 3.90(3H, s)
[1644] Step 3: Production of 2-(4-chlorophenyl)-5-methoxybenzyl alcohol
[1645] 2-(4-Chlorophenyl)-5-methoxybenzaldehyde (10 g) obtained in the previous step was dissolved in tetrahydrofuran (30 ml). The solution was added dropwise to a suspension of sodium borohydride (620 mg) in isopropyl alcohol (50 ml) and the mixture was stirred for 1 hr. The solvent was evaporated under reduced pressure and water was added to the residue. The precipitated crystals were collected by filtration and dried under reduced pressure. The resulting crystals were recrystallized from a mixture of methanol and water to give the title compound (9.2 g, yield 91%).
[1646]
1
H-NMR (300 MHz, CDCl3): 7.37(2H, d, J=B8.6 Hz), 7.27(2H, d, J=8.6 Hz), 7.17(1H, d, J=8.6 Hz), 7.11(1H, d, J=2.6 Hz), 6.89(1H, dd, J=8.6, 2.6 Hz), 4.57(2H, s), 3.86(3H, s)
[1647] Step 4: Production of 2-(4-chlorophenyl)-5-methoxybenzyl chloride
[1648] 2-(4-Chlorophenyl)-5-methoxybenzyl alcohol (20 g) obtained in the previous step was dissolved in ethyl acetate (100 ml) and pyridine (0.5 ml), and thionyl chloride (11 ml) was added dropwise. The mixture was stirred for 1 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Isopropyl alcohol was added to the residue to allow crystallization. The resulting crystals were collected by filtration and dried under reduced pressure to give the title compound (16 g, yield 74%).
[1649]
1
H-NMR (300 MHz, CDCl3): 7.43−7.29(4H, m), 7.17(1H, d, J=8.6 Hz), 7.05(1H, d, J=2.6 Hz), 6.96−6.89(1H, m), 4.46(2H, s), 3.86(3H, s)
[1650] Step 5: Production of methyl 2-{4-[2-(4-chlorophenyl)-5methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1651] 2-(4-Chlorophenyl)-5-methoxybenzyl chloride (4.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (5.0 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (6.0 g, yield 72%).
[1652]
1
H-NMR (300 MHz, CDCl3): 8.48(1H, s), 8.00−7.93(1H, m), 7.68−7.62(1H, m), 7.54(2H, d, J=9.0 Hz), 7.41−7.16(6H, m), 7.04−6.93(3H, m), 4.97(2H, s), 4.36(1H, m), 3.94(3H, s), 3.87(3H, s), 2.39−2.21(2H, m), 2.02−1.88(4H, m), 1.85−1.45(4H, m)
EXAMPLE 242
[1653] Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride
[1654] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (5.0 g) obtained in Example 241 was treated in the same manner as in Example 2 to give the title compound (5.1 g, yield 98%).
[1655] APCI-Ms: 568(MH+)
[1656]
1
H-NMR (300MHz, DMSO-d6): 8.30(1H, d, J=1.4Hz), 8.24(1H, d, J=8.7 Hz), 8.03(1H, d, J=8.7 Hz), 7.72(2H, d, J=8.7 Hz), 7.51−7.39(4H, m), 7.34−7.18(4H, m), 7.11−7.03(1H, m), 5.08(2H, s), 4.35(1H, m), 3.83(3H, m), 2.40−2.18(2H, m), 2.10−1.96(2H, m), 1.93−1.78(2Hm), 1.72−1.18(4H, m)
EXAMPLE 243
[1657] Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1658] Step 1: Production of methyl 3-hydroxypicolinate
[1659] 3-Hydroxypicolinic acid (1.0 g) was suspended in methanol (10 ml) and concentrated sulfuric acid (1.0 ml) was added. The mixture was refluxed under heating for 5 hr. The reaction mixture was ice-cooled, neutralized with saturated aqueous sodium hydrogencarbonate, and extracted with chloroform. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (711 mg, yield 64%).
[1660]
1
H-NMR (300 MHz, CDCl3): 10.63(1H, s), 8.28(1H, dd, J=3.7, 1.8 Hz), 7.47−7.35(2H, m), 4.06(3H, s)
[1661] Step 2: Production of methyl 3-(trifluoromethylsulfonyloxy)-pyridine-2-carboxylate
[1662] Methyl 3-hydroxypicolinate (710 mg) obtained in the previous step and triethylamine (0.77 ml) were dissolved in dichloromethane (7 ml), and trifluoromethanesulfonic anhydride (0.86 ml) was added under ice-cooling. The reaction mixture was allowed to warm to room temperature and the mixture was stirred for 2 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (1.2 g, yield 90%).
[1663]
1
H-NMR (300 MHz, CDCl3): 8.80−8.73(1H, m), 7.75−7.70(1H, m), 7.63(1H, dd, J=8.2, 4.5 Hz), 4.05(3H, s)
[1664] Step 3: Production of methyl 3-(4-chlorophenyl)pyridine-2-carboxylate
[1665] Methyl 3-(trifluoromethylsulfonyloxy)pyridine-2-carboxylate (1.2 g) obtained in the previous step was treated in the same manner as in Example 5 to give the title compound (728 mg, yield 69%).
[1666]
1
H-NMR (300 MHz, CDCl3): 8.73−8.66(1H, m), 7.77−7.68(1H, m), 7.49(1H, dd, J=7.8, 4.5 Hz), 7.46−7.37(2H, m), 7.32−7.23(2H, m), 3.80(3H, s)
[1667] Step 4: Production of [3-(4-chlorophenyl)pyridin-2-yl]methanol.
[1668] Methyl 3-(4-chlorophenyl)pyridine-2-carboxylate (720 mg) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was ice-cooled. Lithium aluminum hydride (160 mg) was added to the solution and the mixture was stirred for 1 hr. To the reaction mixture were added successively water (1.6 ml), 15% sodium hydroxide (1.6 ml) and water (4.8 ml). The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=1:1) to give the title compound (208 mg, yield 32%).
[1669]
1
H-NMR (300 MHz, CDCl3): 8.60(1H, dd, J=4.8, 1.5 Hz), 7.60−7.55(1H, m), 7.40-7.48(2H, m), 7.29-7.36(1H, m), 7.27−7.20(3H, m), 4.63(2H, s)
[1670] Step 5: Production of ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1671] [3-(4-Chlorophenyl)pyridin-2-yl]methanol (200 mg) obtained in the previous step was dissolved in chloroform (3 ml), and thionyl chloride (0.13 ml) and pyridine (catalytic amount) were added. The mixture was stirred for 1 hr at room temperature and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (3 ml), and ethyl 1-cyclohexyl-2-(4-hydroxyphenyl)benzimidazole-5-carboxylate (232 mg) obtained in the same manner as in Example 3 and potassium carbonate (250 mg) were added. The mixture was stirred for 3 hr with heating at 80° C. The reaction mixture was then allowed to cool. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=1:2) to give the title compound (246 mg, yield 68%).
[1672]
1
H-NMR (300 MHz, CDCl3): 8.71(1H, dd, J=4.7, 1.4 Hz), 8.49(1H, d, J=2.1 Hz), 7.96(1H, d, J=10.2 Hz), 7.71−7.62(2H, m), 7.53(2H, d, J=8.7 Hz), 7.45−7.34(5H, m), 7.04(2H, d, J=8.7 Hz), 5.14(2H, s), 4.48−4.29(3H, m), 2.38−2.19(2H, m), 2.02−1.22(11H, m)
EXAMPLE 244
[1673] Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonyl-benzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1674] Step 1: Production of tert-butyl 4-bromo-3-methylbenzoate
[1675] 4-Bromo-3-methylbenzoic acid (25 g) was suspended in dichloromethane (200 ml), and oxalyl chloride (12 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature and the solvent was evaporated under reduced pressure. The residue was dissolved in tetrahydrofuran (200 ml) and the solution was ice-cooled. To the solution was added dropwise a solution of potassium tert-butoxide dissolved in tetrahydrofuran (150 ml) and the mixture was stirred for 30 min. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (27 g, yield 85%).
[1676]
1
H-NMR (300 MHz, CDCl3): 7.83(1H, d, J=2.2 Hz), 7.67−7.53(2H, m), 2.43(3H, s), 1.58(9H, s) Step 2: Production of methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1677] tert-Butyl 4-bromo-3-methylbenzoate (7.0 g) obtained in the previous step and methyl 1-cyclohexyl-2-(4-hydroxyphenyl)-benzimidazole-5-carboxylate (6.3 g) obtained in the same manner as in Example 3 were treated in the same manner as in Example 4 to give the title compound (8.8 g, yield 77%).
[1678]
1
H-NMR (300 MHz, CDCl3): 8.49(1H, d, J=1l.5Hz), 8.21(1H, d, J=2.1 Hz), 7.97(1H, d, J=10.2 Hz), 7.82(1H, d, J=10.2 Hz), 7.71−7.58(4H, m), 7.16(2H, d, J=8.7 Hz), 5.23(2H, s), 4.38(1H, m), 3.95(3H, s), 2.40−2.23(2H, m), 2.04−1.90(4H, m), 1.84−1.73(1H, m), 1.59(9H, s), 1.44−1.27(3H, m)
EXAMPLE 245
[1679] Production of methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1680] Methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate (4.5 g) obtained in Example 244 was treated in the same manner as in Example 5 to give the title compound (3.6 g, yield 76%).
[1681]
1
H-NMR (300 MHz, CDCl3): 8.48(1H, s), 8.27(1H, d, J=1.8 Hz), 8.04(1H, dd, J=7.9, 1.5 Hz), 7.96(1H, dd, J=7.0, 1.5 Hz), 7.65(1H, d, J=8.6 Hz), 7.55(2H, d, J=8.6 Hz), 7.43−7.32(5H, m), 7.01(2H, d, J=8.6 Hz), 4.99(2H, s), 4.43−4.29(1H, m), 3.95(3H, s), 2.41−2.21(2H, m), 2.02−1.89(4H, m), 1.82−1.73(1H, m), 1.62(9H, s), 1.46−1.28(3H, m)
EXAMPLE 246
[1682] Production of methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride
[1683] Methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (3.5 g) obtained in Example 245 was dissolved in dichloromethane (35 ml), and trifluoroacetic acid (35 ml) was added. The mixture was stirred for 1 hr at room temperature and the reaction mixture was concentrated under reduced pressure. The residue was dissolved in ethyl acetate, and 4N hydrochloric acid-ethyl acetate was added. The precipitated crystals were collected by filtration and dried under reduced pressure to give the title compound (3.3 g, yield 97%).
[1684]
1
H-NMR (300 MHz, DMSO-d6): 8.33(1H, d, J=1.5 Hz), 8.29(1H, s), 8.24(1H, d, J=1.8 Hz), 8.09−8.00(2H, m), 7.74(2H, d, J=8.6 Hz), 7.61−7.44(5H, m), 7.24(2H, d, J=8.6 Hz), 5.19(2H, s), 4.36(1H, m), 3.93(3H, s), 2.37−1.21(10H, m)
EXAMPLE 247
[1685] Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoyl-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate
[1686] Methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride (400 mg) obtained in Example 246 was suspended in dichloromethane (5 ml), and oxalyl chloride (0.08 ml) and dimethylformamide (catalytic amount) were added. The mixture was stirred for 2 hr at room temperature. The reaction mixture was concentrated under reduced pressure and the residue was dissolved in dichloromethane (5 ml). The resulting solution was added dropwise to a mixed solution of 40% aqueous methylamine solution (5 ml) and tetrahydrofuran (5 ml) under ice-cooling. The reaction mixture was stirred for 1 hr and concentrated under reduced pressure. Water was added to the residue and the mixture was extracted with ethyl acetate. The organic layer was washed with water, saturated aqueous sodium hydrogencarbonate and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure and the residue was crystallized from ethyl acetate and diisopropyl ether. The crystals were collected by filtration and dried under reduced pressure to give the title compound (335 mg, yield 86%).
[1687]
1
H-NMR (300 MHz, CDCl3): 8.47(1H, s), 8.06(1H, d, J=1.8 Hz), 7.96(1H, dd, J=8.6, 1.5 Hz), 7.82(1H, dd, J=8.2, 2.2 Hz), 7.64(1H, d, J=8.6 Hz), 7.54(2H, d, J=9.0 Hz), 7.44−7.31(5H, m), 6.99(2H, d, J=9.0 Hz), 6.35−6.26(1H, m), 5.00(2H, s), 4.35(1H, m), 3.95(3H, s), 3.05(3H, d, J=4.8 Hz), 2.40−1.24(10H, m)
EXAMPLE 248
[1688] Production of 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride
[1689] Methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate (150 mg) obtained in Example 247 and tetrahydrofuran (2 ml) were treated in the same manner as in Example 2 to give the title compound (141 mg, yield 90%).
[1690] APCI-Ms: 594(MH+)
[1691]
1
H-NMR (300 MHz, DMSO-d6): 8.65−8.58(1H, m), 8.27(1H, d, J=1.5 Hz), 8.21(1H, d, J=8.2 Hz), 8.15(1H, d, J=1.5 Hz), 8.05−7.90(2H, m), 7.70(2H, d, J=8.6 Hz), 7.56−7.43(5H, m), 7.21(2H, d, J=8.6 Hz), 5.14(2H, s), 4.34(1H, m), 2.81(3H, d, J=4.5 Hz), 2.39−1.19(10H, m)
EXAMPLE 336
[1692] Production of methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1693] Commercially available 2-bromo-5-nitrotoluene was dissolved in carbon tetrachloride (30 ml), and N-bromosuccinimide (2.9 g) and N,N′-azobisisobutyronitrile (228 mg) were added, which was followed by refluxing under heating overnight. The reaction mixture was allowed to cool, water was added and the mixture was extracted with chloroform. The organic layer was dried over magnesium sulfate and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (30 ml) and methyl 2-(2-fluoro-4-hydroxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylate (3.8 g) obtained in the same manner as in Example 3 and potassium carbonate (3.8 g) were added, which was followed by stirring at 80° C. for 1 hr. The reaction mixture was allowed to cool, water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (n-hexane:ethyl acetate=1:1) to give the title compound (3.7 g, yield 61%).
[1694]
1
H-NMR (300 MHz, CDCl3): 8.55−8.45(2H, m), 8.15−8.05(1H, m), 7.99(1H, dd, J=8.6 Hz, 1.5 Hz), 7.70−7.55(2H, m), 7.05−6.85(2H, m), 5.24(2H, s), 4.06(1H, m), 3.95(3H, s), 2.35−2.15(2H, m), 2.05−1.85(4H, m), 1.80−1.70(1H, m), 1.45−1.20(3H, m)
EXAMPLE 337
[1695] Production of methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxlate
[1696] Methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (2.0 g) obtained in Example 336, 4-chlorophenylboronic acid (590 mg) and tetrakis(triphenylphosphine)palladium (396 mg) were suspended in dimethoxyethane (40 ml), and saturated aqueous sodium hydrogencarbonate solution (20 ml) was added, which was followed by refluxing under heating for 1 hr. The reaction mixture was allowed to cool, water was added and the mixture was extracted with chloroform. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (n-hexane:ethyl acatate=2:1) to give the title compound (1.9 g, yield 90%).
[1697]
1
H-NMR (300 MHz, CDCl3): 8.55(1H, d, J=2.3 Hz), 8.49(1H, d, J=1.4 Hz), 8.29(1H, dd, J=8.4 Hz, 2.3 Hz), 7.98(1H, dd, J=8.6 Hz, 1.5 Hz), 7.60−7.30(6H m), 6.85−6.70(2H, m), 5.03(2H, s), 4.02(1H, m), 3.95(3H, s), 2.35−2.10(2H, m), 2.05−1.70(5H, m), 1.40−1.20(3H, m)
EXAMPLE 338
[1698] Production of methyl 2-(4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1699] Methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (1.9 g) obtained in Example 337 was suspended in ethanol (40 ml), and tin(II) chloride dihydrate (3.5 g) was added, which was followed by refluxing under heating for 30 min. The reaction mixture was concentrated under reduced pressure, 4N sodium hydroxide was added and the mixture was extracted with chloroform. The organic layer was washed with 2N sodium hydroxide and water, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. Diisopropyl ether was added to the residue, and the precipitated crystals were collected by filtration to give the title compound (1.5 g, yield 82%).
[1700]
1
H-NMR (300 MHz, CDCl3): 8.49(1H, d, J=1.2 Hz), 7.98(1H, dd, J=9.0, 1.5 Hz), 7.66(1H, d, J=8.7 Hz), 7.49(1H, t, J=8.4 Hz), 7.40−7.20(3H, m),7.13(1H, d, J=8.1 Hz), 6.92(1H, d, J=2.7 Hz), 6.85−6.65(4H, m), 4.92(2H, s), 4.03(1H, m), 3.95(3H, s), 3.82(2H, brs), 2.30−2.10(2H, m), 2.05−1.80(4H, m), 1.80−1.70(1H, m), 1.40−1.10(3H, m)
EXAMPLE 339
[1701] Production of methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate
[1702] Methyl 2-[4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (500 mg) obtained in Example 338 and triethylamine (0.14 ml) were dissolved in chloroform (5 ml), and commercially available chlorobutyryl chloride (0.1 ml) was added under ice-cooling, which was followed by stirring at room temperature for 3 hr. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was dissolved in dimethylformamide (6 ml) and potassium carbonate (244 mg) was added, which was followed by stirring at 80° C. for 1 hr. The reaction mixture was allowed to cool, water was added and the precipitated crystals were collected by filtration to give the title compound (502 mg, yield 89%).
[1703]
1
H-NMR (300 MHz, CDCl3): 4.89(1H, d, J=1.5 Hz), 7.98(1H, dd, J=8.6 Hz, 1.6 Hz), 7.72(1H, d, J=2.2 Hz), 7.75−7.65(2H, m), 7.49(1H, t, J=8.3 Hz), 7.45−7.20(5H, m), 6.85−7.65(2H, m), 4.99(2H, s), 4.10−3.85(6m), 2.66(2H, t, J=7.8 Hz), 2.30−2.15(4H, m), 2.00−1.85(4H, m), 1.80−1.70(1H, m), 1.45−1.20(3H, m)
EXAMPLE 340
[1704] Production of 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride
[1705] Methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate (200 mg) obtained in Example 339 was treated in the same manner as in Example 2 to give the title compound (182 mg, yield 87%).
[1706] Ms:638(M+1)
[1707]
1
H-NMR (300 MHz, CDCl3): 8.28(1H, d, J=1.3 Hz), 8.10(1H, d, J=8.7 Hz), 8.05−7.90(2H, m), 7.77(1H, dd, J=8.4 Hz, 2.2 Hz), 7.61(1H, t, J=8.5 Hz), 7.55−7.35(5H, m), 7.00-7.20(2H, m), 5.09(2H, s), 4.06(1H, m), 3.90(2H, t, J=6.9 Hz), 2.60−2.45(2H, m), 2.30−2.00(4H, m), 1.95−1.75(4H, m), 1.70−1.55(1H, m), 1.45−1.15(3H, m)
EXAMPLE 340-2
[1708] Step 1: Production of 4′-chloro-4-nitro-biphenyl-2-carbaldehyde
[1709] To a solution of 2-chloro-5-nitrobenzaldehyde (100 g) in 1,2-dimethoxyethane (1000 ml) were added 4-chlorophenylboronic acid (93 g), bistriphenylphosphine palladium(II) dichloride (380 mg), sodium hydrogencarbonate (68 g) and water (500 ml), and the mixture was refluxed for 1 hr. The reaction mixture was cooled to 50° C., ethyl acetate (1000 ml) was added thereto and the mixture was stirred. The aqueous layer was separated and the organic layer was washed with water (500 ml), 1N aqueous sodium hydroxide solution (500 ml), water (500 ml), 28% aqueous ammonia (500 ml), water (500 ml), 2N hydrochloric acid (500 ml) and saturated brine (500 ml), dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was suspended in diisopropyl ether (500 ml), filtrated and vacuum dried to give the title compound (120 g, yield 85%).
[1710]
1
H-NMR (300 MHz, DMSO-d6): 9.92(1H, s), 8.61 (1H, d, J=2.5 Hz), 8.53(1H, dd, J=2.6 Hz, 8.5 Hz), 7.82(1H, d, J=8.5 Hz), 7.64(2H, d, J=8.7 Hz), 7.59(2H, d, J=8.7 Hz)
[1711] Step 2: Production of (4′-chloro-4-nitro-biphenyl-2-yl)methanol
[1712] A solution of 4′-chloro-4-nitro-biphenyl-2-carbaldehyde (120 g) obtained in the previous step in tetrahydrofuran (900 ml) was added dropwise to a suspension of sodium borohydride (47 g) in 2propanol (600 ml), over 70 min under water-cooling. The reaction mixture was stirred at room temperature for 1 hr, and 2N hydrochloric acid (185 ml) was dropwise added thereto over 40 min under water-cooling. The mixture was stirred at room temperature for 30 min and concentrated under reduced pressure. The residue was suspended in 2-propanol (300 ml), and water (1000 ml) was added with stirring. After stirring the mixture for 30 min, the crystals were collected by filtration and vacuum dried to give the title compound (116 g, yield 96%).
[1713]
1
H-NMR (300MHz, DMSO-d6): 8.43(1H, d, J=2.5 Hz), 8.19(1H, dd, J=2.6 Hz, 8.4 Hz), 7.57(2H, d, J=8.5 Hz), 7.52(1H, d, J=8.4 Hz), 7.47(2H, d, J=8.6 Hz), 5.59(1H, brs), 4.48(2H, s)
[1714] Step 3: Production of (4-amino-4′-chloro-biphenyl-2-yl)methanol
[1715] To a suspension of (4′-chloro-4-nitro-biphenyl-2-yl)methanol (1.0 g) obtained in the previous step and sodium hydrosulfite (2.0 g) in N,N-dimethylformamide (4 ml) and methanol (1 ml) was added water (0.3 ml, 50 μl each time in 6 portions) every 20 min at 100° C. Water (5 ml) was added threto at room temperature. Conc. hydrochloric acid (2.5 ml) was added threto at room temperature. The mixture was stirred at 55° C. for 2.5 hr, and a solution of sodium hydroxide (1.2 g) in water (3 ml) was added under ice-cooling. Water (5 ml) was added and the mixture was stirred at room temperature for 1 hr. The precipitate was filtrated and washed with water (3 ml). The crystals were vacuum dried to give the title compound (700 mg, yield 79%).
[1716]
1
H-NMR (400 MHz, DMSO-d6): 7.39(2H, d, J=8.5 Hz), 7.35(2H, d, J=8.5 Hz), 6.90(1H, d, J=8.4 Hz), 6.82(1H, s), 6.56(1H, d, J=8.4 Hz), 5.20(2H, brs), 5.04(1H, t, J=5.4 Hz), 4.29(2H, d, J=5.4 Hz)
[1717] Step 4: Production of 4-chloro-N-(4′-chloro-2-hydroxymethyl-biphenyl-4-yl)butyramide
[1718] To a solution of (4-amino-4′-chloro-biphenyl-2-yl)-methanol (1.0 g) obtained in the previous step in tetrahydrofuran (10 ml) were added sodium acetate (390 mg) and acetic acid (0.27 ml) at room temperature.
[1719] 4-Chlorobutyryl chloride (0.48 ml) was gradually added dropwise under ice-cooling. After stirring the mixture at room temperature for 30 min, water (20 ml) and ethyl acetate (20 ml) were added to the reaction mixture and the organic layer was separated. The organic layer was washed with saturated aqueous sodium hydrogencarbonate (20 ml) and saturated brine (20 ml). The organic layer was dried over sodium sulfate, filtrated and the solvent was evaporated to give the title compound (1.44 g, yield 99%).
[1720]
1
H-NMR (300 MHz, CDCl3): 7.68(1H, s), 7.55(1H, d, J=8.4 Hz), 7.39(2H, d, J=8.5 Hz), 7.28(2H, d, J=8.5 Hz), 7.22(1H, d, J=8.3 Hz), 4.58(2H, s), 3.69(2H, t, J=6.1 Hz), 2.60(2H, t, J=7.0 Hz), 2.22(2H, m)
[1721] Step 5: Production of 1-(4′-chloro-2-hydroxymethyl-biphenyl-4yl)-2-pyrrolidinone
[1722] To a solution of 4-chloro-N-(4′-chloro-2-hydroxymethylbiphenyl-4-yl)butyramide (1.44 g) obtained in the previous step in N,N-dimethylformamide (15 ml) was added potassium carbonate (710 mg) at room temperature. After stirring the mixture at 100° C. for 90 min, 1N hydrochloric acid (5 ml) and water (20 ml) were added at room temperature and the precipitated crystals were collected by filtration and washed with water (5 ml). The crystals were vacuum dried to give the title compound (970 mg, yield 76%).
[1723]
1
H-NMR (300 MHz, CDCl3): 7.76(1H, d, J=2.3 Hz), 7.62(1H, dd, J=2.4 Hz, 8.3 Hz), 7.38(2H, d, J=8.5 Hz), 7.29(2H, d, J=8.5 Hz), 7.25(1H, d, J=8.3 Hz), 4.61(2H, s), 3.91(2H, t, J=7.0 Hz), 2.62(2H, t, J=7.8 Hz), 2.18(2H, m)
[1724] Step 6: Production of 1-(4′-chloro-2-chloromethyl-biphenyl-4-yl)2-pyrrolidinone
[1725] To a mixed solution of 1-(4′-chloro-2-hydroxymethyl-biphenyl-4-yl)-2-pyrrolidinone (900 mg) obtained in the previous step in N,N-dimethylformamide (2 ml) and toluene (7 ml) was dropwise added thionyl chloride (0.26 ml) under ice-cooling. After stirring the mixture at room temperature for 3 hr, the reaction mixture was diluted with ethyl acetate (20 ml) and washed with water (20 ml), saturated aqueous sodium hydrogencarbonate (20 ml) and saturated brine (20 ml). The organic layer was dried over sodium sulfate, filtrated and the solvent was evaporated under reduced pressure to give the title compound (954 mg, yield 99%).
[1726]
1
H-NMR (300 MHz, CDCl3): 7.77(1H, d, J=2.3 Hz), 7.69(1H, dd, J=2.4 Hz, 8.5 Hz),7.42(2H, d, J=8.6 Hz), 7.34(2H, d, J=8.6 Hz), 7.26(1H, d, J=8.4 Hz), 4.50(2H, s), 3.92(2H, t, J=7.0 Hz), 2.65(2H, t, J=7.8 Hz), 2.20(2H, m)
[1727] Step 7: Production of methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}cyclohexylbenzimidazole-5-carboxylate
[1728] To a suspension of methyl 1-cyclohexyl-2-(2-fluoro-4-hydroxyphenyl)benzimidazole-5-carboxylate (915 mg) obtained in Example 18 in N,N-dimethylformamide (6 ml) was added 1-(4′-chloro-2-chloromethyl-biphenyl-4-yl)-2-pyrrolidinone (954 mg) obtained in the previous step and potassium carbonate (415 mg) at room temperature. After stirring the mixture at 100° C. for 1 hr, 1N hydrochloric acid (3 ml) and water (8 ml) were added at room temperature and the precipitated crystals were collected by filtration and washed with water (5 ml). The crystals were vacuum dried to give the title compound (1.6 g, yield 100%).
[1729]
1
H-NMR (300 MHz, CDCl3): 8.49(1H, d, J=1.5 Hz), 7.98(1H, dd, J=1.6 Hz, 8.6 Hz), 7.90(1H, d, J=2.2 Hz), 7.72−7.65(2H, m), 7.49(1H, t, J=8.3 Hz), 7.40(2H, d, J=8.5 Hz), 7.34(1H, d, J=8.7 Hz), 7.31(2H, d, J=8.6 Hz), 6.80 (1H, d, J=8.6 Hz), 6.71(1H, d, J=11.6 Hz), 4.99(2H, s), 4.04(1H, m), 3.95(3H, s), 3.93(2H, t, J=7.1 Hz), 2.66(2H, t, J=7.8 Hz), 2.30−2.15(4H, m), 2.00−1.85(4H, m), 1.80−1.70(1H, m), 1.45−1.20(3H, m)
[1730] Step 8: Production of 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid
[1731] Methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5carboxylate (2.0 g) obtained in the previous step was suspended in methanol (4.0 ml) and tetrahydrofuran (8.0 ml), and 2N aqueous sodium hydroxide solution (2.3 ml) was added. The mixture was heated under reflux for 3 hr. The reaction mixture was allowed to cool and tetrahydrofuran (1.0 ml) and water (5.0 ml) were added. 2N Hydrochloric acid (2.3 ml) was gradually added at room temperature. After stirring the mixture at room temperature for 2 hr, the precipitated crystals were collected by filtration and washed successively with methanol-water (1:1) mixed solution (6.0 ml), water (6.0 ml) and methanol-water (1:1) mixed solution (6.0 ml), and vacuum dried to give the title compound (1.84 g, yield 94%).
[1732]
1
H-NMR (300 MHz, DMSO-d6): 12.75(1H, brs), 8.26(1H, s), 7.99(1H, s), 7.96(1H, d, J=9.0 Hz), 7.89(1H, d, J=9.0 Hz), 7.78(1H, dd, J=2.1 Hz, 8.4 Hz), 7.54(1H, t, J=9.0 Hz), 7.49(2H, d, J=8.7 Hz), 7.45(2H, d, J=8.4 Hz), 7.38(1H, d, J=8.4 Hz), 7.08(1H, dd, J=2.1 Hz, 12.0 Hz), 6.96(1H, dd, J=2.1 Hz, 8.7 Hz), 5.09(2H, s), 3.99(1H, m), 3.91(2H, t, J=6.6 Hz), 2.54(2H, t, J=7.8 Hz), 2.30−2.00(4H, m), 1.95−1.50(5H, m), 1.45−1.20(3H, m)
[1733] Step 9: Production of 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidine-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride To 4N hydrochloric acid (50 ml) were successively added 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzoyl}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid (10.0 g) obtained in the previous step and acetone-methyl ethyl ketone (3:2) mixed solution (20 ml). The mixture was stirfed at 60° C. for 3 hr and at room temperature for 1 hr. The crystals were collected by filtration, washed twice with acetone (10 ml) and vacuum dried to give the title compound (9.62 g, yield 91%).
[1734] melting point: 243-246° C.
[1735] Ms: 638(M+1)
[1736]
1
H-NMR (300 MHz, DMSO-d6): 8.33(1H, d, J=1.1 Hz), 8.21(1H, d, J=8.8 Hz), 8.02(1H, d, J=8.8 Hz), 8.00(1H, d, J=2.2 Hz), 7.77(1H, dd, J=2.2 Hz, 8.4 Hz), 7.68(1H, t, J=8.4 Hz), 7.50(2H, d, J=8.4 Hz), 7.45(2H, d, J=8.4 Hz), 7.39(1H, d, J=8.4 Hz), 7.20(1H, dd, J=2.2 Hz, 12.1 Hz), 7.06(1H, dd, J=2.2 Hz, 8.8 Hz), 5.11(2H, s), 4.13(1H, m), 3.91(2H, t, J=7.0 Hz), 2.54(2H, t, J=8.1 Hz), 2.40−2.05(4H, m), 2.00−1.75(4H, m), 1.70−1.55(1H, m), 1.50−1.20(3H, m)
[1737] In the same manner as in Examples 1-30, 241-248 and 336-340 and optionally using other conventional methods, where necessary, the compounds of Examples 31-240, 249-335, 341-471, 701-703 and 1001-1559 were obtained. The chemical structures and properties are shown in Table 1 to 177, 185 to 212, 219 to 221 and 225 to 269.
EXAMPLE 501
[1738] Production of methyl 2-{4-[2-(4-chlorophenyl)-5methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate
[1739] Step 1: Production of methyl 3-bromo-4-cyclohexylaminobenzoate
[1740] 3-Bromo-4-fluorobenzoic acid (2.0 g) was dissolved in methanol (20 ml) and concentrated sulfuric acid (2 ml) was added. The mixture was refluxed for 3 hr. The reaction mixture was poured into ice-cold water and extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure. The residue was dissolved in dimethyl sulfoxide (20 ml) and cyclohexylamine (10.3 ml) was added. The mixture was stirred overnight at 120° C. The reaction mixture was poured into 10% aqueous citric acid solution (100 ml) and extracted with ethyl acetate (100 ml). The organic layer was washed with water (50 ml) and saturated brine (50 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=10:1) to give the title compound (2.6 g, yield 92%).
[1741]
1
H-NMR (300 MHz, CDCl3): 8.10(1H, d, J=1.9 Hz), 7.83(1H, dd, J=1.9 Hz, 8.6 Hz), 6.59(1H, d, J=8.7 Hz), 4.73(1H, brd, J=7.3 Hz), 3.85(3H, s), 3.38(1H, m), 2.10−2.00(2H, m), 1.90−1.20(8H, m)
[1742] Step 2: Production of 4′-chloro-2-(4-iodophenoxymethyl)-4methoxybiphenyl
[1743] 4-Iodophenol (5.0 g) was dissolved in acetone (50 ml), and potassium carbonate (4.7 g) and 4′-chloro-2-chloromethyl-4methoxybiphenyl (6.0 g) were added. The mixture was refluxed for 10 hr. The reaction mixture was concentrated and 4N aqueous sodium hydroxide solution (50 ml) was added. The precipitated crystals were collected by filtration, washed with water, and dried under reduced pressure to give the title compound (10.0 g, yield 98%).
[1744]
1
H-NMR (300 MHz, CDCl3): 7.52(2H, d, J=8.9 Hz), 7.35(2H, d, J=8.5 Hz), 7.27−7.20(3H, m), 7.12(1H, s), 6.95(1H, d, J=8.5 Hz), 6.62(2H, d, J=8.9 Hz), 4.84(2H, s), 3.85(3H, s)
[1745] Step 3: Production of [4-(4′-chloro-4-methoxybiphenyl-2ylmethoxy)phenylethynyl]trimethylsilane
[1746] 4′-Chloro-2-(4-iodophenoxymethyl)-4-methoxybiphenyl (7.0 g) obtained in the previous step was dissolved in acetonitrile (50 ml), and trimethylsilylacetylene (2.3 g), tetrakis(triphenylphosphine)palladium complex (1.8 g), copper(I) iodide (0.6 g) and triethylamine (50 ml) were added. The mixture was stirred overnight at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=10:1) to give the title compound (5.1 g, yield 79%).
[1747]
1
H-NMR (300 MHz, CDCl3): 7.37(2H, d, J=8.9 Hz), 7.34(2H, d, J=8.2 Hz), 7.28−7.21(3H, m), 7.13(1H, s), 6.94(1H, d, J=8.2 Hz), 6.75(2H, d, J=8.9 Hz), 4.87(2H, s), 3.85(3H, s), 0.23(9H, s) Step 4: Production of methyl 3-[4-(4′-chloro-4-methoxybiphenyl-2ylmethoxy)phenylethynyl]-4-cyclohexlaminobenzoate
[1748] [4-(4′-Chloro-4-methoxybiphenyl-2-ylmethoxy)phenylethynyl]-trimethylsilane (5.1 g) obtained in the previous step was dissolved in methanol (50 ml) and chloroform (50 ml), and potassium carbonate (2.5 g) was added. The mixture was stirred for 3 hr at room temperature and concentrated. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml) and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure to give white crystals (3.8 g). The white crystals (2.3 g) were dissolved in acetonitrile (10 ml), and methyl 3-bromo-4-cyclohexylaminobenzoate (1.0 g) obtained in Step 1, tetrakis(triphenyl-phosphine)palladium complex (0.4 g), copper(I) iodide (0.1 g) and triethylamine (10 ml) were added. The mixture was stirred overnight at 100° C. and concentrated under reduced pressure. Water (30 ml) was added and the mixture was extracted with ethyl acetate (50 ml). The organic layer was washed with water (30 ml) and saturated brine (30 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=8:1) to give the title compound (0.9 g, yield 49%).
[1749]
1
H-NMR (300 MHz, CDCl3): 8.03(1H, s), 7.84(1H, d, J=8.7 Hz), 7.42−7.22(7H, m), 7.15(1H, s), 6.95(1H, d, J=8.2 Hz), 6.85(2H, d, J=8.8 Hz), 6.59(1H, d, J=8.8 Hz), 5.07(1H, brs), 4.91(2H, s), 3.86(3H, s), 3.85(3H, s), 3.42(1H, m), 2.15−2.00(2H, m), 1.80−1.20(8H, m)
[1750] Step 5: Production of methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate
[1751] Methyl 3-[4-(4′-chloro-4-methoxybiphenyl-2-ylmethoxy)phenyl-ethynyl]-4-cyclohexylaminobenzoate (0.5 g) obtained in the previous step was dissolved in N,N-dimethylformamide (5 ml), and copper(I) iodide (0.17 g) was added. The mixture was refluxed for 3 hr at 180° C. The insoluble materials were removed by filtration. Water (10 ml) was added and the mixture was extracted with ethyl acetate (30 ml). The organic layer was washed with water (10 ml) and saturated brine (10 ml), and dried over sodium sulfate. After filtration, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=8:1) to give the title compound (0.27 g, yield 55%).
[1752]
1
H-NMR (300 MHz, CDCl3): 8.34(1H, s), 7.85(1H, d, J=8.8 Hz), 7.62(1H, d, J=8.8 Hz), 7.40−7.18(8H, m), 7.00−6.94(3H, m), 6.48(1H, s), 4.95(2H, m), 4.18(1H, m), 3.93(3H, s), 3.88(3H, s), 2.45−2.25(2H, m), 1.95−1.20(8H, m)
EXAMPLE 502
[1753] Production of 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate acid
[1754] Methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate (0.27 g) obtained in Example 501 was treated in the same manner as in Example 2 to give the title compound (0.19 g, yield 71%).
[1755] APCI-Ms: 566(MH+)
[1756]
1
H-NMR (300 MHz, DMSO-d6): 12.43(1H, brs), 8.20(1H, s), 7.79(1H, d, J=9.3 Hz), 7.72(1H, d, J=9.0 Hz), 7.50−7.20(8H, m), 7.07−7.03(3H, m), 6.53(1H, s), 5.01(2H, s), 4.13(1H, m), 3.83(3H, m), 2.35−2.25(2H, m), 1.85−1.10(8H, m)
[1757] In the same manner as in Examples 501 and 502, and optionally using other conventional methods where necessary, the compound of Example 503 was obtained. The chemical structure and properties are shown in Table 207.
EXAMPLE 601
[1758] Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo-[1,2-a]pyridine-7-carboxylate
[1759] Step 1: Production of 4-benzyloxy-N-methoxy-N-methylbenzamide
[1760] 4-Benzyloxybenzoic acid (5.0 g) and N,O-dimethyl-hydroxylamine hydrochloride (2.5 g) were suspended in dimethylformamide (50 ml), and 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (5.0 g), 1-hydroxybenzotriazole (3.5 g) and triethylamine (3.6 ml) were added. The mixture was stirred overnight at room temperature. Water was added to the reaction mixture and the mixture was extracted with ethyl acetate. The organic layer was washed successively with water, saturated aqueous sodium hydrogencarbonate, water and saturated brine, and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure to give the title compound (5.6 g, yield 94%).
[1761]
1
H-NMR (300 MHz, CDCl3): 7.22, 2H, d, J=8.8 Hz), 7.28-7.46(5H, m), 6.97(2H, d, J=8.8 Hz), 5.10(2H, s), 3.56(3H, s), 3.35(3H, s)
[1762] Step 2: Production of 1-(4-benzyloxyphenyl)-2-cyclohexylethanone
[1763] Magnesium (470 mg) was suspended in tetrahydrofuran (2 ml) and cyclohexylmethyl bromide (3.4 g) was added dropwise at room temperature. After the addition, the reaction mixture was stirred for 30 min at 60° C. The reaction mixture was allowed to cool and diluted with tetrahydrofuran (5 ml). Separately, 4-benzyloxy-N-methoxy-N-methylbenzamide (3.4 g) obtained in the previous step was dissolved in tetrahydrofuran (10 ml) and the solution was added dropwise to the reaction mixture at room temperature. The mixture was stirred for 2 hr and saturated aqueous ammonium chloride solution was added to the reaction mixture. The mixture was extracted with diethyl ether. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=9:1) to give the title compound (3.8 g, yield 66%).
[1764]
1
H-NMR (300 MHz, CDCl3): 7.93(2H, d, J=8.8 Hz), 7.28-7.46(5H, m), 7.00(2H, d, J=8.8 Hz), 5.13(2H, s), 2.76(2H, d, J=6.8 Hz), 1.95(1H, m), 0.78-1.82(10H, m)
[1765] Step 3: Production of 1-(4-benzyloxyphenyl)-2-bromo-2cyclohexylethanone
[1766] 1-(4-Benzyloxyphenyl)-2-cyclohexylethanone (1.0 g) obtained in the previous step was dissolved in 1,4-dioxane (10 ml) and bromine (0.17 ml) was added. The mixture was stirred for 10 min at room temperature. Saturated aqueous sodium hydrogencarbonate was added to the reaction mixture and the mixture was extracted with diethyl ether. The organic layer was washed with water and saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=9:1) to give the title compound (696 mg, yield 55%).
[1767]
1
H-NMR (300 MHz, CDCl3): 7.98(2H, d, J=8.9 Hz), 7.28-7.48(5H, m), 7.02(2H, d, J=8.9 Hz), 5.14(2H, s), 4.89(1H, d, J=9.3 Hz), 0.86-3.30(11H, m)
[1768] Step 4: Production of ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate
[1769] Ethyl 2-aminopyridine-4-carboxylate (214 mg) prepared according to JP-A-8-48651, 1-(4-benzyloxyphenyl)-2-bromo-2cyclohexylethanone (500 mg) obtained in the previous step and potassium carbonate (356 mg) were stirred for 5 hr with heating at 140° C. The reaction mixture was allowed to cool and chloroform was added. The insoluble materials were filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (developing solvent, n-hexane:ethyl acetate=1:1) to give the title compound (95 mg, yield 16%).
[1770] APCI-MS: 455(MH+)
[1771]
1
H-NMR (300 MHz, CDCl3): 8.33(1H, s), 8.21(1H, d, J=7.5 Hz), 7.55(2H, d, J=8.7 Hz), 7.25-7.50(6H, m), 5.13(2H, s), 4.41(2H, q, J=7.1 Hz), 3.25(1H, m), 1.41(3H, t, J=7.1 Hz), 1.15-2.00(10H, m)
EXAMPLE 602
[1772] Production of 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid
[1773] Ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate (95 mg) obtained in the previous step was treated in the same manner as in Example 2 to give the title compound (33 mg, 37%).
[1774] APCI-MS: 427(MH+)
[1775]
1
H-NMR (300 MHz, DMSO-d6): 8.67(1H, d, J=7.3 Hz), 8.08(1H, s), 7.25-7.58(8H, m), 7.13(2H, d, J=8.7 Hz), 5.17(2H, s), 3.23(1H, m), 1.25-2.10(10H, m)
[1776] The compounds shown in Tables 213 to 218 can be further obtained in the same manner as in Examples 1 to 703 or by other conventional method employed as necessary.
[1777] The evaluation of the HCV polymerase inhibitory activity of the compound of the present invention is explained in the following. This polymerase is an enzyme coded for by the non-structural protein region called NS5B on the RNA gene of HCV (EMBO J., 15:12-22, 1996).
EXPERIMENTAL EXAMPLE [I]
[1778] i) Preparation of Enzyme (HCV Polymerase)
[1779] Using, as a template, a cDNA clone corresponding to the full length RNA gene of HCV BK strain obtained from the blood of a patient with hepatitis C, a region encoding NS5B (591 amino acids; J Virol 1991 Mar, 65(3), 1105-13) was amplified by PCR. The objective gene was prepared by adding a 6 His tag {base pair encoding 6 continuous histidine (His)} to the 5′ end thereof and transformed to Escherichia coli. The Escherichia coli capable of producing the objective protein was cultured. The obtained cells were suspended in a buffer solution containing a surfactant and crushed in a microfluidizer. The supernatant was obtained by centrifugation and applied to various column chromatographys {poly[U]-Sepharose, Sephacryl S-200, mono-S (Pharmacia)}, inclusive of metal chelate chromatography, to give a standard enzyme product.
[1780] ii) Synthesis of Substrate RNA
[1781] Using a synthetic primer designed based on the sequence of HCV genomic 3′ untranslated region, a DNA fragment (148 bp) containing polyU and 3′X sequence was entirely synthesized and cloned into plasmid pBluescript SK II(+) (Stratagene). The cDNA encoding full length NS5B, which was prepared in i) above, was digested with restriction enzyme KpnI to give a cDNA fragment containing the nucleotide sequence of from the restriction enzyme cleavage site to the termination codon. This cDNA fragment was inserted into the upstream of 3′ untranslated region of the DNA in pBluescript SK II(+) and ligated. The about 450 bp inserted DNA sequence was used as a template in the preparation of substrate RNA. This plasmid was cleaved immediately after the 3′X sequence, linearized and purified by phenol-chloroform treatment and ethanol precipitation to give DNA.
[1782] RNA was synthesized (37° C., 3 hr) by run-off method using this purified DNA as a template, a promoter of pBluescript SK II(+), MEGAscript RNA synthesis kit (Ambion) and T7 RNA polymerase. DNaseI was added and the mixture was incubated for 1 hr. The template DNA was removed by decomposition to give a crude RNA product. This product was treated with phenol-chloroform and purified by ethanol precipitation to give the objective substrate RNA.
[1783] This RNA was applied to formaldehyde denaturation agarose gel electrophoresis to confirm the quality thereof and preserved at −80° C.
[1784] iii) Assay of Enzyme (HCV Polymerase) Inhibitory Activity
[1785] A test substance (compound of the present invention) and a reaction mixture (30 μl) having the following composition were reacted at 25° C. for 90 min.
[1786] 10% Trichloroacetic acid at 4° C. and 1% sodium pyrophosphate solution (150 μl) were added to this reaction mixture to stop the reaction. The reaction mixture was left standing in ice for 15 min to insolubilize RNA. This RNA was trapped on a glass filter (Whatman GF/C and the like) upon filtration by suction. This filter was washed with a solution containing 1% trichloroacetic acid and 0.1% sodium pyrophosphate, washed with 90% ethanol and dried. A liquid scintillation cocktail (Packard) was added and the radioactivity of RNA synthesized by the enzyme reaction was measured on a liquid scintillation counter.
[1787] The HCV polymerase inhibitory activity (IC50) of the compound of the present invention was calculated from the values of radioactivity of the enzyme reaction with and without the test substance.
[1788] The results are shown in Tables 178-184 and 222-224.
[1789] Reaction mixture: HCV polymerase (5 μg/ml) obtained in i), substrate RNA (10 μg/ml) obtained in ii), ATP (50 μM), GTP (50 μM), CTP (50 μM), UTP (2 μM), [5,6-3H]UTP (46 Ci/mmol (Amersham), 1.5 μCi) 20 mM Tris-HCl (pH 7.5), EDTA (1 MM), MgCl2 (5 mM), NaCl (50 mM), DTT (1 mM), BSA (0.01%)
[1790] Formulation Example is given in the following. This example is merely for the purpose of exemplification and does not limit the invention.
[1791] Formulation Example
1|
|
(a) compound of Example 110 g
(b) lactose50 g
(c) corn starch15 g
(d) sodium carboxymethylcellulose44 g
(e) magnesium stearate 1 g
|
[1792] The entire amounts of (a), (b) and (c) and 30 g of (d) are kneaded with water, dried in vacuo and granulated. The obtained granules are mixed with 14 g of (d) and 1 g of (e) and processed into tablets with a tableting machine to give 1000 tablets each containing 10 mg of (a).
2TABLE 1
|
|
Example No.311H NMR(δ) ppm
|
75300MHz, CDCl3 7.81(2H, d, J=6.6Hz), 7.60(2H, d, J=8.8Hz), 7.51-7.21(8H, m), 7.11(2H, d, J=8.8Hz), 5.15(2H, s), 4.93(1H, quint, J=8.8Hz), 2.36-2.32(2H, m), 2.09-2.04(3H, m), 1.75-1.68(3H, m).
Purity>90% (NMR)
MS369(M + 1)
Example No.321H NMR(δ) ppm
|
76300MHz, CDCl3 8.51(1H, d, J=1.5Hz), 7.98(1H, d, J=8.4Hz), 7.61(2H, d, J=8.7Hz), 7.56-7.10(6H, m), 7.12(2H, d, J=8.7Hz), 5.15(2H, s), 4.94(1H, quint, J=9.3Hz), 4.41(2H, q, J=7.5Hz), 2.40-1.50(8H, m), 1.41(3H, t, J=7.5Hz)
Purity>90% (NMR)
MS441(M + 1)
Example No.331H NMR(δ) ppm
|
77300MHz, CDCl3 7.84(1H, s), 7.61(2H, d, J=9.0Hz), 7.58-7.30(7H, m), 7.12(2H, d, J=9.0Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7Hz), 3.10(6H, brs), 2.40-1.50(8H, m)
Purity>90% (NMR)
MS440(M + 1)
|
[1793]
3
TABLE 2
|
|
|
Example No.
34
1H NMR(δ) ppm
|
|
78
300MHz, CDCl3 8.20(1H, s), 7.50-7.31(9H, m), 7.12(2H, d, J=8.7Hz), 5.15(2H, s), 4.94(1H, quint, J=8.7Hz), 3.61(3H, s), 3.40(3H, s), 2.41-1.42(8H, m)
|
Purity
>90% (NMR)
|
MS
456(M + 1)
|
Example No.
35
1H NMR(δ) ppm
|
|
79
300MHz, CDCl3 7.91(1H. s), 7.59(2H, d, J=8.7Hz), 7.49-7.30(7H, m), 7.11(2H, d, J=8.8Hz), 5.15(2H, s), 4.19(1H, quint, J=8.8Hz), 2.41-2.22(2H, m), 2.13-1.49(14H, m)
|
Purity
>90% (NMR)
|
MS
427(M + 1)
|
Example No.
36
1H NMR(δ) ppm
|
|
80
300MHz, CDCl3 8.40(1H, d, J=1.4Hz), 7.95(1H, dd, J=8.6, 1.4Hz), 7.61(2H, d, J=8.7Hz), 7.57-7.30(6H, m), 7.13(2H, d, J=8.7Hz), 5.16(2H, s), 4.95(1H, quint, J=8.8Hz), 2.64(3H, s), 2.40-1.54(8H, m)
|
Purity
>90% (NMR)
|
MS
411(M + 1)
|
|
[1794]
4
TABLE 3
|
|
|
Example No.
37
1H NMR(δ) ppm
|
|
81
300MHz, DMSO-d6 10.47(1H, brs,), 9.15(1H, brs), 8.40(1H, s), 8.07(1H, d, J=9.0Hz), 7.93(1H, d, J=8.7Hz), 7.77(2H, d, J=8.7Hz), 7.55-7.29(7H, m), 5.26(2H, s), 4.93(1H, quint, J=9.0Hz), 3.77-3.63(2H, m), 3.39-3.23(2H, m), 2.84(6H, d, J=4.8Hz), 2.32-1.60(8H, m)
|
Purity
>90% (NMR)
|
MS
483(M + 1)
|
Example No.
38
1H NMR(δ) ppm
|
|
82
300MHz, CDCl3 8.69(1H, s), 8.19(1H, d, J=9.0Hz), 7.62(2H, d, J=8.7Hz), 7.54(1H, d, J=9.0Hz), 7.48-7.36(5H, m), 7.15(2H, d, J=8.7Hz), 5.17(2H, s), 4.98(1H, quint, J=9.0Hz), 2.27-2.07(6H, m), 1.82-1.78(2H, m).
|
Purity
>90% (NMR)
|
MS
414(M + 1)
|
Example No.
39
1H NMR(δ) ppm
|
|
83
300MHz, DMSO-d6 7.84(1H, d, J=9.0Hz), 7.79(2H, d, J=8.7Hz), 7.52-7.33(8H, m), 7.26(1H, d, J=9.0Hz), 5.27(2H, s), 4.92(1H, quint, J=9.3Hz), 2.19-1.70(8H, m).
|
Purity
>90% (NMR)
|
MS
384(M + 1)
|
|
[1795]
5
TABLE 4
|
|
|
Example No.
40
1H NMR(δ) ppm
|
|
84
300MHz, CDCl3 7.72(1H, s), 7.60-7.35(10H, m), 7.10(2H, d, J=8.7Hz), 5.14(2H, s), 4.90(1H, quint, J=8.8Hz), 2.29-2.19(2H, m), 2.19(3H, s), 2.19-1.74(6H, m).
|
Purity
>90% (NMR)
|
MS
426(M + 1)
|
Example No.
41
1H NMR(δ) ppm
|
|
85
300MHz, CDCl3 7.66(1H, s), 7.61(2H, d, J=8.8Hz), 7.50-7.28(7H, m), 7.12(2H, d, J=8.8Hz), 6.86(1H, brs), 5.15(2H, s), 4.94(1H, quint, J=8.8Hz), 2.97(3H, s), 2.29-1.76(8H, m).
|
Purity
>90% (NMR)
|
MS
462(M + 1)
|
Example No.
42
1H NMR(δ) ppm
|
|
86
300MHz, DMSO-d6 8.11(1H, s), 7.81(1H, d, J=8.4Hz), 7.72(1H, d, J=8.4Hz), 7.65(2H, d, J=8.4Hz), 7.51(2H, m), 7.43(2H, m), 7.37(1H, m), 7.29(2H, s), 7.23(2H, d, J=8.4Hz), 5.22(2H, s), 4.89(1H, quintet, J=9.2Hz), 2.2-2.0(6H, m), 1.7(2H, m).
|
Purity
>90% (NMR)
|
MS
448(M+)
|
|
[1796]
6
TABLE 5
|
|
|
Example No.
43
1H NMR(δ) ppm
|
|
87
300MHz, DMSO-d6 8.33(1H, 5), 8.08(1H, d, J=9.0Hz), 7.99(1H, d, J=9.0Hz), 7.47-7.41(4H, m), 7.33(2H, d, J=8.4Hz), 5.22(2H, s), 4.96(1H, quint, J=9.0Hz), 2.25-1.60(8H, m), 1.30(9H, s).
|
Purity
>90% (NMR)
|
MS
469(M + 1)
|
Example No.
44
1H NMR(δ) ppm
|
|
88
300MHz, DMSO-d6 12.9(2H, brs), 8.25(1H, s), 8.00(2H, d, J=7.8Hz), 7.90(1H, d, J=8.4Hz), 7.74(1H, d, J=8.7Hz), 7.67(2H, d, J=9.0Hz), 7.62(2H, d, J=8.1Hz), 7.24(2H, d, J=8.4Hz), 5.32(2H, s), 4.88(1H, quint, J=9.0Hz, 2.25-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
457(M + 1)
|
Example No.
45
1H NMR(δ) ppm
|
|
89
300MHz, DMSO-d6 13.4(1H, brs), 8.32(1H, s), 8.06(1H, d, J=8.7Hz), 7.97(1H, d, J=8.7Hz), 7.79(2H, d, J=8.8Hz), 7.56-7.48(4H, m), 7.33(2H, d, J=8.8Hz), 5.27(2H, s), 4.95(1H, quint, J=8.9Hz), 2.30-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
447(M + 1)
|
|
[1797]
7
TABLE 6
|
|
|
Example No.
46
1H NMR(δ) ppm
|
|
90
300MHz, DMSO-d6 8.33(1H, s), 8.07(1H, d, J=8.7Hz), 7.98(1H, d, J=8.7Hz), 7.80(2H, d, J=8.4Hz), 7.34(2H, d, 8.4Hz), 7.19(1H, d, J=3.6Hz), 7.09(1H, d, J=3.6Hz), 5.41(2H, s), 4.95(1H, quint, J=8.7Hz), 2.30-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
453(M + 1)
|
Example No.
47
1H NMR(δ) ppm
|
|
91
300MHz, DMSO-d6 8.33(1H, s), 8.07(1H, d, J=8.4Hz), 7.98(1H, d, J=9.0Hz), 7.82-7.72(6H, m), 7.35(2H, d, J=9.0Hz), 5.40(2H, s), 4.95(1H, quint, J=8.7Hz), 2.35-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
481(M + 1)
|
Example No.
48
1H NMR(δ) ppm
|
|
92
300MHz, DMSO-d6 8.23(1H, s), 7.88(1H, d, J=8.4Hz), 7.70(1H, d, J=8.4Hz), 7.64(2H, d, J=8.4Hz), 7.43(2H, d, J=8.4Hz), 7.20(2H, d, J=8.4Hz), 6.98(2H, d, J=8.4Hz), 5.13(2H, s), 4.88(1H, quint, J=8.7Hz), 3.77(3H, s), 2.35-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
443(M + 1)
|
|
[1798]
8
TABLE 7
|
|
|
Example No.
49
1H NMR(δ) ppm
|
|
93
300MHz, DMSO-d6 8.93(2H, d, J=6.6Hz), 8.35(1H, s), 8.06-8.04(3H, m), 7.97(1H, d, J=8.7Hz), 7.83(2H, d, J=8.7Hz), 7.38(2H, d, J=8.7Hz), 5.61(2H, s), 4.94(1H, quint, J=8.7Hz), 2.40-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
414(M + 1)
|
Example No.
50
1H NMR(δ) ppm
|
|
94
300MHz, DMSO-d6 8.33(1H, s), 8.08(1H, d, J=8.7Hz), 7.99(1H, d, J=9.0Hz), 7.78(2H, d, J=8.4Hz), 7.39(2H, d, J=8.1Hz), 7.32(2H, d, J=8.7Hz), 7.23(2H, d, J=7.8Hz), 5.22(2H, s), 4.96(1H, quint, J=9.0Hz), 2.32(3H, s), 2.30-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
427(M + 1)
|
Example No.
51
1H NMR(δ) ppm
|
|
95
300MHz, DMSO-d6 8.31(1H, s), 8.03(1H, d, J=9.0Hz), 7.93(1H, d, J=9.0Hz), 7.77(2H, d, J=8.4Hz), 7.31(2H, d, J=8.7Hz), 5.07(2H, s), 4.94(1H, quint, J=8.7Hz), 2.45(3H, s), 2.26(3H, s), 2.26-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
432(M + 1)
|
|
[1799]
9
TABLE 8
|
|
|
Example No.
52
1H NMR(δ) ppm
|
|
96
300MHz, DMSO-d6 12.7(1H, brs), 10.0(1H, s), 8.22(1H, s), 7.87(1H, d, J=8.6Hz), 7.69(1H, d, J=8.6Hz), 7.53(2H, d, J=8.6Hz), 6.96(2H, d, J=8.6Hz), 4.89(1H, qiunt, J=9.0Hz), 2.30-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
323(M + 1)
|
Example No.
53
1H NMR(δ) ppm
|
|
97
300MHz, DMSO-d6 9.18(1H, t, J=5.6Hz), 8.34(1H, s), 8.04(1H, d, J=9.6Hz), 7.98(1H, d, J=8.7Hz), 7.80(2H, d, J=8.7Hz), 7.52-7.32(7H, m), 5.27(2H, s), 4.95(1H, quint, J=9.0Hz), 3.99(2H, d, J=5.7Hz), 2.40-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
470(M + 1)
|
Example No.
54
1H NMR(δ) ppm
|
|
98
300MHz, DMSO-d6 8.32(1H, s), 8.05(1H, d, J=8.7Hz), 7.95(1H, d, J=8.7Hz), 7.80(2H, d, J=8.4Hz), 7.67(1H, t, J=4.5Hz), 7.56(1H, t, J=4.5Hz), 7.45-7.42(2H, m), 7.35(2H, d, J=8.4Hz), 5.31(2H, s), 4.96(1H, quint, J=9.0Hz), 2.30-1.60(8H, m).
|
Purity
>90% (NMR)
|
MS
447(M + 1)
|
|
[1800]
10
TABLE 9
|
|
|
Example No.
55
1H NMR(δ) ppm
|
|
99
300MHz, DMSO-d6 12.78(1H, brs), 8.24(1H, s), 7.88 and 7.72(2H, ABq, J=8.6Hz), 7.66 and 7.23(4H, A′B′q, J=8.6Hz), 7.58(1H, s), 7.48-7.42(3H, m), 5.24(1H, s), 4.88(1H, quint, J=8.8Hz), 2.30-1.91(6H, m), 1.78-1.60(2H, m)
|
Purity
>90% (NMR)
|
MS
447(M + 1)
|
Example No.
56
1H NMR(δ) ppm
|
|
100
300MHz, DMSO-d6 12.89(1H, broad), 8.18(1H, s), 7.87(1H, d, J=8.4Hz), 7.74(1H, d, J=9.2Hz), 7.67(2H, d, J=8.8Hz), 7.52(2H, m), 7.45(2H, m), 7.38(1H, m), 7.23(2H, d, J=8.8Hz), 5.22(2H, s), 4.94(1H, quintet, J=8.9Hz), 2.16(4H, m), 1.98(2H, m), 1.73(2H, m).
|
Purity
>90% (NMR)
|
MS
413(M+)
|
Example No.
57
1H NMR(δ) ppm
|
|
101
300MHz, DMSO-d6 10.99(1H, s), 8.26(1H, s), 8.01-7.86(4H, m), 7.69-7.59(5H, m), 7.38(2H, d, J=8.7Hz), 4.86(1H, quint, J=8.7Hz), 2.12-1.90(6H, m), 1.72-1.59(2H, m)
|
Purity
>90% (NMR)
|
MS
462(M + 1)
|
|
[1801]
11
TABLE 10
|
|
|
Example No.
58
1H NMR(δ) ppm
|
|
102
300MHz, DMSO-d6 12.78(1H, s), 10.69(1H, s), 8.26-7.72(9H, m), 4.92(1H, quint, J=9.0Hz), 2.34-1.70(6H, m), 1.75-1.61(2H, m)
|
Purity
>90% (NMR)
|
MS
494(M + 1)
|
Example No.
59
1H NMR(δ) ppm
|
|
103
300MHz, DMSO-d6 10.82(1H, s), 8.34(1H, s), 8.14 and 7.84(4H, ABq, J=8.4Hz), 8.06 and 7.66(4H, A′B′q, J=8.6Hz), 8.06-7.98(4H, m), 5.01(1H, quint, J=9.3Hz), 2.35-2.15(4H, m), 2.11-1.96(2H, m), 1.80-1.62(2H, m)
|
Purity
>90% (NMR)
|
MS
460(M + 1)
|
Example_No.
60
1H NMR(δ) ppm
|
|
104
300MHz, DMSO-d6 10.61(1H, s), 8.32(1H, s), 8.12 and 7.81(4H, ABq, J=8.9Hz), 8.03 and 7.93(2H, A′B′q, J=8.7Hz), 7.95 and 7.59(4H, A″B″q, J=8.4Hz), 4.99(1H, quint, J=9.0Hz), 2.33-2.12(4H, m), 2.10-1.93(2H, m), 1.80-1.63(2H, m), 1.34(9H, m)
|
Purity
>90% (NMR)
|
MS
482(M + 1)
|
|
[1802]
12
TABLE 11
|
|
|
|
Example No.
61
1H NMR (δ) ppm
|
|
105
300 MHz, DMSO-d6 10.6 (1H, s), 8.34(1H, s), 8.13 (2H, d, J=8.7 Hz), 8.09-7.98 (4H, m), 7.82 (2H, d, J=8.7 Hz), 7.50-7.35 (5H, m), 7.20-7.17 (2H, d, J=9.0 Hz), 5.24 (2H, s), 5.01 (1H, quint, J=9.3 Hz), 2.40-1.60 (8H, m).
|
|
Purity
>90% (NMR)
|
MS
532 (M + 1)
|
|
Example No.
62
1H NMR (δ) ppm
|
|
106
300 MHz, DMSO-d6 8.32 (1H, s), 8.26 (1H, d, J=8.7 Hz), 8.04 (1H, d, J=8.7 Hz), 7.77 (2H, d, J=8.4 Hz), 7.52 (2H, d, J=6.9 Hz), 7.46-7.39 (5H, m), 5.28 (2H, s), 4.38 (1H, m), 3.71 (1H, m), 2.60-2.15 (2H, m), 2.04-1.96 (4H, m), 1.30-1.20 (2H, m).
|
|
Purity
>90% (NMR)
|
MS
443 (M + 1)
|
|
Example No.
63
1H NMR (δ) ppm
|
|
107
300 MHz, DMSO-d6 8.27 (1H, s), 8.14 (1H, d, J=8.7 Hz), 7.96 (1H, d, J=8.4 Hz), 7.71 (2H, d, J=9.0 Hz), 7.51 (2H, d, J=6.9 Hz), 7.46-7.37 (3H, m), 7.30 (2H, d, J=8.4 Hz), 5.25 (3H, s), 4.39 (1H, m), 3.44 (1H, M), 3.27 (3H, s), 12.60-1.95 (6H, m), 1.25-1.05 (2H, m)
|
|
Purity
about 90% (NMR)
|
MS
457 (M + 1)
|
|
[1803]
13
TABLE 12
|
|
|
|
Example No.
64
1H NMR (δ) ppm
|
|
108
300 MHz, DMSO-d6 12.25 (1H, brs), 7.70-7.30 (9H, m), 7.20 (2H, d, J=8.7 Hz), 7.14 (1H, d, J=8.4 Hz), 5.20 (2H, s), 4.84 (1H, quint, J=6.0 Hz), 3.66 (2H, s), 2.30-1.51 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
427 (M + 1)
|
|
Example No.
65
1H NMR (δ) ppm
|
|
109
300 MHz, DMSO-d6 12.64 (1H, brs), 8.13 (1H, s), 7.80 (1H, d, J=7.2 Hz), 7.59 (1H, d, J=8.7 Hz), 7.48-7.30 (5H, m), 5.11 (2H, s), 5.03 (1H, quint, J=8.7 Hz), 4.20-4.05 (2H, m), 3.45-3.90 (3H, m), 2.15-1.60 (12H, m)
|
|
Purity
>90% (NMR)
|
MS
448 (M + 1)
|
|
Example No.
66
1H NMR (δ) ppm
|
|
110
300 MHz, DMSO-d6 10.59 (1H, s), 8.31(1H, s), 8.10 (2H, d, J=8.6 Hz), 8.03 (1H, d, J=8.7 Hz), 8.00-7.85 (3H, m), 7.80 (2H, d, J=8.6 Hz), 7.41 (2H, d, J=8.2 Hz), 4.98 (1H, quint, J=8.8 Hz), 2.71-1.10 (19H, m)
|
|
Purity
>90% (NMR)
|
MS
508 (M + 1)
|
|
[1804]
14
TABLE 13
|
|
|
|
Example No.
67
1H NMR (δ) ppm
|
|
111
300 MHz, DMSO-d6 12.81 (1H, brs), 8.42 (1H, s), 7.90 (1H, d, J=8.5 Hz), 7.80-7.52 (6H, m), 7.44 (2H, d, J=8.6 Hz), 5.25 (2H, s), 4.88 (1H, quint, J=8.8 Hz), 2.30-1.52 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
481 (M + 1)
|
|
Example No.
68
1H NMR (δ) ppm
|
|
112
300 MHz, DMSO-d6 8.31 (1H, d, J=1.4 Hz), 8.05 (1H, d, J=8.6 Hz), 7.96 (1H, d, J=8.6 Hz), 8.86-8.61 (4H, m) 7.51 (1H, d, J=6.3 Hz), 7.33 (2H, d, J=8.8 Hz), 5.28 (2H, s), 4.94 (1H, quint, J=8.8 Hz), 2.31-1.60 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
481 (M + 1)
|
|
Example No.
69
1H NMR (δ) ppm
|
|
113
300 MHz, DMSO-d6 9.88 (1H, s), 9.42 (1H, s), 8.32 (1H, s), 8.09 and 8.02 (2H, ABq, J=9.0 Hz), 7.81 and 7.78 (4H, A′ B′ q, J=9.2 Hz), 7.50 (2H, d, J=7.8 Hz), 7.31 (2H, t, J=7.8 Hz), 7.00 (1H, t, J=7.8 Hz), 5.03 (1H, quint, J=8.7 Hz), 2.34-2.17 (4H, m), 2.13-1.96 (2H, m), 1.83-1.64 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
441 (M + 1)
|
|
[1805]
15
TABLE 14
|
|
|
|
Example No.
70
1H NMR (δ) ppm
|
|
114
300 MHz, DMSO-d6 8.27 (1H, d, J=1.2 Hz), 8.04 (1H, d, J=8.7 Hz), 7.94 (1H, d, J=8.7 Hz), 7.72 (2H, d, J=8.7 Hz), 7.60-7.20 (12H, m) 6.74 (1H, s), 4.92 (1H, quint, J=8.9 Hz), 2.30-1.58 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
489 (M + 1)
|
|
Example No.
71
1H NMR (δ) ppm
|
|
115
300 MHz, DMSO-d6 8.31 (1H, s), 8.05 (1H, d, J=8.7 Hz), 7.97 (1H, d, J=8.7 Hz), 7.76 (2H, d, J=8.6 Hz), 7.44-7.19 (7H. m), 4.94 (1H, quint, J=8.8 Hz), 4.35 (2H, t, J=6.7 Hz), 3.10 (2H, t, J=6.7 Hz), 2.32-1.60 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
427 (M + 1)
|
|
Example No.
72
1H NMR (δ) ppm
|
|
116
300 MHz, DMSO-d6 8.30 (1H, s), 8.25 (1H, d, J=8.7 Hz), 8.03 (1H, d, J=9.0 Hz), 7.75 (2H, d, J=8.7 Hz), 7.51 (2H, d, J=7.2 Hz), 7.46-7.33 (5H, m), 5.27 (2H, s), 4.36 (1H, m), 2.50-2.25 (2H, m), 2.15-2.00 (2H, m), 1.95-1.85 (2H, m), 1.35 (1H, m), 1.20-1.10 (2H, m), 0.87 (9H, s).
|
|
Purity
>90% (NMR)
|
MS
483 (M + 1)
|
|
[1806]
16
TABLE 15
|
|
|
|
Example No.
73
1H NMR (δ) ppm
|
|
117
300 MHz, DMSO-d6 7.59 (2H, d, J=8.4 Hz), 7.52-7.35 (6H, m), 7.20 (2H, d, J=8.7 Hz), 7.14 (1H, d, J=2.1 Hz), 6.90 (1H, dd, J=9.0, 2.4 Hz), 5.21 (2H, s), 4.83 (1H, quint, J=8.7 Hz), 4.70 (2H, s), 2.30-1.90 (6H, m), 1.75-1.55 (2H, m).
|
Purity
>90% (NMR)
|
MS
443 (M + 1)
|
|
Example No.
74
1H NMR (δ) ppm
|
|
118
300 MHz, DMSO-d6 8.27 (1H, s), 8.06 and 7.97 (2H, ABq, J=8.7 Hz), 7.57 and 6.86 (4H, A′ B′ q, J=8.9 Hz), 7.42-7.26 (5H, m), 5.04 (1H, quint, J=9.0 Hz), 4.42 (2H, s), 2.32-1.94 (6H, m), 1.80-1.62 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
412 (M + 1)
|
|
Example No.
75
1H NMR (δ) ppm
|
|
119
300 MHz, DMSO-d6 12.80 (1H, s), 8.26 (1H, s), 7.90 (1H, d, J=9.2 Hz), 7.76-7.60 (8H, m), 7.35 (2H, d, J=8.4 Hz), 4.84 (1H, quint, J=8.8 Hz), 3.23 (3H, s), 2.32-1.90 (6H, m), 1.78-1.61 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
476 (M + 1)
|
|
[1807]
17
TABLE 16
|
|
|
|
Example No.
76
1H NMR (δ) ppm
|
|
120
300 MHz, DMSO-d6 8.29 (1H, s), 8.07 and 7.49 (2H, ABq, J=8.7 Hz), 7.66 and 7.00 (4H, A′ B′ q, J=7.7 Hz), 7.39-7.24 (5H, m), 5.05 (1H, quint, J=8.8 Hz), 4.76 (2H, s), 3.21 (3H, s), 2.35-1.92 (6H, m), 1.81-1.62 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
426 (M + 1)
|
|
Example No.
77
1H NMR (δ) ppm
|
|
|
121
300 MHz, DMSO-d6 8.21 (1H, s), 7.87 (1H, s), 7.56 and 7.43 (4H, ABq, J=8.1 Hz), 7.34-7.16 (5H, m), 4.25 (1h, brt, J=12.5 Hz), 3.06-2.92 (4H, m), 2.41-2.17 (2H, m), 1.96-1.77 (4H, m), 1.72-1.58 (1H, m), 1.48-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
425 (M + 1)
|
|
Example No.
78
1H NMR (δ) ppm
|
|
122
300 MHz, DMSO-d6 8.14 (1H, s), 7.79 (1H, d, J=9.0 Hz), 7.57 (1H, d, J=8.7 Hz), 7.40-7.20 (5H, m), 4.89 (1H, quint, J=8.7 Hz), 3.54 (2H, s), 3.19-2.90 (3H, m), 2.23-1.69 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
404 (M + 1)
|
|
[1808]
18
TABLE 17
|
|
|
|
Example No.
79
1H NMR (δ) ppm
|
|
123
300 MHz, DMSO-d6 8.15 (1H, s), 7.81 (1H, d, J=8.4 Hz), 7.59 (1H, d, J=9.0 Hz), 7.50-7.38 (5H, m), 5.05 (1H, quint, J=9.0 Hz), 3.85-2.95 (3H, m), 2.20-1.65 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
418 (M + 1)
|
Example No.
80
1H NMR (δ) ppm
|
|
124
300 MHz, DMSO-d6 8.17 (1H, m), 7.84 (1H, d, J=8.4 Hz), 7.78-7.62 (3H, m), 7.49 (2H, d, J=8.1 Hz), 5.05-4.91 (1H, m), 3.80-3.70 (2H, m), 3.30-3.12 (1H, m), 2.48-2.31 (5H, m), 2.15-1.60 (12H, m)
|
|
Purity
>90% (NMR)
|
MS
468 (M + 1)
|
|
Example No.
81
1H NMR (δ) ppm
|
|
125
300 MHz, DMSO-d6 12.75 (1H, brs), 8.21 (1H, d, J=1.4 Hz), 7.49 (1H, d, J=8.6 Hz), 7.85 (1H, dd, J=8.6, 1.4 Hz), 7.70-7.55 (5H, m), 7.23 (2H, d, J=8.7 Hz), 5.25 (2H, s), 4.36-4.15 (1H, m), 2.39-2.18 (2H, m), 2.00-1.78 (4H, m), 1.70-1.57 (1H, m), 1.48-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
495 (M + 1)
|
|
[1809]
19
TABLE 18
|
|
|
|
Example No.
82
1H NMR (δ) ppm
|
|
126
300 MHz, DMSO-d6 8.27 (1H, s), 8.22 (1H, d, J=8.7 Hz), 8.02 (1H, d, J=8.7 Hz), 7.69 (2H, d, J=8.7 Hz), 7.60-7.50 (4H, m), 7.45-7.25 (8H, m), 6.75 (1H, s), 4.21-4.23 (1H, m), 2.39-2.18 (2H, m), 2.10-1.78 (4H, m), 1.70-1.15 (4H, m)
|
|
Purity
>90% (NMR)
|
MS
503 (M + 1)
|
|
Example No.
83
1H NMR (δ) ppm
|
|
127
300 MHz, DMSO-d6 13.2 (1H, brs), 8.30 (1H, s), 8.23 (1H, d, J=8.8 Hz), 8.02 (1H, d, J=8.7 Hz), 7.74 (2H, d, J=8.6 Hz), 7.40-7.33 (5H, m), 5.22 (2H, s), 4.36 (1H, m), 2.50-1.40 (10H, m), 1.31 (18H, s).
|
|
Purity
>90% (NMR)
|
MS
539 (M + 1)
|
|
Example No.
84
1H NMR (δ) ppm
|
|
128
mixture of isomers (cis:trans = 3:1) 300 MHz, DMSO-d6 8.30 (1H, s), 8.20-7.95 (2H, m), 7.72 (2H, d, J=8.4 Hz), 7.52-7.29 (7H, m), 5.25 (2H, s), 4.34, 3.40 (1H, m), 2.50-2.20 (2H, m), 2.05-1.50 (6H, m), 1.14, 0.90 (3H, d, J=6.9, 6.3 Hz), 1.09 (1H, m).
|
|
Purity
>90% (NMR)
|
MS
441 (M + 1)
|
|
[1810]
20
TABLE 19
|
|
|
|
Example No.
85
1H NMR (δ) ppm
|
|
129
300 MHz, DMSO-d6 8.25 (1H, s), 8.14-7.83 (6H, m), 7.77-7.44 (5H, m), 7.21 (2H, d, J=7.8 Hz), 4.44 (2H, brt), 4.31 (1H, brt), 3.56 (2H, brt), 2.20-2.16 (2H, m), 2.00-1.74 (4H, m), 1.70-1.55 (1H, m), 1.45-1.14 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
491 (M + 1)
|
|
Example No.
86
1H NMR (δ) ppm
|
|
130
300 MHz, DMSO-d6 12.75 (1H, s), 8.23 (1H, s), 8.15 (1H, d, J=7.6 Hz), 8.02-7.53 (10H, m), 7.32 (2H, d, J=8.7 Hz), 5.68 (2H, s), 4.32 (1H, brt, J=12.2 Hz), 2.41-2.20 (2H, m), 2.01-1.78 (4H, m), 1.71-1.56 (1H, m), 1.50-1.16 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
477 (M + 1)
|
|
Example No.
87
1H NMR (δ) ppm
|
|
131
300 MHz, DMSO-d6 12.75 (1H, brs), 8.16 (1H, s), 7.91 and 7.82 (2H, ABq, J=8.5 Hz), 7.44 and 6.86 (4H, A′ B′ q, J=8.6 Hz), 7.39-7.26 (10H, m), 4.82 (2H, s), 4.35 (1H, brt, J=12.2 Hz), 2.35-2.16 (2H, m), 1.97-1.75 (4H, m), 1.69-1.56 (1H, m), 1.45-1.16 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
516 (M + 1)
|
|
[1811]
21
TABLE 20
|
|
|
|
Example No.
88
111 NMR(6) ppm
|
|
132
300 MHz, DMSO-d6 8.31 (1H, s), 8.26 and 8.06 (2H, ABq, J=8.9 Hz), 7.73 and 7.22 (4H, A′ B′ q, J=8.7 Hz), 7.50-7.36 (8H, m), 5.10 (2H, s), 4.37 (1H, brt, J=12.2 Hz), 2.38-2.28 (2H, m), 2.10-1.80 (4H, m), 1.70-1.56 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
503 (M + 1)
|
|
Example No.
89
1H NMR (δ) ppm
|
|
133
|
|
Purity
91% (HPLC)
|
MS
427 (M + 1)
|
|
Example No.
90
1H NMR (δ) ppm
|
|
134
300 MHz, DMSO-d6 8.40-8.20 (2H, m), 8.04 (1H, d, J=8.4 Hz), 7.65 (2H, d, J=8.4 Hz), 7.50-7.10 (12H, m), 5.08 (1H, m), 4.33 (1H, m), 3.00 (4H, m), 2.50-1.10 (10H, m)
|
|
Purity
>90% (NMR)
|
MS
531 (M + 1)
|
|
[1812]
22
TABLE 21
|
|
|
|
Example No.
91
1H NMR (δ) ppm
|
|
135
300 MHz, DMSO-d6 8.31 (1H, s), 8.27 (1H, d, J=8.7 Hz), 8.08-8.03 (3H, m), 7.77-7.58 (5H, m), 7.31 (2H, d, J=8.7 Hz), 5.81 (2H, s), 4.40 (1H, m), 2.50-1.20 (10H, m).
|
|
Purity
about 90% (NMR)
|
MS
455 (M + 1)
|
|
Example No.
92
1H NMR (6) ppm
|
|
136
300 MHz, DMSO-d6 11.8 (1H, brs), 8.07 (1H, s), 7.89 (1H, d, J=8.7 Hz), 7.84 (1H, d, J=8.4 Hz), 7.69 (2H, m), 7.48 (3H, m), 4.42 (2H, s), 4.11 (1H, m), 3.73 (4H, m), 3.40 (4H, m), 2.40-1.40 (10H, m).
|
|
Purity
>90% (NMR)
|
MS
419 (M + 1)
|
|
Example No.
93
1H NMR (δ) ppm
|
|
137
300 MHz, DMSO-d6 8.32 (1H, s), 8.28(1H, d, J=8.9 Hz), 8.05 (1H, d, Jp32 8.7 Hz), 7.72 (2H, d, J=8.7 Hz), 7.38 (4H, d, J=7.2 Hz), 7.31 (4H, t, J=7.3 Hz), 7.21-7.17 (4H, m), 4.37 (1H, m), 4.26 (1H, t, J=7.9 Hz), 4.01 (2H, t, J=6.2 Hz), 2.57 (2H, m), 2.50-2.20 (2H, m), 2.10-2.00 (2H, m), 2.00-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.20 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
531 (M + 1)
|
|
[1813]
23
TABLE 22
|
|
|
|
Example No.
94
1H NMR (δ) ppm
|
|
138
300 MHz, DMSO-d6 8.32 (1H, s), 8.27 (1H, d, J=9.0 Hz), 8.05 (1H, d, J=8.7 Hz), 7.75-7.70 (3H, m), 7.56 (1H, d, J=8.4 Hz), 7.55-7.35 (6H, m), 7.22 (2H, d, J=8.7 Hz), 5.11 (2H, s), 4.36 (1H, m), 2.40-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.20 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
537 (M + 1)
|
|
Example No.
95
1H NMR (δ) ppm
|
|
139
300 Hz, DMSO-d6 12.9 (1H, brs), 8.02 (1H, s), 7.82 (2H, m), 7.40-7.25 (5H, m), 4.58 (2H, s), 4.09 (1H, m), 3.71 (1H, m), 3.49 (2H, m), 3.21 (2H, m), 2.35-1.30 (14H, m).
|
|
Purity
>90% (NMR)
|
MS
434 (M + 1)
|
|
Example No.
96
1H NMR (δ) ppm
|
|
140
300 MHz, DMSO-d6 8.31 (1H, d, J=1.3 Hz), 8.27 (1H, d, J=8.8 Hz), 8.05 (1H, d, J=8.8 Hz), 7.76 (2H, d, J=8.7 Hz), 7.40-7.25 (4H, m), 7.06-6.90 (3H, m), 4.53-4.26 (5H, m), 2.40-2.18 (2H, m), 2.12-1.56 (5H, m), 1.50-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
457 (M + 1)
|
|
[1814]
24
TABLE 23
|
|
|
|
Example No.
97
1H NMR (δ) ppm
|
|
141
300 MHz, DMSO-d6 8.32 (1H, d, J=1.3 Hz), 8.29 (1H, d, J=8.8 Hz), 8.05 (1H, dd, J=8.8, 1.3 Hz), 8.42 (2H, d, J=8.8 Hz), 7.37-7.16 (7H, m), 4.48-4.30 (1H, m), 4.12 (2H, t, J=6.2 Hz), 2.83-2.70 (2H, m), 2.40-1.50 (9H, m), 1.59-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
455 (M + 1)
|
|
Example No.
98
1H NMR (δ) ppm
|
|
142
300 MHz, DMSO-d6 8.28 (1H, d, J=1.3 Hz), 8.21 (1H, d, J=8.8 Hz), 8.01 (1H, d, J=10.1 Hz), 7.70 (2H, d, J=8.7 Hz), 7.33-7.12 (7H, m), 4.44-4.28 (1H, m), 4.10 (2H, t, J=6.3H z), 2.62 (2H, t, J=7.4 Hz), 2.39-2.15 (2H, m), 2.10-1.18 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
483 (M + 1)
|
|
Example No.
99
1H NMR (δ) ppm
|
|
143
300 MHz, DMSO-d6 12.93 (1H, brs), 8.30 (1H, d, J=1.4 Hz), 8.04 (1H, d, J=8.7 Hz), 7.92 (1H, dd, J=8.7, 1.4 Hz), 7.59-7.34 (5H, m), 7.07 (1H, s), 5.38 (2H, s), 4.78-4.60 (1H, m), 2.32-2.14 (2H, m), 2.03-1.28 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
418 (M + 1)
|
|
[1815]
25
TABLE 24
|
|
|
|
Example No.
100
1H NMR (δ) ppm
|
|
144
300 MHz, DMSO-d6 8.46 (1H, d, J=2.1 Hz), 8.16 (1H, s), 8.00 (1H, dd, J=8.5, 2.1 Hz), 7.87 (1H, d, J=8.5 Hz), 7.68 (1H, d, J=8.5 Hz), 7.55-7.30 (5H, m), 7.08 (1H, d, J=8.5 Hz), 5.45 (2H, s), 4.25-4.08 (1H, m), 2.39-2.18 (2H, m), 2.00-1.75 (4H, m), 1.70-1.55 (1H. m), 1.45-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
427 (M + 1)
|
|
Example No.
101
1H NMR (δ) ppm
|
|
145
300 MHz, DMSO-d6 8.33 (1H, s), 8.31 (1H, d, J=6.9 Hz), 8.06 (1H, d, J=8.4 Hz), 7.76 and 7.29 (4H, ABq, J=8.9 Hz), 6.68 (2H, s), 4.37 (1H, m), 4.35 (2H, t, J=7.0 Hz), 3.79 (6H, s), 3.63 (3H, s), 3.04 (2H, t, J=6.9 Hz), 2.30 (2H, m), 2.04 (2H, m), 1.86 (2H, m), 1.65 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
531 (M + 1)
|
|
Example No.
102
1H NMR (δ) ppm
|
|
146
300 MHz, DMSO-d6 12.88 (1H, s), 8.34 (1H, s), 7.86 (1H, d, J=8.5 Hz), 7.73 (1H, d, J=8.5 Hz), 7.63 and 7.23 (4H, ABq, J=8.7 Hz), 7.52-7.35 (5H, m), 5.22 (2H, s), 4.31 (1H, m), 2.39 (2H, m), 1.79 (2H, m), 1.53 (2H, m), 1.31 (2H, m), 1.11 (3H, s), 0.95 (3H, s)
|
|
Purity
>90% (NMR)
|
MS
455 (M + 1)
|
|
[1816]
26
TABLE 25
|
|
|
|
Example No.
103
1H NMR (δ) ppm
|
|
147
300 MHz, DMSO-d6 12.79 (1H, brs), 8.22 (2H, s), 8.02-7.78 (4H, m), 7.63-7.42 (6H, m), 7.20-7.09 (2H, m), 4.43 (2H, s), 4.27 (1H, brt, J=12.2 Hz), 3.59 (2H, s), 2.39-2.15 (2H, m), 1.98-1.72 (4H, m), 1.68-1.59 (1H, m), 1.43-1.12 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
491 (M + 1)
|
|
Example No.
104
1H NMR (δ) ppm
|
|
148
300 MHz, DMSO-d6 12.75 (1H, s), 8.23 (1H, s), 7.94 and 7.86 (2H, ABq, J=8.6 Hz), 7.64 and 7.05 (4H, A′ B′ q, J=8.7 Hz) 7.32-7.09 (9H, m), 5.13 (2H, s), 4.28 (1H, brt, J=12.2 Hz), 2.36-2.19 (2H, m), 1.95-1.77 (4H, m), 1.66-1.56 (1H, m), 1.46-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
519 (M + 1)
|
|
Example No.
105
1H NMR (δ) ppm
|
|
149
300 MHz, DMSO-d6 8.23 (1H, s), 7.94 and 7.87 (2H, ABq, J=8.6 Hz), 7.68 and 7.17 (4H, A′ B′ q, J=8.7 Hz), 7.46-7.33 (6H, m), 6.93 and 6.75 (2H, A″B″q, J=8.2 Hz), 6.82 (1H, s), 5.13 (2H, s), 4.30 (1H, brt, J=12.2 Hz), 2.39-2.18 (2H, m), 1.98-1.77 (4H, m), 1.71-1.59 (1H, m), 1.48-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
519 (M + 1)
|
|
[1817]
27
TABLE 26
|
|
|
|
Example No.
106
1H NMR (δ) ppm
|
|
150
300 MHz, DMSO-d6 12.89 (1H, brs), 9.73 (1H, s), 8.24 (1H, s), 8.03 and 7.91 (2H, ABq, J=8.7 Hz), 7.66 and 7.04 (4H, A′ B′ q, J=8.7 Hz), 7.16-7.03 (3H, m), 6.89 (2H, t, J=9.2 Hz), 4.33 (1H, brt, J=12.2 Hz), 2.40-2.18 (2H, m), 2.00-1.78 (4H, m), 1.70-1.58 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
429 (M + 1)
|
|
Example No.
107
1H NMR (δ) ppm
|
|
151
300 MHz, DMSO-d6 12.98 (1H, brs), 9.82 (1H, brs), 8.27 (1H, s), 8.09 and 7.94 (2H, ABq, J=8.7 Hz), 7.74 and 7.22 (4H, A′ B′ q, J=8.7 Hz), 7.28-7.22 (1H, m), 6.67-6.54 (3H, m), 4.35 (1H, brt, J=12.2 Hz), 2.40-2.20 (2H, m), 2.05-1.80 (4H, m), 1.72-1.59 (1H, m), 1.50-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
429 (M + 1)
|
|
Example No.
108
1H NMR (δ) ppm
|
|
152
300 MHz, DMSO-d6 8.24 (1H, s), 8.01 and 7.90 (2H, ABq, J=8.7 Hz), 7.65 and 7.03 (4H, A′ B′ q, J=8.7 Hz), 7.32-7.20 (3H, m), 7.08-7.03 (1H, m), 4.32 (1H, brt, J=12.2 Hz), 3.77 (3H, s), 2.36-2.20 (2H, m), 2.00-1.78 (4H, m), 1.71-1.59 (1H, m), 1.44-1.11 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
443 (M + 1)
|
|
[1818]
28
TABLE 27
|
|
|
|
Example No.
109
1H NMR (δ) ppm
|
|
153
300 MHz, DMSO-d6 12.75 (1H, s), 8.24 (1H, s), 7.96 and 7.87 (2H, ABq, J=9.0 Hz), 7.69 and 7.19 (4H, A′ B′ q, J=8.6 Hz), 7.37 (1H, t, J=7.1 Hz), 6.84-6.70 (3H, m), 4.31 (1H, brt, J=12.2 Hz), 3.78 (3H, s), 2.39-2.20 (2H, m), 1.98-1.78 (4H, m), 1.76-1.60 (1H, m), 1.48-1.13 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
443 (M + 1)
|
|
Example No.
110
1H NMR (δ) ppm
|
|
154
300 MHz, DMSO-d6 8.31 (1H, s), 8.26 and 8.04 (2H, ABq, J=8.8 Hz), 7.75 and 7.71 (4H, A′ B′ q, J=8.8 Hz), 7.32-7.03 (4H, m), 4.34 (1H, brt, J=12.2 Hz), 3.94 (2H, t, J=6.3 Hz), 2.40-2.19 (2H, m), 2.11-1.81 (4H, m), 1.72-1.16 (6H, m), 0.71 (3H, t, J=7.3 Hz)
|
|
Purity
>90% (NMR)
|
MS
471 (M + 1)
|
|
Example No.
111
1H NMR (δ) ppm
|
|
155
300 MHz, DMSO-d6 8.22 (1H, s), 7.91 and 7.87 (2H, ABq, J=8.7 Hz), 7.68 and 7.18 (4H, A′ B′ q, J=8.7 Hz), 7.35 (1H, t, J=8.5 Hz), 6.80 (1H, d, J=9.0 Hz), 6.72-6.68 (2H, m), 4.30 (1H, brt, J=12.2 Hz), 3.94 (2H, t, J=6.5 Hz), 2.39-2.18 (2H, m), 1.97-1.58 (7H, m), 1.45-1.20 (3H, m), 0.97 (3H, t, J=7.4 Hz)
|
|
Purity
>90% (NMR)
|
MS
471 (M + 1)
|
|
[1819]
29
TABLE 28
|
|
|
|
Example No.
112
1H NMR (δ) ppm
|
|
156
300 MHz, DMSO-d6 12.73 (1H, s), 8.22 (1H, s), 7.94 and 7.85 (2H, ABq, J=9.3 Hz), 7.61 and 7.01 (4H, A′ B′ q, J=8.6 Hz), 7.25-7.00 (4H, m), 5.25 (2H, brs), 4.55 (2H, d, J=6.6 Hz), 4.29 (1H, brt, J=12.2 Hz), 2.38-2.18 (2H, m), 1.96-1.78 (4H, m), 1.70-1.56 (1H, m), 1.67 (3H, s), 1.60 (3H, s), 1.48-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
497 (M + 1)
|
|
Example No.
113
1H NMR (δ) ppm
|
|
157
300 MHz, DMSO-d6 12.75 (1H, s), 8.23 (1H, s), 7.95 and 7.86 (2H, ABq, J=8.9 Hz), 7.69 and 7.18 (4H, A′ B′ q, J=8.9 Hz), 7.35 (1H, t, J=8.3 Hz), 6.81-6.69 (3H, m), 5.41 (2H, brs), 4.54 (2H, d, J=6.6 Hz), 4.31 (1H, brt, J=12.2 Hz), 2.41-2.18 (2H, m), 1.98-1.76 (4H, m), 1.73 (3H, s), 1.70-1.58 (1H, m), 1.68 (3H, s), 1.45-1.17 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
497 (M + 1)
|
|
Example No.
114
1H NMR (δ) ppm
|
|
158
300 MHz, DMSO-d6 12.73 (1H, s), 8.22 (1H, s), 7.94 and 7.85 (2H, ABq, J=8.4 Hz), 7.60 and 6.99 (4H, A′ B′ q, J=8.6 Hz), 7.29-7.00 (4H, m), 4.29 (1H, brt, J=12.2 Hz), 3.99 (2H, t, J=6.3 Hz), 2.41-2.20 (2H, m), 1.95-1.76 (4H, m), 1.70-1.14 (7H, m), 0.76 (3H, d, J=6.6 Hz)
|
|
Purity
>90% (NMR)
|
MS
499 (M + 1)
|
|
[1820]
30
TABLE 29
|
|
|
|
Example No.
115
1H NMR (δ) ppm
|
|
159
300 MHz, DMSO-d6 8.23 (1H, s), 7.93 and 7.87 (2H, ABq, J=8.6 Hz), 7.69 and 7.19 (4H, A′ B′ q, J=8.6 Hz), 7.35 (1H, t, J=7.8 Hz), 6.82-6.69 (3H, m), 4.30 (1H, brt, J=12.2 Hz), 4.00 (2H, t, J=6.9 Hz), 2.38-2.20 (2H, m), 1.97-1.54 (8H, m), 1.47-1.20 (3H, m), 0.93 (6H, d, J=6.6 Hz)
|
|
Purity
>90% (NMR)
|
MS
499 (M + 1)
|
|
Example No.
116
1H NMR (δ) ppm
|
|
160
300 MHz, DMSO-d6 8.30 (1H, s), 8.25 (1H, d, J=8.9 Hz), 8.03 (1H, d, J=8.8 Hz), 7.68 (2H, d, J=8.8 Hz), 7.24 (2H, d, J=7.2 Hz), 7.19-7.10 (6H, m), 6.94 (2H, t, J=7.2 Hz), 4.34 (1H, m), 4.19 (4H, brs), 3.10 (4H, brs), 2.40-2.15 (2H, m), 2.10-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.20 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
557 (M + 1)
|
|
Example No.
117
1H NMR (δ) ppm
|
|
161
300 MHz, DMSO-d6 12.8 (1H, brs), 8.22 (1H, s), 7.98 (1H, d, J=8.7 Hz), 7.87 (1H, d, J=8.6 Hz), 7.80 (2H, d, J=8.2 Hz), 7.72-7.67 (3H, m), 7.59 (2H, d, J=8.7 Hz), 7.54-7.51 (2H, m), 7.42-7.41 (1H, m), 7.11 (2H, d, J=8.8 Hz), 5.09 (2H, s), 4.27 (1H, m), 2.40-2.15 (2H, m), 2.00-1.75 (4H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
571 (M + 1)
|
|
[1821]
31
TABLE 30
|
|
|
|
Example No.
118
1H NMR (δ) ppm
|
|
162
300 MHz, DMSO-d6 13.3 (1H, brs), 8.30 (1H, s), 8.25 (1H, d, J=8.9 Hz), 8.04 (1H, d, J=8.7 Hz), 7.72 (2H, d, J=8.8 Hz), 7.57 (4H, d, J=8.6 Hz), 7.33 (2H, d, J=8.9 Hz), 6.84 (1H, s), 4.33 (1H, m), 2.45-2.10 (2H, m), 2.10-1.95 (2H, m), 1.95-1.70 (2H, m), 1.70-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
571 (M + 1)
|
|
Example No.
119
1H NMR (δ) ppm
|
|
163
300 MHz, DMSO-d6 8.32-8.30 (2H, m), 8.07-8.03 (1H, m), 7.74 and 6.90 (4H, ABq, J=8.7 Hz), 4.37 (1H, m), 4.31 (2H, t, J—6.8 Hz), 3.74 (3H, s), 3.04 (2H, t, J=6.7 Hz), 2.30 (2H, m), 2.02 (2H, m), 1.86 (2H, m), 1.63 (1H, m), 1.55-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
471 (M + 1)
|
Example No.
120
1H NMR (δ) ppm
|
|
164
300 MHz, DMSO-d6 8.23 (1H, s), 7.99 (1H, d, J=8.7 Hz), 7.88 (1H, d, J=8.4 Hz), 7.61 and 7.16 (4H, ABq, J=8.6 Hz), 7.30-7.22 (2H, m), 7.01 (2H, d, J=8.1 Hz), 6.92 (1H, t, J=7.5 Hz), 4.28 (1H, m), 4.25 (2H, t, J=7.2 Hz), 3.83 (3H, s), 3.07 (2H, t, J=7.1 Hz), 2.28 (2H, m) 2.00-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
471 (M + 1)
|
|
[1822]
32
TABLE 31
|
|
|
Example No.
121
1H NMR(δ) ppm
|
|
165
300MHz, DMSO-d6 12.85(1H, brs), 8.24(1H, s), 8.01 (1H, d, J=8.7Hz), 7.90(1H, d, J=8.6Hz), 7.62 and, 7.17(4H, ABq, J=8.7Hz), 7.24(1H, m), 6.94(2H, m), 6.82(1H, m), 4.32(2H, t, J=6.7Hz), 3.76(3H, s), 3.07(2H, t, J=6.7Hz), 2.29(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.15(3H, m)
|
Purity
>90% (NMR)
|
MS
471(M + 1)
|
Example No.
122
1H NMR(δ) ppm
|
|
166
300MHz, DMSO-d6 12.8(1H, brs), 8.22(1H, s), 7.87(2H, m), 7.62(2H, d, J=8.1Hz), 7.60-7.20(7H, m), 5.23(2H, s), 4.46(1H, m), 2.50-2.30(2H, m), 1.70-1.40(10H, m).
|
Purity
>90% (NMR)
|
MS
441(M + 1)
|
Example No.
123
1H NMR(δ) ppm
|
|
167
300MHz, DMSO-d6 8.24(1H, s), 7.97(1H, d, J=9.0Hz), 7.87(1H, d, J=8.4Hz), 7.65(2H, d, J=8.7Hz), 7.40-7.05(9H, m), 7.03(2H, d, J=8.4Hz), 4.31(1H, m), 4.18(2H, t, J=6.6Hz), 2.81(2H, t, J=6.3Hz), 2.40-2.20(2H, m), 2.00-1.70(4H, m), 1.70-1.50(1H, m), 1.50-1.05(3H, m).
|
Purity
>90% (NMR)
|
MS
533(M + 1)
|
|
[1823]
33
TABLE 32
|
|
|
Example No.
124
1H NMR(δ) ppm
|
|
168
300MHz, DMSO-d6 13.1(1H, brs), 8.29(1H, s), 8.17(1H, d, J=8.7Hz), 7.99(1H, d, J=8.7Hz), 7.77(2H, d, J=8.7Hz), 7.40-7.20(8H, m), 6.84(1H, d, J=9.3Hz), 6.75-6.72(2H, m), 4.36(1H, m), 4.22(2H, t, J=6.8Hz), 3.04(2H, t, J=6.7Hz), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m).
|
Purity
>90% (NMR)
|
MS
533(M + 1)
|
Example No.
125
1H NMR(δ) ppm
|
|
169
300MHz, DMSO-d6 8.32(1H, s), 8.28(1H, d, J=8.7Hz), 8.05(1H, d, J=9.0Hz), 7.73(2H,
|
# d, J=9.0Hz), 7.43(4H, d, J=7.2Hz), 7.36-7.20(8H, m), 4.74(2H, d, J=7.5Hz), 4.57(1H, t, J=7.5Hz), 4.38(1H, m), 2.40-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.85(2H, m), 1.85-1.55(1H, m), 1.55-1.20(3H, m).
|
Purity
>90% (NMR)
|
MS
517(M + 1)
|
Example No.
126
1H NMR(δ) ppm
|
|
170
300MHz, DMSO-d6 8.32(1H, s), 8.14(1H, d, J=8.7Hz), 8.03(1H, d, J=8.7Hz), 7.77(2H, d, J=9.0Hz), 7.52-7.31(7H, m), 5.74(2H, m), 5.26(2H, s), 4.61(1H, m), 2.96(1H, m), 2.60-2.10(5H, m).
|
Purity
>90% (NMR)
|
MS
425(M + 1)
|
|
[1824]
34
TABLE 33
|
|
|
Example No.
127
1H NMR(δ) ppm
|
|
171
300Mhz, DMSO-d6 13.2(1H, brs), 8.33(1H, s), 8.12(1H, d, J=8.7Hz), 7.96(1H, d, J=8.8Hz), 7.79(2H, d, J=8.7Hz), 7.52-7.32(7H, m), 5.26(2H, s), 4.92(1H, d, J=49.4Hz), 4.57(1H, m), 2.65-2.35(2H, m), 2.25-1.50(6H, m).
|
Purity
>90% (NMR)
|
MS
445(M + 1)
|
Example No.
128
1H NMR(δ) ppm
|
|
172
300Mhz, DMSO-d6 8.21(1H, s), 7.92 and 7.85(2H, ABq, J=8.6Hz), 7.61 and 7.06(4H, A′B′q, J=8.6Hz), 7.36-6.91(9H, m), 4.24(1H, brt, J=12.2Hz), 2.35-2.15(2H, m), 1.95-1.75(4H, m), 1.70-1.58(1H, m), 1.48-1.14(3H, m)
|
Purity
>90% (NMR)
|
MS
505(M + 1)
|
Example No.
129
1H NMR(δ) ppm
|
|
173
300MHz, DMSO-d6 8.21(1H, s), 7.92 and 7.86(2H, ABq, J=8.6Hz), 7.69 and 7.22(4H, A′B′q, J=8.6Hz), 7.52-7.39(1H, m), 7.47 and 7.41(2H, A″B″q, J=8.1Hz), 6.91(1H, d, J=8.0Hz), 6.89(1H, d, J=8.2Hz), 6.75(1H, s), 4.36-4.18(1H, m), 2.38-2.17(2H, m), 1.95-1.76(4H, m), 1.70-1.59(1H, m), 1.44-1.19(3H, m)
|
Purity
>90% (NMR)
|
MS
505(M + 1)
|
|
[1825]
35
TABLE 34
|
|
|
Example No.
130
1H NMR(δ) ppm
|
|
174
300MHz, DMSO-d6 8.27(1H, s), 7.69(2H, d, J=8.6Hz), 7.49-7.21(11H, m), 5.08 and 5.03(2H, ABq, J=12.6Hz), 5.07-4.99(1H, m), 4.26(2H, d, J=6.6Hz), 2.40-2.18(2H, m), 2.04-1.77(4H, m), 1.70-1.58(1H, m), 1.48-1.15(3H, m)
|
Purity
>90% (NMR)
|
MS
590(M + 1)
|
Example No.
131
1H NMR(δ) ppm
|
|
175
300MHz, DMSO-d6 8.29(1H, s), 8.11(1H, d, J=9.0Hz), 7.96(1H, d, J=8.4Hz), 7.80(2H, d, J=8.1Hz), 7.72-7.41(7H, m), 7.12(1H, d, J=12.6Hz), 7.01(1H, d, J=8.4Hz), 5.12(2H, s), 4.06(1H, m), 2.35-2.10(2H, m), 2.00-1.75(4H, m), 1.75-1.55(1H, m), 1.60-1.20(3H, m).
|
Purity
>90% (NMR)
|
MS
589(M + 1)
|
Example No.
132
1H NMR(δ) ppm
|
|
176
300MHz, DMSO-d6 12.8(1H, brs), 8.23(1H, s), 7.97(1H, d, J=8.7Hz), 7.87(1H, d, J=8.6Hz), 7.66(2H, d, J=8.6Hz), 7.49-7.33(5H, m), 7.17-7.05(6H, m), 5.12(2H, s), 4.31(1H, m), 2.40-2.15(2H, m), 2.05-1.20(8H, m).
|
Purity
>90% (NMR)
|
MS
519(M + 1)
|
|
[1826]
36
TABLE 35
|
|
|
Example No.
133
1H NMR(δ) ppm
|
|
177
300MHz, DMSO-d6 8.57(1H, s), 8.01(1H, d, J=8.7Hz), 7.66(1H, d, J=8.7Hz), 7.51(2H, d, J=8.7Hz), 7.31(4H, d,
|
# J=8.0Hz), 7.16(4H, d, J=8.0Hz), 7.09(2H, d, J=8.7Hz), 6.26(1H, s), 4.37(1H, m), 2.41-2.28(2H, m), 2.33(6H, s), 2.03-1.84(4H, m), 1.77(1H, m), 1.45-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
531(M + 1)
|
Example No.
134
1H NMR(δ) ppm
|
|
178
8.59(1H, d, J=1.5Hz), 8.02(1H, dd, J=8.7, 1.5Hz), 7.68(1H, d, J=8.7Hz), 7.54(2H, d, J=8.8Hz), 7.39(4H,
|
# dd, J=8.7, 5.3Hz), 7.08(4H, d, J=8.7Hz), 7.05(2H, d, J=8.8Hz), 6.29(1H, s), 4.36(1H, m), 2.43-2.19(2H, m), 2.04-1.85(4H, m), 1.78(1H, m), 1.45-1.23(3H, m).
|
Purity
>90% (NMR)
|
MS
539(M = 1)
|
Example No.
135
1H NMR(δ) ppm
|
|
179
300MHz, DMSO-d6 12.34(1H, brs), 7.93(1H, s), 7.55(1H, d, J=8.6Hz), 7.33-7.15(6H, m), 7.11(2H, d, J=8.6Hz), 4.30-4.20(1H, m), 4.07(2H, t, J=6.3Hz), 3.93(3H, s), 2.78(2H, t, J=7.4Hz), 2.35-2.19(2H, m), 2.12-2.00(2H, m), 1.91-1.79(4H, m), 1.69-1.60(1H, m), 1.47-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
485(M + 1)
|
|
[1827]
37
TABLE 36
|
|
|
Example No.
136
1H NMR(δ) ppm
|
|
180
300MHz, DMSO-d6 8.13(1H, s), 7.65(2H, d, J=8.7Hz), 7.63(1H, s), 7.35-7.12(7H, m), 4.35-4.20(1H, m), 4.10(1H, t, J=6.3Hz), 2.78(2H, t, J=7.5Hz), 2.33-1.78(8H, m), 1.70-1.16(4H, m)
|
Purity
>90% (NMR)
|
MS
471(M + 1)
|
Example No.
137
1H NMR(δ) ppm
|
|
181
300MHz, DMSO-d6 8.24(1H, s), 8.11(1H, s), 7.76(2H, d, J=9.0Hz), 7.37-7.16(7H, m), 4.43-4.30(1H, m), 4.13(2H, t, J=6.3Hz), 2.84-2.68(5H, m), 2.42-2.22(2H, m), 2.18-1.80(6H, m), 1.70-1.20(4H, m)
|
Purity
>90% (NMR)
|
MS
469(M + 1)
|
Example No.
138
1H NMR(δ) ppm
|
|
182
300MHz, DMSO-d6 12.73(1H, brs), 8.22(1H, s), 7.76(1H, d, J=8.7Hz), 7.85(1H, d, J=8.7Hz), 7.54-7.49(4H, m), 7.42-7.21(5H, m), 7.11-7.09(3H, m), 6.93(1H, m), 5.17(2H, s), 4.29(3H, m), 3.11(2H, m), 2.40-2.20(2H, m), 1.99-1.23(8H, m)
|
Purity
>90% (NMR)
|
MS
547(M + 1)
|
|
[1828]
38
TABLE 37
|
|
|
Example No.
139
1H NMR(δ) ppm
|
|
183
300MHz, DMSO-d6 12.73(1H, brs), 8.22(1H, s), 7.93(1H, d, J=8.7Hz), 7.73(1H, m), 7.60-7.57(2H, m), 7.47-6.90(1H, m), 5.11(2H, s), 4.33-4.28(3H, m), 3.09-3.04(2H, t, J=6.7Hz), 2.35-2.20(2H, m), 1.95-1.10(8H, m)
|
Purity
>90% (NMR)
|
MS
547(M + 1)
|
Example No.
140
1H NMR(δ) ppm
|
|
184
300MHz, DMSO-d6 12.83(2H, brs), 8.22(1H, s), 7.94(1H, d, J=8.7Hz), 7.85(1H, d, J=8.4Hz), 7.63-7.60(2H, m), 7.26-7.03(6H, m), 4.73(2H, s), 4.30(1H, m), 2.40-2.15(2H, m), 2.00-1.20(8H, m)
|
Purity
>90% (NMR)
|
MS
487(M + 1)
|
Example No.
141
1H NMR(δ) ppm
|
|
185
300MHz, DMSO-d6 12.87(1H, brs), 8.24(1H, s), 7.97(1H, d, J=9.0Hz), 7.87(1H, d, J=8.7Hz), 7.69 and 7.19(4H, ABq, J=8.7Hz), 7.36(1H, t, J=8.7Hz), 6.80-6.72(3H, m), 4.71(2H, s), 4.32(1H, m), 2.29(2H, m), 1.95-1.25(8H, m)
|
Purity
>90% (NMR)
|
MS
487(M + 1)
|
|
[1829]
39
TABLE 38
|
|
|
Example No.
142
1H NMR(δ) ppm
|
|
186
300MHz, DMSO-d6 8.32(1H, s), 8.27(1H, d, J=8.7Hz), 8.05(1H, d, J=9.0Hz), 7.76-7.72(3H, m), 7.54(1H, d, J=8.4Hz), 7.39-7.22(7H, m), 5.11(1H, s), 4.36(1H, m), 2.35(3H, s), 2.35-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m).
|
Purity
>90% (NMR)
|
MS
551(M + 1)
|
Example No.
143
1H NMR(δ) ppm
|
|
187
300MHz, DMSO-d6 13.1(1H, brs), 8.30(1H, s), 8.24(1H, d, J=8.8Hz), 8.03(1H, d, J=8.7Hz), 7.74-7.71(3H, m), 7.52(1H, d, J=8.3Hz), 7.40-7.36(3H, m), 7.23(2H, d, J=8.8Hz), 7.01(2H, d, J=8.7Hz), 5.11(2H, s), 4.35(1H, m), 3.79(3H, s), 2.45-2.15(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.75-1.55(1H, m), 1.55-1.15(3H, m).
|
Purity
>90% (NMR)
|
MS
567(M + 1)
|
Example No.
144
1H NMR(δ) ppm
|
|
188
300MHz, DMSO-d6 13.0(1H, brs), 8.31(1H, s), 8.23(1H, d, J=8.7Hz), 8.04(1H, d, J=8.7Hz),
|
# 7.80(2H, d, J=8.3Hz), 7.70-7.66(3H, m), 7.55-7.40(4H, m), 7.03-6.95(2H, m), 5.08(2H, s), 4.03(1H, m), 2.40-2.15(2H, m), 2.18(3H, s), 2.05-1.70(4H, m), 1.70-1.50(1H, m), 1.50-1.10(3H, m).
|
Purity
>90% (NMR)
|
MS
585(M + 1)
|
|
[1830]
40
TABLE 39
|
|
|
Example No.
145
1H NMR(δ) ppm
|
|
189
300MHz, DMSO-d6 8.31(1H, s), 8.23(1H, d, J=8.8Hz), 8.02(1H, d, J=8.7Hz), 7.73-7.71(3H,
|
# m), 7.54(1H, d, J=8.3Hz), 7.48(2H, d, J=8.4Hz), 7.41-7.37(3H, m), 7.22(2H, d, J=8.7Hz), 5.13(2H, s), 4.34(1H, m), 2.40-2.20(2H, m), 2.15-1.95(2H, m), 1.95-1.75(2H, m), 1.70-1.55(1H, m), 1.50-1.15(3H, m), 1.31(9H, s).
|
Purity
>90% (NMR)
|
MS
593(M + 1)
|
Example No.
146
1H NMR(δ) ppm
|
|
190
300MHz, DMSO-d6 8.29(1H, s), 8.13(1H, d, J=8.7Hz), 7.97(1H, d, J=8.6Hz), 7.76(1H, d, J=2.1Hz), 7.63(1H, t, J=8.5Hz), 7.57(1H, dd, J=8.2, 2.2Hz), 7.55-7.35(6H, m), 7.15(1H, d, J=12.1Hz), 7.02(1H, d, J=8.6Hz), 5.10(2H, s), 4.07(1H, m), 2.35-2.10(2H, m), 2.00-1.70(4H, m), 1.70-1.55(1H, m), 1.50-1.15(3H, m).
|
Purity
>90% (NMR)
|
MS
555(M + 1)
|
Example No.
147
1H NMR(δ) ppm
|
|
191
300MHz, CDCl3 8.61(1H, s), 8.04(1H, d, J=8.7Hz), 7.69(1H, d, J=8.7Hz), 7.66(1H, d, J=2.4Hz), 7.59(2H, d, J=8.7Hz), 7.42(1H, dd, J=8.0, 2.4Hz), 7.38(1H, t, J=1.8Hz), 7.28(2H, d, J=1.8Hz), 7.26(1H, d, J=8.0Hz), 7.03(2H, d, J=8.7Hz), 4.94(2H, s), 4.37(1H, m), 2.43-2.21(2H, m), 2.17-1.86(4H, m), 1.79(1H, m), 1.43-1.26(3H, m).
|
Purity
>90% (NMR)
|
MS
605(M + 1)
|
|
[1831]
41
TABLE 40
|
|
|
Example No.
148
1H NMR(δ) ppm
|
|
192
300MHz, DMSO-d6 8.21(s, 1H), 7.89(1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.63-7.46(5H, m), 7.30-7.12(5H, m), 7.08(1H, d, J=11.0Hz), 6.81(1H, s), 3.92(1H, m), 2.15-2.06(2H, m), 1.89-172(4H, m), 1.61(1H, m), 1.42-1.09(3H, m).
|
Purity
>90% (NMR)
|
MS
557(M + 1)
|
Example No.
149
1H NMR(δ) ppm
|
|
193
300MHz, DMSO-d6 8.24(1H, d, J=1.5Hz), 7.96(1H, d, J=9.0Hz), 7.88(1H, dd, J=9.0, 1.5Hz), 7.58(1H, d, J=8.7Hz), 7.50-7.30(5H, m), 7.22-7.00(6H, m), 5.13(2H, s), 3.98-3.80(1H, s), 2.36-1.10(10H, m)
|
Purity
>90% (NMR)
|
MS
553(M + 1)
|
Example No.
150
1H NMR(δ) ppm
|
|
194
300MHz, DMSO-d6 8.23(1H, s), 8.95(1H, d, J=8.4Hz), 7.88(1H, d, J=8.7Hz), 7.66(1H, d, J=8.4Hz), 7.52-7.28(7H, m), 7.23(2H, d, J=9.3Hz), 7.14(2H, d, J=8.7Hz), 5.14(2H, s), 3.90-3.72(1H, m), 2.20-1.10(10H, m)
|
Purity
>90% (NMR)
|
MS
587(M + 1)
|
|
[1832]
42
TABLE 41
|
|
|
|
Example No.
151
1H NMR (δ) ppm
|
|
195
300 MHz, DMSO-d6 8.18 (1H, s), 7.92-7.78 (3H, m), 7.78-7.58 (3H, m), 7.58-7.44 (4H, m), 7.29 (1H, d, J=8.2 Hz), 7.01 (2H, d, J=8.7 Hz), 4.88 (1H, d, J=11.8 Hz), 4.80 (1H, d, J=11.8 Hz), 4.22 (1H, m), 2.37-2.16 (2H, m), 1.95-1.75 (4H, m), 1.64 (1H, m), 1.48-1.14 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
605 (M + 1)
|
|
Example No.
152
1H NMR (δ) ppm
|
|
196
300 MHz, DMSO-d6 8.21 (2H, m), 7.99-7.80 (2H, m), 7.63-7.08 (9H, m), 4.20-3.98 (4H, m), 2.20-2.15 (2H, m), 1.95-1.74 (4H, m), 1.70-1.54 (1H, m), 1.44-1.14 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
456 (M + 1)
|
|
Example No.
153
1H NMR (δ) ppm
|
|
197
300 MHz, DMSO-d6 8.20 (1H, s), 8.93 and 7.83 (2H, ABq, J=8.7 Hz), 7.86-7.21 (11H, m), 7.03 (2H, d, J=8.7 Hz), 4.20 (1H, brt, J=12.2 Hz), 2.32-2.13 (2H, m), 1.92-1.74 (4H, m), 1.69-1.58 (1H, m), 1.45-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
489 (M + 1)
|
|
[1833]
43
TABLE 42
|
|
|
|
Example No.
154
1H NMR (δ) ppm
|
|
198
300 MHz, DMSO-d6 8.23 (1H, s), 7.94 and 7.86 (2H, ABq, J=8.6 Hz), 7.72-7.16 (13H, m), 5.25 (2H, brs), 4.55 (2H, d, J=6.6 Hz), 4.31 (1H, brt, J=12.2 Hz), 2.37-2.18 (2H, m), 1.98-1.77 (4H, m), 1.70-1.58 (1H, m), 1.48-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
489 (M + 1)
|
|
Example No.
155
1H NMR (δ) ppm
|
|
199
300 MHz, DMSO-d6 8.21 (1H, s), 7.85 and 7.61 (2H, ABq, J=8.7 Hz), 7.61 and 6.99 (4H, A′ B′ q, J=8.7 Hz), 7.28-7.18 (1H, m), 7.25 (2H, d, J=7.5 Hz), 7.07-6.99 (1Hm), 4.30 (1H, brt, J=12.2 Hz), 3.83 (2H, d, J=6.0 Hz), 3.82-3.72 (1H, m), 2.68-2.49 (2H, m), 2.39-2.21 (2H, m), 1.95-1.80 (4H, m), 1.79-1.60 (2H, m), 1.46-1.22 (5H, m), 1.30 (9H, s), 1.00-0.82 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
626 (M + 1)
|
|
Example No.
156
1H NMR (δ) ppm
|
|
200
300 MHz, DMSO-d6 8.22 (1H, s), 7.92 and 7.86 (2H, ABq, J=8.7 Hz), 7.68 and 7.18 (4H, A′ B′ q, J=8.7 Hz), 7.35 (1H, t, J=8.5 Hz), 6.80 (1H, d, J=8.3 Hz), 6.72-6.70 (2H, m), 4.30 (1H, brt, J=12.2 Hz), 3.99 (2H, brd, J=12.0 Hz), 3.85 (2H, d, J=6.3 Hz), 2.82-2.62 (2H, m), 2.38-2.20 (2H, m), 1.99-1.59 (8H, m), 1.42-1.03 (5H, m), 1.39 (9H, s)
|
|
Purity
>90% (NMR)
|
MS
626 (M + 1)
|
|
[1834]
44
TABLE 43
|
|
|
|
Example No.
157
1H NMR (δ) ppm
|
|
201
300 MHz, DMSO-d6 12.78 (1H, brs), 8.22 (1H, s), 7.96 (1H, d, J=8.6 Hz), 7.86 (1H, d, J=8.6 Hz), 7.75 (1H, d, J=2.2 Hz), 7.60 (2H, d, J=8.4 Hz), 7.55 (1H, dd, J=8.3, 2.2 Hz), 7.48 (1H, d, J=8.3 Hz), 7.18 (2H, d, J=8.4 Hz), 6.73 (2H, s), 5.08 (2H, s), 4.23 (1H, m), 3.68 (9H, s), 2.37-2.17 (2H, m), 1.99-1.79 (4H, m), 1.65 (1H, s), 1.49-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
627 (M + 1)
|
|
Example No.
158
1H NMR (δ) ppm
|
|
202
300 MHz, DMSO-d6 12.75 (1H, brs), 8.22 (1H, s), 7.93 (2H, d, J=8.7 Hz), 7.85 (2H, d, J=8.5 Hz), 7.53-7.21 (10H, m), 6.94 (2H, d, J=8.7 Hz), 4.30-4.12 (3H, m), 3.05 (2H, m), 2.35-2.15 (2H, m), 1.95-1.75 (4H, m), 1.75-1.55 (1H, m), 1.50-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
517 (M + 1)
|
|
Example No.
159
1H NMR (δ) ppm
|
|
203
300 MHz, DMSO-d6 12.77 (1H, brs), 8.22 (1H, s), 7.95(1H, d, 8.6 Hz), 7.86 (1H, d, 8.6 Hz), 7.80 (1H, s), 7.70-7.35 (10H, m), 7.27 (2H, d, J=8.7 Hz), 5.30 (2H, s), 4.28 (1H, m), 2.35-2.15 (2H, m), 1.95-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
503 (M + 1)
|
|
[1835]
45
TABLE 44
|
|
|
|
Example No.
160
1H NMR (δ) ppm
|
|
204
300 MHz, DMSO-d6 8.90 (1H, brs), 8.59 (lh, brs), 8.33 (1H, s), 8.18 and 8.00 (2H, ABq, J=8.5 Hz), 7.73 and 7.10 (4H, A′ B′ q, J=8.5 Hz), 7.32-7.05 (4H, m), 4.35 (1H, brt, J=12.2 Hz), 3.86 (2H, d, J=6.3 Hz), 3.25-3.08 (2H, m), 2.85-2.66 (2H, m), 2.40-2.28 (2H, m), 2.07-1.14 (15H, m)
|
|
Purity
>90% (NMR)
|
MS
526 (M + 1)
|
|
Example No.
161
1H NMR (δ5) ppm
|
|
205
300 MHz, DMSO-d6 9.05 (1H, brs), 8.76 (lh, brs), 8.31 (1H, s), 8.19 and 8.00 (2H, ABq, J=8.3 Hz), 7.79 and 7.25 (4H, A′ B′ q, J=8.3 Hz), 7.39 (1H, brs), 6.86-6.74 (4H, m), 4.37 (1H, brt, J=12.2 Hz), 3.89 (2H, d, J=5.0 Hz), 3.35-3.18 (2H, m), 2.98-2.75 (2H, m), 2.38-2.17 (2H, m), 2.16-1.15 (15H, m)
|
|
Purity
>90% (NMR)
|
MS
526 (M + 1)
|
|
Example No.
162
1H NMR (δ) ppm
|
|
206
300 MHz, DMSO-d6 12.87 (1H, brs), 8.58 (1H, d, J=6.0 Hz), 8.23 (1H, s), 7.99 and 7.80 (2H, ABq, J=8.6 Hz), 7.61 and 7.18 (4H, A′ B′ q, J=8.0 Hz), 7.45-7.30 (5H, m), 5.29 (1H, brs), 4.26 (1H, brt, J=12.2 Hz), 2.37-2.11 (2H, m), 2.00-1.71 (4H, m), 1.92 (3H, s), 1.70-1.52 (1H, m), 1.45-1.11 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
498 (M + 1)
|
|
[1836]
46
TABLE 45
|
|
|
|
Example No.
163
1H NMR (δ) ppm
|
|
207
300 MHz, DMSO-d6 8.23 (1H, s), 7.95 and 7.86 (2H, ABq, J=8.6 Hz), 7.69 and 7.18 (4H, A′ B′ q, J=8.6 Hz), 7.35 (1H, t, J=8.6 Hz), 6.80 (1H, d, J=7.5 Hz), 6.72-6.69 (2H, m), 5.20 (1H, t, J=3.7 Hz), 4.31 (1H, brt, J=12.2 Hz), 3.95 (2H, t, J=6.8 Hz), 2.49-2.19 (4H, m), 1.97-1.76 (4H, m), 1.68 (3H, s), 1.67-1.54 (1H, m), 1.61 (3H, s), 1.45-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
511 (M + 1)
|
|
Example No.
164
1H NMR (δ) ppm
|
|
208
300 MHz, DMSO-d6 8.20 (1H, s), 7.87 (2H, s), 7.68 and 7.18 (4H, ABq, J=8.7 Hz), 7.35 (1H, t, J=7.9 Hz), 6.81 (1H, d, J=9.4 Hz), 6.72 (1Hs), 6.71 (1H, d, J=6.8 Hz), 4.80 (2H, s), 4.29 (1H, brt, J=12.2 Hz), 4.10 (1H, t, J=6.7 Hz), 2.43 (1H, t, J=6.7 Hz), 2.39-2.19 (2H, m), 1.97-1.78 (4H, m), 1.76 (3H, s), 1.70-1.56 (1H, m), 1.43-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
497 (M + 1)
|
|
Example No.
165
1H NMR (δ) ppm
|
|
209
300 MHz, DMSO-d6 11.21 (1H, brs), 8.33 (1H, s), 8.25 (1H, d, J=8.6 Hz), 8.04 (1H, d, J=8.6 Hz), 7.78 (2H, d, J=8.7 Hz), 7.70-7.67 (2H, m), 7.55-7.42 (3H, m), 7.27 (2H, d, J=8.7 Hz), 4.73-4.30 (5H, m), 4.20-3.97 (1H, m), 3.42-3.10 (2H, m), 2.45-1.23 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
|
|
[1837]
47
TABLE 46
|
|
|
|
Example No.
166
1H NMR (δ) ppm
|
|
210
300 MHz, DMSO-d6 8.27 (1H, s), 8.13 (1H, d, J=8.4 Hz), 7.97 (1H, d, J=9.0 Hz), 7.73 (1H, d, J=1.8 Hz), 7.68 (2H, d, J=8.4 Hz), 7.54 (1H, dd, J=8.4, 2.1 Hz), 7.41-7.31 (5H, m), 7.19 (2H, d, J=8.4 Hz), 5.10 (2H, s), 4.32 (1H, m), 2.50 (3H, s), 2.40-2.15 (2H, m), 2.10-1.75 (4H, m), 1.75-1.55 (1H, m), 1.55-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
583 (M + 1)
|
|
Example No.
167
1H NMR (δ) ppm
|
|
211
300 MHz, DMSO-d6 8.25 (1H, s), 8.09 (1H, d, J=8.4 Hz), 8.00 (2H, d, J=8.4 Hz), 7.94 (1H, d, J=8.7 Hz), 7.80 (1H, d, J=2.1 Hz), 7.73 (2H, d, J=8.1 Hz), 7.65 (2H, d, J=8.7 Hz), 7.60 (1H, dd, J=8.1, 2.1 Hz), 7.44 (1H, d, J=8.1 Hz), 7.16 (2H, d, J=8.7 Hz), 5.13 (2H, s), 4.30 (1H, m), 3.26 (3H, s), 2.40-1.15 (2H, m), 2.05-1.75 (4H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
615 (M + 1)
|
|
Example No.
168
1H NMR (δ) ppm
|
|
212
300 MHz, DMSO-d6 13.1 (1H, brs), 8.32 (1H, s), 8.28 (1H, d, J=8.8 Hz), 8.05 (1H, d, J=8.7 Hz), 7.80-7.75 (3H, m), 7.69 (1H, d, J=4.1 Hz), 7.57 (2H, m), 7.34-7.29 (3H, m), 7.20-7.15 (1H, m), 5.24 (2H, s), 4.39 (1H, m), 2.45-2.20 (2H, m), 2.20-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
543 (M + 1)
|
|
[1838]
48
TABLE 47
|
|
|
|
Example No.
169
1H NMR (δ) ppm
|
|
213
300 MHz, DMSO-d6 8.31 (1H, s), 8.26 (1H, d, J=8.7 Hz), 8.05 (1H, d, J=8.7 Hz), 7.78-7.71 (3H, m), 7.59-7.41 (6H, m), 7.23 (2H, d, J=9.0 Hz), 5.11 (2H, s), 4.35 (1H, m), 2.40-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
571 (M + 1)
|
|
Example No.
170
1H NMR (δ) ppm
|
|
214
300 MHz, DMSO-d6 12.7 (1H, brs), 8.66 (1H, s), 8.61 (1H, m), 8.21 (1H, s), 7.92-7.79 (4H, m), 7.61-7.56 (3H, m), 7.50-7.43 (2H, m), 7.10 (2H, d, J=8.7 Hz), 5.09 (2H, s), 4.26 (1H, m), 2.40-2.15 (2H, m), 2.00-1.75 (4H, m), 1.75-1.55 (1H, m), 1.50-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
538 (M + 1)
|
|
Example No.
171
1H NMR (δ) ppm
|
|
215
300 MHz, DMS0-d6 8.31 (1H, s), 8.25 (1H, d, J=8.7 Hz), 8.04 (1H, d, J=8.7 Hz), 7.74-7.71 (3H, m), 7.57-7.46 (3H, m), 7.39 (1H, d, J=8.1 Hz), 7.31-7.21 (4H, m), 5.11 (2H, s), 4.35 (1H, m), 2.40-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
555 (M + 1)
|
|
[1839]
49
TABLE 48
|
|
|
|
Example No.
172
1H NMR (δ) ppm
|
|
216
300 MHz, DMSO-d6 8.24 (1H, s), 7.99 (1H, d, J=8.7 Hz), 7.88 (1H, d, J=10.5 Hz), 7.70 (1H, dd, J=11.4, 1.8 Hz), 7.48-7.32 (6H, m), 7.17-7.09 (5H, m), 5.12 (2H, s), 4.30 (1H, m), 2.40-2.15 (2H, m), 2.05-1.75 (4H, m), 1.75-1.55 (1H, m), 1.55-1.20 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
537 (M + 1)
|
|
Example No.
173
1H NMR (δ) ppm
|
|
217
300 MHz, DMSO-d6 8.33 (1H, s), 8.29 (1H, d, J=8.7 Hz), 8.06 (1H, d, J=8.7 Hz), 7.82-7.74 (4H, m), 7.45 (1H, dd, J=8.4, 3.0 Hz), 7.39 (2H, d, J=8.7 Hz), 5.28 (2H, s), 4.40 (1H, m), 2.40-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
540 (M + 1)
|
|
Example No.
174
1H NMR (δ) ppm
|
|
218
300 MHz, DMSO-d6 12.80 (1H, brs), 8.26 (1H, s), 8.01 (1H, d, J=8.7 Hz), 7.85 (1H, d, J=8.7 Hz), 7.80-7.70 (1H, m), 7.60-7.36 (7H, m), 7.18-6.91 (2H, m), 5.09 (2H, s), 4.11-3.90 (1H, m), 2.32-1.18 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
590 (M + 1)
|
|
[1840]
50
TABLE 49
|
|
|
|
Example No.
175
1H NMR (δ) ppm
|
|
219
300 MHz, DMSO-d6 12.75 (1H, s), 8.21 (1H, s), 7.94 and 7.85 (2H, ABq, J=8.7 Hz), 7.61 and 7.00 (4H, A′ B′ q, J=8.5 Hz), 7.31-6.91 (2H, m), 7.25 (2H, d, J=7.7 Hz), 5.41 (2H, brs), 4.54 (2H, d, J=6.6 Hz), 4.35-4.14 (2H, m), 2.49-2.15 (3H, m), 1.95-1.55 (5H, m), 1.50-1.13 (5H, m), 1.10-0.77 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
568 (M + 1)
|
|
Example No.
176
1H NMR (δ) ppm
|
|
220
300 MHz, DMSO-d6 8.24 (1H, s), 7.97 and 7.87 (2H, ABq, J=8.6 Hz), 7.69 and 7.19 (4H, A′ B′ q, J=8.6 Hz), 7.35 (1H, t, J=8.1 Hz), 6.81 (1H, d, J=9.2 Hz), 6.72 (1H, s), 6.71 (1H, d, J=6.5 Hz), 4.48-4.20 (2H, m), 3.95-3.75 (3H, m), 3.03 (1H, t, J=12.3 Hz), 2.60-2.40 (1H, m), 2.39-2.15 (2H, m), 2.07-1.58 (6H, m), 1.99 (3H, s), 1.50-1.00 (5H, m)
|
|
Purity
>90% (NMR)
|
MS
568 (M + 1)
|
|
Example No.
177
1H NMR (δ) ppm
|
|
221
300 MHz, DMSO-d6 12.76 (1H, s), 8.23 (1H, s), 7.96 and 7.86 (2H, ABq, J=8.6 Hz), 7.69 and 7.20 (4H, A′ B′ q, J=8.6 Hz), 7.39 (1H, t, J=8.2 Hz), 6.86 (1H, d, J=8.3 Hz), 6.81 (1H, s), 6.76 (1h, d, J=8.0 Hz), 4.83 (2H, s), 4.31 (1H, brt, J=12.2 Hz), 2.39-2.19 (2H, m), 1.99-1.79 (4H, m), 1.70-1.58 (1H, m), 1.48-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
467 (M + 1)
|
|
[1841]
51
TABLE 50
|
|
|
|
Example No.
178
1H NMR (δ) ppm
|
|
222
300 MHz, DMSO-d6 12.85 (1H, s), 8.75 (1H, s), 8.63 (2H, d, J=3.8 Hz), 8.25 (1H, s), 8.04-8.01 (2H, m), 8.02 and 7.90 (2H, ABq, J=8.6 Hz), 7.72 and 7.20 (4H, A′ B′ q, J=8.6 Hz), 7.57 (2H, dd, J=7.8, 5.0 Hz), 7.40 (1H, t, J=8.2 Hz), 6.93 (1H, d, J=8.2 Hz), 6.87 (1H, s), 6.77 (1H, d, J=8.2 Hz), 5.23 (2H, s), 4.33 (1H, brt, J=12.2 Hz), 2.40-2.18 (2H, m), 2.00-1.55
|
# (5H, m), 150-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
520 (M + 1)
|
|
Example No.
179
1H NMR (δ) ppm
|
|
223
300 MHz, DMSO-d6 8.32 (1H, s), 8.29 (1H, d, J=9.0 Hz), 8.06 (1H, d, J=8.7 Hz), 7.61 (1H, d, J=8.4 Hz), 7.58-7.32 (5H, m), 6.98 (1H, d, J=2.1 Hz), 6.93 (1H, dd, J=8.7, 2.1 Hz), 5.27 (2H, s), 4.16-4.00 (1H, m), 3.87 (3H, s), 2.20-2.12 (2H, m), 2.02-1.98 (4H, m), 1.70-1.60 (1H, m), 1.52-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
457 (M + 1)
|
|
Example No.
180
1H NMR (δ) ppm
|
|
224
300 MHz, DMSO-d6 8.21 (1H, s), 7.91 (1H, d, J=8.6 Hz), 7.85 (1H, d, J=8.6 Hz), 7.63 (2H, d, J=8.4 Hz), 7.60 (1H, d, J=9.0 Hz), 7.25 (2H, d, J=8.4 Hz), 7.23 (1H, d, J=3.0 Hz), 6.95 (1H, dd, J=9.0, 3.0 Hz), 5.19 (2H, s), 4.30 (1H, m), 3.78 (3H, s), 2.40-2.19 (2H, m), 2.00-1.87 (4H, m), 1.66 (1H, m), 1.49-1.18 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
536 (M + 1)
|
|
[1842]
52
TABLE 51
|
|
|
|
Example No.
181
1H NMR (δ) ppm
|
|
225
300 MHz, DMSO-d6 8.19 (1H, s), 7.95 (1H, d, J=8.7 Hz), 7.86 (1H, d, J=8.7 Hz), 7.65 (4H, d, J=7.4 Hz), 7.47 (2H, d, J=8.7 Hz), 7.44-7.27 (6H, m), 6.99 (2H, d, J=8.7 Hz), 4.20 (1H, m), 2.34-2.12 (2H, m), 1.98-1.75 (4H, m), 1.64 (1H, m), 1.46-1.13 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
547 (M + 1)
|
|
Example No.
182
1H NMR (δ) ppm
|
|
226
300 MHz, DMSO-d6 8.55 (1H, d, J=2.1 Hz), 8.32 (1H, m), 8.21 (1H, s), 7.95 (1H, d, J=8.4 Hz), 7.86 (1H, d, J=7.8 Hz), 7.68-7.56 (7H, m), 7.14 (2H, d, J=8.7 Hz), 5.21 (1H, s), 4.26 (1H, m), 2.35-2.15 (2H, m), 2.00-1.75 (4H, m), 1.74-1.55 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
582 (M+)
|
|
Example No.
183
1H NMR (δ) ppm
|
|
227
300 MHz, DMSO-d6 10.16 (1H, s), 8.25 (1H, s), 8.07 (1H, d, J=8.7 Hz), 7.94-7.87 (2H, m), 7.71-7.62 (3H, m), 7.50-7.42 (4H, m), 7.30 (1H, d, J=8.4 Hz), 7.14 (2H, d, J=8.4 Hz), 5.06 (2H, s), 4.31 (1H, m), 2.35-2.15 (2H, m), 2.05-1.75 (4H, m), 1.75-1.55 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
594 (M+)
|
|
[1843]
53
TABLE 52
|
|
|
|
Example No.
184
1H NMR (δ) ppm
|
|
228
300 MHz, DMSO-d6 13.2 (2H, brs), 8.30 (1H, s), 8.26 (1H, d, J=8.8 Hz), 8.04 (1H, d, J=8.8 Hz), 8.00 (2H, d, J=8.2 Hz), 7.79 (1H, s), 7.73 (2H, d, J=8.7 Hz), 7.61-7.56 (3H, m), 7.44 (1H, d, J=8.3 Hz), 7.23 (2H, d, J=8.8 Hz), 5.13 (2H, s), 4.35 (1H, m), 2.45-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (1H, m), 1.75-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
581 (M + 1)
|
|
Example No.
185
1H NMR (δ) ppm
|
|
229
300 MHz, DMSO-d6 8.30 (1H, m), 8.24 (1H, d, J=9.0 Hz), 8.03 (1H, d, J=9.0 Hz), 7.79-7.10 (9H, m), 5.20-5.07 (2H, m), 4.43-4.04 (4H, m), 3.50-3.36 (2H, m), 2.40-1.19 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
554 (M + 1)
|
|
Example No.
186
1H NMR (δ) ppm
|
|
230
(DMSO-d6) δ: 8.29 (1H, brs), 8.10 (1H, d, J=8.4 Hz), 7.97 (1H, d, J=8.4 Hz), 7.79 (2H, d, J=8.4 Hz), 7.74-7.67 (1H, m), 7.68 (2H, d, J=8.4 Hz), 7.61 (1H, d, J=8.4 Hz), 7.57-7.50 (2H, m), 7.46-7.39 (1H, m), 7.29 (1H, d, J=2.4 Hz), 7.11 (1H, dd, J=2.4, 8.4 Hz), 5.12 (2H, s), 3.99-3.84 (1H, m), 2.35-1.72 (6H, m), 1.68-1.55 (1H, m), 1.42-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
605 (M + 1)
|
|
[1844]
54
TABLE 53
|
|
|
|
Example No.
187
1H NMR (δ) ppm
|
|
231
300 MHz, DMSO-d6 12.76 (1H, s), 8.57 (1H, d, J=4.4 Hz), 8.23 (1H, s), 7.96 and 7.86 (2H, ABq, J=8.2 Hz), 7.87-7.82 (1H, m), 7.68 and 7.12 (4H, A′ B′ q, J=8.6 Hz), 7.53 (2H, d, J=7.8 Hz), 7.37 (1H, t, J=8.3 Hz), 7.36-7.33 (1H, m), 6.90 (1H, d, J=8.3 Hz), 6.83 (1H, s), 6.74 (1H, d, J=8.0 Hz), 5.20 (2H, s), 4.31 (1H, brt, J=12.2 Hz), 2.35-2.19 (2H, m), 1.99-1.57 (5H, m), 1.45-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
520 (M + 1)
|
|
Example No.
188
1H NMR (δ) ppm
|
|
232
300 MHz, DMSO-d6 12.77 (1H, brs), 8.21 (1H, d, J=1, 4 Hz), 7.92 (1H, d, J=8.7 Hz), 7.88 (1H, dd, J=8.7, 1.4 Hz), 7.57 (2H, d, J=8.7 Hz), 7.57-7.27 (7H, m), 7.11 (2H, d, J=8.7 Hz), 5.07 (2H, s), 4.26 (1H, m), 2.36-2.16 (2H, m), 1.98-1.75 (4H, m), 1.64 (1H, m), 1.49-1.17 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
555 (M + 1)
|
|
Example No.
189
1H NMR (δ) ppm
|
|
233
300 MHz, DMSO-d6 8.32(1H, s), 8.30-8.20 (2H, m), 8.10-7.98 (2H, m), 7.74 (2H, d, J=9.0 Hz), 7.60-7.46 (5H, m), 7.24 (2H, d, J=9.0 Hz), 5.19 (2H, s), 4.44-4.30 (1H, m), 2.40-2.20 (2H, m), 2.12-1.78 (4H, m), 1.72-1.58 (4H, m)
|
|
Purity
>90% (NMR)
|
MS
581 (M + 1)
|
|
[1845]
55
TABLE 54
|
|
|
|
Example No.
190
1H NMR (δ) ppm
|
|
234
300 MHz, DMSO-d6 8.36-7.90 (5H, m), 7.74 (2H, d, J=8.6 Hz), 7.60-7.40 (5H, m), 7.25 (2H, d, J=8.7 Hz), 5.14 (2H, s), 4.45-4.28 (1H, m), 2.40-2.15 (4H, m), 1.75-1.55 (1H, m), 1.55-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
580 (M + 1)
|
|
Example No.
191
1H NMR (δ) ppm
|
|
235
300 MHz, DMSO-d6 8.22 (1H, s), 7.94 (1H, d, J=8.4 Hz), 7.85 (1H, d, J=8.7 Hz), 7.61 (2H, d, J=8.7 Hz), 7.25-7.00 (6H, m), 4.86 (2H, s), 4.30 (1H, m), 2.89 (3H, s), 2.80 (3H, s), 2.29 (2H, m), 2.00-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
514 (M + 1)
|
|
Example No.
192
1H NMR (δ) ppm
|
|
236
300 MHz, DMSO-d6 8.22 (1H, s), 7.94 (1H, d, J=8.4 Hz), 7.85 (1H, d, J=8.7 Hz), 7.61 (2H, d, J=8.7 Hz), 7.26-7.01 (6H, m), 4.84 (2H, s), 4.1 (1H, m), 3.36 (4H, m), 2.29 (2H, m), 2.00-1.75 (4H, m), 1.75-1.15 (10H, m)
|
|
Purity
>90% (NMR)
|
MS
554 (M + 1)
|
|
[1846]
56
TABLE 55
|
|
|
|
Example No.
193
1H NMR (δ) ppm
|
|
237
300 MHz, DMSO-d6 13.00 (1H, brs), 8.29 (1H, d, J=1.4 Hz), 8.15 (1H, d, J=8.8 Hz), 7.97 (1H, dd, J=1.4 Hz, 8.8 Hz), 7.89 (2H, d, J=8.8 Hz), 7.80-7.60 (5H, m) 7.25 (2H, d, J=8.8 Hz), 4.47-3.90 (4H, m), 3.20-3.10 (2H, m), 2.41-1.22 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
560 (M + 1)
|
|
Example No.
194
1H NMR(δ) ppm
|
|
238
300 MHz, DMSO-d6 12.80 (1H, brs), 8.23 (1H, s), 7.97 (1H, d, J=8.5 Hz), 7.87 (1H, d, J=8.5 Hz), 7.70-7.17 (9H, m), 4.60-4.13 (4H, m), 3.72-3.40 (2H, m), 2.40-1.15 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
524 (M + 1)
|
|
Example No.
195
1H NMR (δ) ppm
|
|
239
300 MHz, DMSO-d6 8.25 (1H, s), 8.09-7.92 (5H, m), 7.77 (1H, s), 7.65 (2H, d, J=8.4 Hz), 7.59-7.51 (3H, m), 7.43 (2H, d, J=8.4 Hz), 7.17 (2H, d, J=8.7 Hz), 5.10 (2H, s), 4.30 (1H, m), 2.40-2.15 (2H, m), 2.10-1.75 (4H, m), 1.75-1.55 (1H, m), 1.55-1.10 (3H, m),
|
|
Purity
>90% (NMR)
|
MS
580 (M + 1)
|
|
[1847]
57
TABLE 56
|
|
|
|
Example No.
196
1H NMR (δ) ppm
|
|
240
300 MHz, DMSO-d6 8.22 (1H, s), 7.95 (1H, d, J=8.4 Hz), 7.86 (1H, d, J=8.4 Hz), 7.69 and 7.18 (4H, ABq, J=8.7 Hz), 7.34 (1H, t, J=8.0 Hz), 6.80-6.69 (3H, m), 4.83 (2H, s), 4.31 (1H, m), 2.98 (3H, s), 2.84 (3H, s), 2.29 (2H, m), 2.00-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
514 (M + 1)
|
|
Example No.
197
1H NMR (δ) ppm
|
|
241
300 MHz, DMSO-d6 8.23 (1H, s), 7.95 (1H, d, J=8.4 Hz), 7.86 (1H, d, J=8.7 Hz), 7.69 and 7.18 (4H, ABq, J=8.7 Hz), 7.35 (1H, t, J=8.4 Hz), 6.80-6.70 (3H, m), 4.82 (2H, s), 4.31 (1H, m), 3.40 (4H, m), 2.29 (2H, m), 2.00-1.75 (4H, m), 1.70-1.15 (10H, m)
|
|
Purity
>90% (NMR)
|
MS
554 (M + 1)
|
|
Example No.
198
1H NMR (δ) ppm
|
|
242
300 MHz, DMSO-d6 12.75 (1H, s), 8.23 (1H, d, J=4.4 Hz), 7.95 and 7.86 (2H, ABq, J=8.6 Hz), 7.69 and 7.19 (4H, A′ B′ q, J=8.6 Hz), 7.36 (1H, t, J=7.8 Hz), 6.82 (1H, d, J=9.3 Hz), 6.73 (1H, s), 6.71 (1H, d, J=7.2 Hz), 4.30 (1H, brt, J=12.2 Hz), 3.89 (2H, d, J=6.0 Hz), 3.59 (2H, d, J=11.7 Hz), 2.85 (3H, s), 2.73 (2H, t, J=10.5 Hz), 2.41-2.20 (2H, m), 1.98-1.59 (8H, m), 1.46-1.18 (5H, m)
|
|
Purity
>90% (NMR)
|
MS
604 (M + 1)
|
|
[1848]
58
TABLE 57
|
|
|
|
Example No.
199
1H NMR (δ) ppm
|
|
243
300 MHz, DMSO-d6 8.33 (1H, s), 8.30 (1H, d, J=8.9 Hz), 8.06 (1H, d, J=8.7 Hz), 7.79 (2H, d, J=8.7 Hz), 7.70 (2H, d, J=8.7 Hz), 7.61 (2H, d, J=8.7 Hz), 7.39 (2H, d, J=8.8 Hz), 5.28 (2H, s), 4.39 (1H, m), 2.50-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
542 (M + 1)
|
|
Example No.
200
1H NMR (δ) ppm
|
|
244
(DMSO-d6) δ: 8.23(1H, s), 7.96 (1H, d, J=8.6 Hz), 7.86 (1H, d, J=8.6 Hz), 7.69 (2H, d, J=8.4 Hz), 7.52 (1H, s) 7.50-7.30 (4H, m), 7.18 (2H, d, J=8.4 Hz), 6.90 (1H, d, J=8.3 Hz), 6.84 (1H, s), 6.74 (1H, d, J=8.3 Hz), 5.15 (2H, s), 4.39-4.21 (1H, m), 2.39-2.18 (2H, m), 1.99-1.80 (4H, m), 1.71-1.59 (1H, m), 1.50-1.20 (3H, m),
|
|
Purity
>90% (NMR)
|
MS
553 (M + 1)
|
|
Example No.
201
1H NMR (δ) ppm
|
|
245
(DMSO-d6) δ: 8.26 (1H, s), 8.06 (1H, d, J=8.7 Hz), 7.92 (1H, d, J=8.7 Hz), 7.72 (2H, d, J=8.7 Hz), 7.47 (4H, s), 7.38 (1H, t, J=8.2 Hz), 7.20 (2H, d, J=8.7 Hz), 6.90 (1H, d, J=8.2 Hz), 6.83 (1H, s), 6.74 (1H, d, J=8.2 Hz), 5.14 (2H, s), 2.40-2.19 (2H, m), 2.04-1.78 (4H, m), 1.71-1.60 (1H, m), 1.50-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
553 (M + 1)
|
|
[1849]
59
TABLE 58
|
|
|
|
Example No.
202
1H NMR (δ) ppm
|
|
246
(DMS0-d6) δ: 12.81 (1H, brs), 8.24 (1H, s), 7.99 (1H, d, J=8.7 Hz), 7.87 (1H, d, J=8.7 Hz), 7.69 (2H, d, J=8.6 Hz), 7.53-7.47 (2H, m), 7.38 (1H, t, J=8.2 Hz), 7.26-7.16 (4H, m), 6.89 (1H, d, J=8.2 Hz), 6.82 (1H, s), 6.73 (1H, d, J=8.2 Hz), 5.11 (2H, s), 4.40-4.21 (1H, m), 2.40-2.17 (2H, m), 2.01-1.77 (4H, m), 1.71-1.59 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
537 (M + 1)
|
|
Example No.
203
1H NMR (δ) ppm
|
|
247
300 MHz, DMSO-d6 12.74 (1H, brs), 8.21 (1H, s), 8.08 (2H, d, J=9.0 Hz), 7.93 (1H, d, J=8.7 Hz), 7.85 (2h, d, J=8.7 Hz), 7.58 (2H, d, J=8.7 Hz), 7.13 (2H, d, J=8.7 Hz), 6.83 (2H, d, J=9.0 Hz), 4.50-4.08 (4H, m), 3.68-3.30 (2H, m), 2.40-1.23 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
541 (M + 1)
|
|
Example No.
204
1H NMR (δ) ppm
|
|
248
300 MHz, DMSO-d6 8.39-8.28 (2H, m), 8.08 (1H, d, J=8.8 Hz), 7.76 (2H, d, J=8.7 Hz), 7.29 (2H, d, J=8.7 Hz), 7.25-7.13 (2H. m), 6.80-6.60 (3H, m), 4.46-3.98 (4H, m), 3.51-3.42 (1H, m), 3.20-3.04 (1H, m), 2.39-1.20 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
|
|
[1850]
60
TABLE 59
|
|
|
|
Example No.
205
1H NMR (δ) ppm
|
|
249
300 MHz, DMSO-d6 9.59 (1H, brs), 8.23 (1H, s), 8.04 (1H, d, J=8.4 Hz), 7.90 (1H, d, J=8.4 Hz), 7.62 (2H, d, J=8.7 Hz), 7.39 (2H, 2H, d, J=8.7 Hz) 7.18 (2H, d, J=8.7 Hz), 6.63 (2H, d, J=8.7 Hz), 3.95-3.37 (4H, m), 3.51-3.40 (1H, m), 3.17-3.02 (1H. m), 2.39-1.18 (17H, m)
|
|
Purity
>90% (NMR)
|
MS
553 (M + 1)
|
|
Example No.
206
1H NMR (δ) ppm
|
|
250
300 MHz, DMSO-d6 13.1 (1H, brs), 8.33 (1H, s), 8.29 (1H, d, J=8.8 Hz), 8.06 (1H, d, J=8.7 Hz), 7.77 (2H, d, J=8.7 Hz), 7.59-7.52 (4H, m), 7.35 (2H, d, J=8.8 Hz), 5.19 (2H, s), 4.39 (1H, m), 2.71 (3H, s), 2.45-2.20 (2H, m), 2.20-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
558 (M + 1)
|
|
Example No.
207
1H NMR (δ) ppm
|
|
251
300 MHz, DMSO-d6 8.29 (1H, s) 8.26 (1H, d, J=8.8 Hz), 8.04 (1H, d, J=8.7 Hz), 7.73 (2H, d, J=8.8 Hz), 7.50-7.41 (6H, m), 7.36 (2H, d, J=8.8 Hz), 7.18-7.13 (2H, m), 6.84 (1H, s), 4.33 (1H, m), 2.40-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
539 (M + 1)
|
|
[1851]
61
TABLE 60
|
|
|
|
Example No.
208
1H NMR (δ) ppm
|
|
252
300 MHz, DMSO-d6 8.32 (1H, s), 8.27 (1H, d, J=9.0 Hz) 8.07-8.00 (3H, m), 7.79-7.70 (3H, m), 7.51 (2H, d, J=8.1 Hz), 7.40 (2H, d, J=8.4 Hz), 7.18 (2H, d, J=8.7 Hz), 4.99 (2H, s) 4.34 (1H, m), 2.40-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
582 (M + 1)
|
|
Example No.
209
1H NMR (δ) ppm
|
|
253
300 MHz, DMSO-d6 8.24 (1H, d, J=4.4 Hz), 7.98 and 7.88 (2H, ABq, J=8.6 Hz), 7.70 and 7.19 (4H, A′ B′ q, J=8.4 Hz), 7.35(1H, t, J=8.4 Hz), 6.86 (1H, d, J=8.1 Hz), 6.79 (1H, s), 6.71 (1H, d, J=8.1 Hz), 4.65-4.53 (1H, m), 4.31 (1H, brt, J=12.2 Hz), 3.88-3.78 (2H, m), 3.48 (2H, t, J=9.0 Hz), 2.39-2.19 (2H, m), 1.02-1.71 (6H, m), 1.70-1.50 (3H, m), 1.46-1.19 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
513 (M + 1)
|
|
Example No.
210
1H NMR (δ) ppm
|
|
254
300 MHz, DMSO-d6 12.75 (1H, s), 8.23 (1H, s), 7.96 and 7.87 (2H, ABq, J=8.7 Hz), 7.84-7.66 (6H, m), 7.38 (1H, t, J=8.4 Hz), 7.18 (2H, d, J=8.4 Hz), 6.91 (1H, d, J=9.0 Hz), 6.84 (1H, s), 6.74 (1H, d, J=8.1 Hz), 5.26 (2H, s), 4.31 (1H, brt, J=12.2 Hz), 2.40-2.20 (2H, m), 1.99-1.76 (4H, m), 1.69-1.58 (1H, m), 1.45-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
587 (M + 1)
|
|
[1852]
62
TABLE 61
|
|
|
Example No.
211
1H NMR (δ) ppm
|
|
|
255
300 MHz, DMSO-d6 8.29 (1H, s), 8.15 and 7.47 (2H, ABq, J=9.0 Hz), 7.77 and 7.24 (4H, ABq, J=8.9 Hz) 7.39 (1H, t, J=7.8 Hz), 6.84 (1H, d, J=9.3 Hz), 6.76 (1H, s), 6.75 (1H, d, J=9.5 Hz), 4.36 (1H, brt, J=12.2 Hz), 3.89 (2H, d, J=6.0 Hz), 3.42 (2H, d, J=10.8 Hz), 3.04-2.88 (2H, m), 2.78-2.60 (1H, m), 2.71 (2H, d, J=4.8 Hz), 2.38-2.20 (2H, m), 2.07-1.80 (7H, m), 1.70-1.20 (5H, m)
|
|
Purity
>90% (NMR)
|
MS
540 (M + 1)
|
|
Example No.
212
1H NMR (δ) ppm
|
|
|
256
300 MHz, DMSO-d6 8.22 (1H, s), 7.93 and 7.87 (2H, ABq, J=8.6 Hz), 7.68 and 7.17 (4H, A′b′q, J=8.7 Hz), 7.43-7.33 (5H, m), 6.87 (1H, d, J=8.1 Hz), 7.18 (2H, d, J=8.4 Hz), 6.91 (1H, d, J=9.0 Hz), 6.81 (1H, s), 6.72 (1H, d, J=8.0 Hz), 5.08 (2H, s), 4.36 (1H, brt, J=12.2 Hz), 2.37-2.20 (2H, m), 1.98-1.78 (4H, m), 1.69-1.60 (1H, m), 1.41-1.21 (3H, m), 1.28 (9H, s)
|
|
Purity
>90% (NMR)
|
MS
575 (M + 1)
|
|
Example No.
213
1H NMR (δ) ppm
|
|
|
257
300 MHz, DMSO-d6 8.23 (1H, s), 7.95 and 7.86 (2H, AB1, J=8.4 Hz), 7.69 and 7.19 (4H, A′B′1, J=8.7 Hz), 7.62-7.36 (5H, m), 6.90 (1H, d, J=8.1 Hz), 6.84 (1H, s), 6.76 (1H, d, J=8.1 Hz), 5.19 (2H, s), 4.31 (1H, brt, J=12.2 Hz), 2.40-2.19 (2H, m), 1.99-1.76 (4H, m), 1.68-1.55 (1H, m), 1.50-1.18 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
553 (M + 1)
|
|
[1853]
63
TABLE 62
|
|
|
Example No.
214
1H NMR (δ) ppm
|
|
|
258
300 MHz, DMSO-d6 8.94 (1H, d, J=2.1 Hz), 8.60 (1H, dd, J=4.8, 1.5 Hz), 8.23 (1H, d, J=1.5 Hz), 8.12 (1H, dt, J=8.7 Hz), 7.87 (1H, dd, J=8.7, 1.5 Hz), 7.70 (1H, d, J=8.7 Hz), 7.67-7.54 (3H, m), 7.50 (1H, dd, J=8.1, 4.8 Hz), 7.25 (2H, d, J=8.7 Hz), 7.21 (1H, m), 4.31 (1H, m), 2.38-2.19 (2H, m), 2.00-1.78 (4H, m), 1.65 (1H, m), 1.48-1.22 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
490 (M + 1)
|
|
Example No.
215
1H NMR (δ) ppm
|
|
|
259
300 MHz, DMSO-d6 12.75 (1H, brs), 8.23 (1H, s), 7.95 (1H, d, J=8.7 Hz), 7.86 (1H, d, J=8.7 Hz), 7.73 (2H, d, J=8.4 Hz), 7.71 (2H, d, J=8.4 Hz), 7.63-7.39 (2H, m), 7.52 (2H, d, J=8.4 Hz), 7.18 (1H, m), 4.31 (1H, m), 2.39-2.20 (2H, m), 2.00-1.76 (4H, m), 1.65 (1H, m), 1.49-1.18 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
523 (M + 1)
|
|
Example No.
216
1H NMR (δ) ppm
|
|
|
260
300 MHz, DMSO-d6 12.77 (1H, s), 8.23 (1H, d, J=1.4 Hz), 7.95 (1H, d, J=8.6 Hz), 7.86 (1H, dd, J=8.6, 1.4 Hz), 7.70 (2H, d, J=8.7 Hz), 7.64 (2H, d, J=8.8 Hz), 7.56-7.48 (2H, m), 7.40 (1H, s), 7.23 (2H, d, J=8.7 Hz), 7.10 (1H, m), 7.03 (2H, d, J=8.8 Hz), 4.31 (1H, m), 3.80 (3H, s), 2.48-2.20 (2H, m), 2.00-1.88 (4H, m), 1.66 (1H, m), 1.50-1.21 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
519 (M + 1)
|
|
[1854]
64
TABLE 63
|
|
|
Example No.
217
1H NMR (δ) ppm
|
|
|
261
(DMSO-d6) δ: 12.80 (1H, brs), 8.23 (1H, s), 8.04 (1H, d, J=8.6 Hz), 7.96 (3H, d, J=8.6 Hz), 7.86 (1H, d, J=8.7 Hz), 7.63 (2H, d, J=8.6 Hz), 7.25 (2H, d, J=8.6 Hz), 5.50 (2H, s), 4.36-4.21 (1H, m), 3.27 (3H, s), 2.74 (3H, s), 2.40-2.19 (2H, m), 1.99-1.79 (4H, m), 1.71-1.60 (1H, m), 1.49-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
602 (M + 1)
|
|
Example No.
218
1H NMR (δ) ppm
|
|
|
262
300 MHz, DMSO-d6 12.9 (1H, brs), 8.25 (1H, s), 8.04 (1H, d, J=8.7 Hz), 7.91 (1H, d, J=8.6 Hz), 7.72 (2H, d, J=8.5 Hz), 7.67 (2H, d, J=8.7 Hz), 7.56 (2H, d, J=8.5 Hz), 7.26 (2H, d, J=8.7 Hz), 5.45 (2H, s), 4.31 (1H, m), 2.71 (3H, s), 2.40-2.15 (2H, m), 2.05-1.80 (4H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
558 (M + 1)
|
|
Example No.
219
1H NMR (δ) ppm
|
|
|
263
300 MHz, DMSO-d6 8.21 (1H, d, J=1.5 Hz), 7.93 (1H, d, J=9.0 Hz), 7.84 (1H, dd, J=9.0, 1.5 Hz), 7.56 (2H, d, J=8.7 Hz), 7.42-7.30 (4H, m), 7.12 (2H, d, J=8.7 Hz), 4.53 (1H, brs), 4.36-4.20 (1H, m), 3.55 (2H, brs), 3.00-2.90 (1H, m), 2.70-2.58 (1H, m), 2.40-1.10 (18H, m)
|
|
Purity
>90% (NMR)
|
MS
544 (M + 1)
|
|
[1855]
65
TABLE 64
|
|
|
Example No.
220
1H NMR (δ) ppm
|
|
|
264
300 MHz, (DMSO-d6) 12.76 (1H, s) 8.23 (1H, s), 7.96 and 7.87 (2H, ABq, J=8.9 Hz), 7.69 and 7.19 (4H, A′B′q, J=8.6 Hz), 7.55 (1H, s), 7.37 (1H, t, J=8.1 Hz), 6.91 (1H, d, J=7.8 Hz), 6.85 (1H, s) 6.74 (1H, d, J=7.5 Hz), 5.13 (2H, 4.31 (1H, brt, J=12.2 (Hz), 2.65 (3H, s), 2.41—2.20 (2H, m), 2.00-1.74 (4H, m), 1.70-1.59 (1H, m), 1.58-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
540 (M + 1)
|
|
Example No.
221
1H NMR (δ) ppm
|
|
|
265
300 MHz, DMSO-d6 8.23 (1H, s), 7.96 and 7.86 (2H, ABq, J=8.6 Hz), 7.69 and 7.18 (4H, A′B′q, J=8.7 Hz), 7.37 (1H, t, J=8.2 Hz), 6.87 (1H, d, J=8.2 Hz), 6.82 (1H, s), 6.75 (1H, d, J=8.0 Hz), 5.24 (2H, s), 4.32 (1H, brt, J=12.2 Hz), 2.58 (3H, s), 2.38-2.20 (2H, m), 2.30 (3H, s), 2.00-1.79 (4H, m), 1.70-1.59 (1H, m), 1.44-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
554 (M + 1)
|
|
Example No.
222
1H NMR (δ) ppm
|
|
|
266
300 MHz, DMSO-d6 12.88 (1H, brs), 8.25 (s, 1H), 8.07-7.57 (11H, m), 7.26 (2H, d, J=8.7 Hz), 7.24 (1H, m), 4.34 (1H, m), 2.30-2.20 (2H, m), 2.03-1.78 (4H, m), 1.64 (1H, m), 1.49-1.19 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
557 (M + 1)
|
|
[1856]
66
TABLE 65
|
|
|
Example No.
223
1H NMR (δ) ppm
|
|
|
267
300 MHz, DMSO-d6 10.96 (1H, brs), 8.21 (1H, d, J=1.4 Hz), 7.93 (1H, d, J=8.7 Hz), 7.84 (1H, dd, J=8.7, 1.4 Hz), 7.76-7.40 (7H, m), 7.18 (2H, d, J=8.0 Hz), 4.24-4.16 (2H, m), 2.40-1.12 (18H, m)
|
|
Purity
>90% (NMR)
|
MS
544 (M + 1)
|
|
Example No.
224
1H NMR (δ) ppm
|
|
|
268
(DMSO-d6) δ: 8.22 (1H, s), 8.07 (1H, d, J=8.4 Hz), 7.92 (1H, d, J=8.4 Hz), 7.54 (2H, d, J=8.7 Hz), 7.40 (2H, d, J=8.4 Hz), 7.30 (2H, d, J=8.4 Hz), 7.14 (2H, d, J=8.7 Hz), 4.61 (2H, s), 4.48-4.32 (1H, m), 3.82 (1H, brd, J=12.3 Hz), 3.65-3.47 (2H, m), 3.10 (brdd, J=8.4, 12.3 Hz), 2.40-2.20 (2H, m), 2.09-1.76 (6H, m), 1.71-1.16 (6H, m)
|
|
Purity
>90% (NMR)
|
MS
544 (M + 1)
|
|
Example No.
225
1H NMR (δ) ppm
|
|
|
269
(DMSO-d6) δ: 12.83 (1H, brs), 8.21 (1H, s), 8.10 (1H, brs), 7.01-7.91 (2H, m), 7.89-7.82 (2H, m), 7.75 (1H, d, J=8.0 Hz), 7.59 (2H, d, J=8.7 Hz), 7.53 (4H, s), 7.46 (1H, brs), 7.12 (2H, d, J=8.7 Hz), 7.23 (2H, s), 4.35 -4.17 (1H, m), 2.38-2.20 (2H, m), 1.99-1.79 (4H, m), 1.71-1.59 (1H, m), 1.48-1.18 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
580 (M + 1)
|
|
[1857]
67
TABLE 66
|
|
|
Example No.
226
1H NMR (δ) ppm
|
|
|
270
300 MHz, DMSO-d6 8.33 and 8.08 (2H, ABq, J=8.7 Hz), 8.31 (1H, m), 7.66 and 7.26 (4H, A′B′q, J=9.2 Hz), 7.42 and 7.39 (4H, A″B″q, J=8.7 Hz), 4.57 (2H, s), 4.50 (1H, brt, J=12.2 Hz), 3.85-3.62 (3H, m) 3.28-3.16 (2H, m), 2.42-2.23 (2H, m), 2.14-1.81 (6H, m), 1.72-1.25 (6H, m)
|
|
Purity
>90% (NMR)
|
MS
544 (M + 1)
|
|
Example No.
227
1H NMR (δ) ppm
|
|
|
271
300 MHz, DMSO-d6 8.43 (1H, d, J=5.0 Hz), 8.23 (1H, s), 7.96 and 7.86 (2H, ABq, J=8.6 Hz), 7.69 and 7.18 (4H, A′B′q, J=8.6 Hz), 7.57 (1H, s), 7.47 (1H, d, J=5.0 Hz), 7.40 (2H, t, J=8.2 Hz), 6.91 (1H, d, J=8.3 Hz), 6.85 (1H, s), 6.77 (1H, d, J=7.9 Hz), 5.25 (2H, s), 4.31 (1H, brt, J=12.2 Hz), 2.40-2.19 (2H, m), 1.99-1.75 (4H, m), 1.73-1.57 (1H, m), 1.49-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
554 (M + 1)
|
|
Example No.
219
1H NMR (δ) ppm
|
|
|
272
300 MHz, DMSO-d6 12.80 (1H, brs), 8.22 (1H, s), 7.94 (1H, d, J=8.6 Hz), 7.87 (1H, d, J=8.6 Hz), 7.60 (2H, d, J=8.7 Hz), 7.32 (2H, d, J=8.7 Hz) 7.17 (2H, d, J=8.7 Hz), 6.70 (2H, d, J=8.7 Hz), 4.35 -3.97 (4H, m), 3.62-3.11 (2H, m), 2.96 (6H, s), 2.39-1.12 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
567 (M + 1)
|
|
[1858]
68
TABLE 67
|
|
|
Example No.
229
1H NMR (δ) ppm
|
|
|
273
300 MHz, DMSO-d6 8.25 (1H, s), 8.20 (1H, s), 8.04 (1H, dd, J=8.1, 1.8 Hz), 7.92 (1H, d, J=8.1 Hz), 7.84 (1H, d, J=9.9 Hz), 7.62-7.50 (7H, m), 7.12 (2H, d, J=8.7 Hz), 5.14 (2H, s), 4.36 (2H, q, J=6.9 Hz), 4.30-4.20 (1H, m), 2.38-2.18 (2H, m), 1.98-1.18 (8H, m), 1.35 (3H, t, J=6.9 Hz)
|
|
Purity
>90% (NMR)
|
MS
608 (M + 1)
|
|
Example No.
230
1H NMR (δ) ppm
|
|
|
274
300 MHz, DMSO-d6 8.35 (1H, s), 8.27 (1H, d, J=8.7 Hz), 8.05 (1H, d, J=9.0 Hz), 7.87 (2H, d, J=8.7 Hz), 7.74 (1H, t, J=8.1 Hz), 7.64 (1H, d, J=7.8 Hz), 7.59-7.50 (2H, m0, 7.36 (2H, d, J=8.7 Hz), 4.39 (1H, m), 2.40-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.20 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
481 (M + 1)
|
|
Example No.
231
1H NMR (δ) ppm
|
|
|
275
300 MHz, DMSO-d6 12.78 (1H, brs), 8.23 (1H, d J=1.5 Hz), 7.96 (1H, d, J=8.7 Hz), 7.87 (1H, dd, J=8.7, 1.5 Hz), 7.75 (2H, d, J=8.4 Hz), 7.63 (2H, d, J=8.4 Hz), 7.52 (2H, s, J=8.4 Hz), 7.24 (2H, d, J=8.4 Hz), 5.47 (2H, s), 4.29 (1H, m), 2.97 (6H, brs), 2.72 (3H, s), 2.39-2.16 (2H, m), 2.00-1.78 (4H, m), 1.71-1.59 (1H, m), 1.49-1.17 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
595 (M + 1)
|
|
[1859]
69
TABLE 68
|
|
|
Example No.
232
1H NMR (δ) ppm
|
|
|
276
300 MHz, DMSO-d6 12.8 (1H, brs), 8.22 (1H, s) 7.96 (1H, d, J=8.7 Hz), 7.86 (1H, d, J=8.6 Hz), 7.70 (1H, s), 7.59 (2H, d, J=8.7 Hz), 7.53-7.50 (5H, m), 7.42 (1H, d, J=7.9 Hz), 7.12 (2H, d, J=8.7 Hz), 5.11 (2H, s), 4.27 (1H, m), 3.01 (3H, brs), 2.97 (3H, brs), 2.40-2.15 (2H, m), 2.00-1.75 (4H, m), 1.75-1.55 (1H, m), 1.50-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
608 (M + 1)
|
|
Example No.
233
1H NMR (δ) ppm
|
|
|
277
DMSO-d6 13.20 (1H, brs), 8.99 (1H, s), 8.32 (1H, s), 8.32 (1H, s), 8.25 (1H, d, J=8.8 Hz), 8.04 (1H, d, J=8.6 Hz), 7.79-7.74 (4H, m), 7.60 (2H, d, J=8.5 Hz), 7.30 (2H, d, J=8.7 Hz), 5.26 (2H, d), 4.36 (1H, m), 2.72 (3H, s), 2.50-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
553 (M + 1)
|
|
Example No.
234
1H NMR (δ) ppm
|
|
|
278
DMSO-d6 8.21 (1H, d, J=3.6 Hz), 8.36-8.26 (3H, m), 8.08 (1H, d, J=8.8 Hz), 7.79 (2H, d, J=8.7 Hz), 7.72-7.64 (3H, m), 7.58 (2H, d, J=8.4 Hz), 7.30 (2H, d, J=8.7 Hz), 5.26 (2H, s), 4.38 (1H, m), 2.50-2.15 (2H, m), 2.15-1.95 (2H, m), 1.95-1.75 (2H, m), 1.75-1.55 (1H, m), 1.55-1.15 (3H, m).
|
|
Purity
>90% (NMR)
|
MS
538 (M + 1)
|
|
[1860]
70
TABLE 69
|
|
|
Example No.
235
1H NMR (δ) ppm
|
|
|
279
300 MHz, DMSO-d6 12.74 (1H, brs), 8.67 (1H, dd, J=3.1, 1.6 Hz), 8.21 (1H, d, J=1.6 Hz), 7.93 (1H, d, J=8.6 Hz), 7.90-7.80 (2H, m), 7.60-7.50 (7H, m) 7.09 (2H, d, J=8.7 Hz), 5.16 (2H, s), 4.26 (1H, m), 2.40-2.20 (2H, m), 2.00-1.60 (5H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
APCI-Ms 538 (M + 1)
|
|
Example No.
236
1H NMR (δ) ppm
|
|
|
280
300 MHz, DMSO-d6 8.40-7.40 (11H, m), 2.95, 2.81 (3H, each d, J=4.7 Hz), 2.40-2.20 (2H, m), 2.10-1.80 (4H, m), 1.70-1.60 (1H, m), 1.50-1.20 (3H, m0
|
|
Purity
>90% (NMR)
|
MS
APCI-Ms 555 (M + 1)
|
|
Example No.
237
1H NMR (δ) ppm
|
|
|
281
300 MHz, DMSO-d6 8.21 (1H, s), 8.15 (1H, d, J=9.5 Hz), 8.02 (1H, s), 8.00-7.80 (3H, m), 7.70-7.50 (6H, m), 7.12 (2H, d, J=8.7 Hz), 5.16 (2H, s), 4.28 (1H, m), 2.40-2.20 (2H, m), 2.00-1.80 (4H, m), 1.65 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
FAB-Ms 605 (M + 1)
|
|
[1861]
71
TABLE 70
|
|
|
Example No.
238
1H NMR (δ) ppm
|
|
|
282
300 MHz, DMSO-d6 12.80 (1H, brs), 8.54 (1H, s), 8.25 (1H, s), 7.98 and 7.88 (2H, ABq, J=8.6 Hz), 7.76 (2H, d, J=8.6 Hz), 7.53-7.31 (3H, m), 6.61 (1H, s), 5.46 (2H, s), 4.32 (1H, brt), 2.40-2.20 (2H, m), 2.02-1.79 (4H, m), 1.69-1.59 (1H, m), 1.48-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
APCI-Ms 521 (M + 1)
|
|
Example No.
239
1H NMR (δ) ppm
|
|
|
283
300 MHz, DMSO-d6 12.79 (1H, brs), 8.60 (2H, d), J=1.5 Hz), 8.53 (1H, s), 8.25 (1H, s), 7.98 and 7.85 (2H, ABq, J=9.4 Hz), 7.76 (2H, d, J=9.0 Hz), 7.44 (4H, d, J=6.5 Hz), 6.69 (1H, s), 5.53 (2H, s), 4.32 (1H, brt), 2.40-2.19 (2H, m), 2.03-1.82 (4H, m), 1.72-1.61 (1H, m), 1.42-1.22 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
APCI-Ms 522 (M + 1)
|
|
Example No.
240
1H NMR (δ) ppm
|
|
|
284
300 MHz, DMSO-d6 8.90 (1H, s), 8.32 (1H, s), 8.28 (1H, s), 8.25 (1H, d, J=8.3 Hz), 8.05 (1H, d, J=8.8 Hz), 7.96 (1H, s), 7.93 (1H, d, J=8.8 Hz), 7.83 (1H, d, J=8.4 Hz), 7.68-7.59 (2H, m), 7.54 (2H, d, J=8.8 Hz), 4.37 (1H, brt), 2.30 (2H, m), 2.00 (2H, m), 1.88 (2H, m), 1.67 (1H, M0, 1.5-1.2 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
APCI-Ms 525 (M + 1)
|
|
[1862]
72
TABLE 71
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1001
285
364 (M + H)
|
|
1002
286
454 (M + H)
|
|
1003
287
398 (M + H)
|
|
1004
288
357 (M + H)
|
|
1005
289
322 (M + H)
|
|
1006
290
385 (M + H)
|
|
[1863]
73
TABLE 72
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1007
291
357 (M + H)
|
|
1008
292
416 (M + H)
|
|
1009
293
310 (M + H)
|
|
1010
294
390 (M + H)
|
|
1011
295
395 (M + H)
|
|
1012
296
366 (M + H)
|
|
[1864]
74
TABLE 73
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1013
297
374 (M + H)
|
|
1014
298
382 (M + H)
|
|
1015
299
350 (M + H)
|
|
1016
300
402 (M + H)
|
|
1017
301
414 (M + H)
|
|
1018
302
340 (M + H)
|
|
[1865]
75
TABLE 74
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1019
303
350 (M + H)
|
|
1020
304
380 (M + H)
|
|
1021
305
366 (M + H)
|
|
1022
306
378 (M + H)
|
|
1023
307
402 (M + H)
|
|
[1866]
76
TABLE 75
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1024
308
518 (M + H)
|
|
1025
309
408 (M + H)
|
|
1026
310
336 (M + H)
|
|
1027
311
408 (M + H)
|
|
1028
312
366 (M + H)
|
|
1029
313
362 (M + H)
|
|
[1867]
77
TABLE 76
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1030
314
473 (M + H)
|
|
1031
315
338 (M + H)
|
|
1032
316
307 (M + H)
|
|
1033
317
406 (M + H)
|
|
1034
318
466 (M + H)
|
|
1035
319
412 (M + H)
|
|
[1868]
78
TABLE 77
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1036
320
412 (M + H)
|
|
1037
321
428 (M + H)
|
|
1038
322
466 (M + H)
|
|
1039
323
406 (M + H)
|
|
1040
324
417 (M + H)
|
|
1041
325
440 (M + H)
|
|
[1869]
79
TABLE 78
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1042
326
417 (M + H)
|
|
1043
327
440 (M + H)
|
|
1044
328
312 (M + H)
|
|
1045
329
423 (M + H)
|
|
1046
330
352 (M + H)
|
|
1047
331
307 (M + H)
|
|
[1870]
80
TABLE 79
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1048
332
374 (M + H)
|
|
1049
333
398 (M + H)
|
|
1050
334
326 (M + H)
|
|
1051
335
442 (M + H)
|
|
1052
336
518 (M + H)
|
|
[1871]
81
TABLE 80
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1053
337
442 (M + H)
|
|
1054
338
376 (M + H)
|
|
1055
339
442 (M + H)
|
|
1056
340
352 (M + H)
|
|
1057
341
367 (M + H)
|
|
1058
342
367 (M + H)
|
|
[1872]
82
TABLE 81
|
|
|
Ex. No.
Formula
MS
|
|
|
1059
343
364 (M + H)
|
|
1060
344
324 (M + H)
|
|
1061
345
352 (M + H)
|
|
1062
346
357 (M + H)
|
|
1063
347
360 (M + H)
|
|
1064
348
351 (M + H)
|
|
[1873]
83
TABLE 82
|
|
|
Ex. No.
Formula
MS
|
|
|
1065
349
351 (M + H)
|
|
1066
350
366 (M + H)
|
|
1067
351
367 (M + H)
|
|
1068
352
364 (M + H)
|
|
1069
353
350 (M + H)
|
|
1070
354
306 (M + H)
|
|
[1874]
84
TABLE 83
|
|
|
Ex. No.
Formula
MS
|
|
|
1071
355
365 (M + H)
|
|
1072
356
455 (M + H)
|
|
1073
357
399 (M + H)
|
|
1074
358
358 (M + H)
|
|
1075
359
337 (M + H)
|
|
1076
360
386 (M + H)
|
|
[1875]
85
TABLE 84
|
|
|
Ex. No.
Formula
MS
|
|
|
1077
361
358 (M + H)
|
|
1078
362
417 (M + H)
|
|
1079
363
311 (M + H)
|
|
1080
364
391 (M + H)
|
|
1081
365
396 (M + H)
|
|
1082
366
367 (M + H)
|
|
[1876]
86
TABLE 85
|
|
|
Ex. No.
Formula
MS
|
|
|
1083
367
375 (M + H)
|
|
1084
368
351 (M + H)
|
|
1085
369
383 (M + H)
|
|
1086
370
403 (M + H)
|
|
1087
371
415 (M + H)
|
|
1088
372
341 (M + H)
|
|
[1877]
87
TABLE 86
|
|
|
Ex. No.
Formula
MS
|
|
|
1089
373
351 (M + H)
|
|
1090
374
381 (M + H)
|
|
1091
375
367 (M + H)
|
|
1092
376
379 (M + H)
|
|
1093
377
403 (M + H)
|
|
[1878]
88
TABLE 87
|
|
|
Ex. No.
Formula
MS
|
|
|
1094
378
519 (M + H)
|
|
1095
379
409 (M + H)
|
|
1096
380
337 (M + H)
|
|
1097
381
409 (M + H)
|
|
1098
382
367 (M + H)
|
|
1099
383
363 (M + H)
|
|
[1879]
89
TABLE 88
|
|
|
Ex. No.
Formula
MS
|
|
|
1100
384
474 (M + H)
|
|
1101
385
339 (M + H)
|
|
1102
386
308 (M + H)
|
|
1103
387
467 (M + H)
|
|
1104
388
413 (M + H)
|
|
1105
389
413 (M + H)
|
|
[1880]
90
TABLE 89
|
|
|
Ex. No.
Formula
MS
|
|
|
1106
390
429 (M + H)
|
|
1107
391
467 (M + H)
|
|
1108
392
|
|
1109
393
|
|
1110
394
441 (M + H)
|
|
1111
395
418 (M + H)
|
|
[1881]
91
TABLE 90
|
|
|
Ex. No.
Formula
MS
|
|
|
1112
396
313 (M + H)
|
|
1113
397
308 (M + H)
|
|
1114
398
375 (M + H)
|
|
1115
399
399 (M + H)
|
|
1116
400
327 (M + H)
|
|
1117
401
443 (M + H)
|
|
[1882]
92
TABLE 91
|
|
|
Ex. No.
Formula
MS
|
|
|
1118
402
519 (M + H)
|
|
1119
403
443 (M + H)
|
|
1120
404
377 (M + H)
|
|
1121
405
443 (M + H)
|
|
1122
406
353 (M + H)
|
|
[1883]
93
TABLE 92
|
|
|
Ex. No.
Formula
MS
|
|
|
1123
407
368 (M + H)
|
|
1124
408
368 (M + H)
|
|
1125
409
365 (M + H)
|
|
1126
410
325 (M + H)
|
|
1127
411
353 (M + H)
|
|
1128
412
358 (M + H)
|
|
[1884]
94
TABLE 93
|
|
|
Ex. No.
Formula
MS
|
|
|
1129
413
361 (M + H)
|
|
1130
414
352 (M + H)
|
|
1131
415
352 (M + H)
|
|
1132
416
367 (M + H)
|
|
1133
417
368 (M + H)
|
|
1134
418
365 (M + H)
|
|
[1885]
95
TABLE 94
|
|
|
Ex. No.
Formula
MS
|
|
|
1135
419
351 (M + H)
|
|
1136
420
307 (M + H)
|
|
1137
421
385 (M + H)
|
|
1138
422
365 (M + H)
|
|
1139
423
467 (M + H)
|
|
1140
424
387 (M + H)
|
|
[1886]
96
TABLE 95
|
|
|
Ex. No.
Formula
MS
|
|
|
1141
425
322 (M + H)
|
|
1142
426
364 (M + H)
|
|
1143
427
323 (M + H)
|
|
1144
428
363 (M + H)
|
|
1145
429
484 (M + H)
|
|
1146
430
385 (M + H)
|
|
[1887]
97
TABLE 96
|
|
|
Ex. No.
Formula
MS
|
|
|
1147
431
427 (M + H)
|
|
1148
432
420 (M + H)
|
|
1149
433
508 (M + H)
|
|
1150
434
458 (M + H)
|
|
1151
435
458 (M + H)
|
|
[1888]
98
TABLE 97
|
|
|
Ex. No.
Formula
MS
|
|
|
1152
436
474 (M + H)
|
|
1153
437
458 (M + H)
|
|
1154
438
508 (M + H)
|
|
1155
439
454 (M + H)
|
|
[1889]
99
TABLE 98
|
|
|
Ex. No.
Formula
MS
|
|
|
1156
440
470 (M + H)
|
|
1157
441
496 (M + H)
|
|
1158
442
482 (M + H)
|
|
1159
443
448 (M + H)
|
|
1160
444
488 (M + H)
|
|
[1890]
100
TABLE 99
|
|
|
Ex. No.
Formula
MS
|
|
|
1161
445
468 (M + H)
|
|
1162
446
447 (M + H)
|
|
1163
447
466 (M + H)
|
|
1164
448
526 (M + H)
|
|
1165
449
420 (M + H)
|
|
[1891]
101
TABLE 100
|
|
|
Ex. No.
Formula
MS
|
|
|
1166
450
490 (M + H)
|
|
1167
451
435 (M + H)
|
|
1168
452
436 (M + H)
|
|
1169
453
436 (M + H)
|
|
1170
454
404 (M + H)
|
|
1171
455
406 (M + H)
|
|
[1892]
102
TABLE 101
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1172
456
392 (M + H)
|
|
1173
457
420 (M + H)
|
|
1174
458
406 (M + H)
|
|
1175
459
420 (M + H)
|
|
1176
460
523 (M + H)
|
|
1177
461
406 (M + H)
|
|
[1893]
103
TABLE 102
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1178
462
447 (M + H)
|
|
1179
463
433 (M + H)
|
|
1180
464
509 (M + H)
|
|
1181
465
513 (M + H)
|
|
[1894]
104
TABLE 103
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1182
466
497 (M + H)
|
|
1183
467
496 (M + H)
|
|
1184
468
418 (M + H)
|
|
1185
469
508 (M + H)
|
|
1186
470
490 (M + H)
|
|
[1895]
105
TABLE 104
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1187
471
441 (M + H)
|
|
1188
472
455 (M + H)
|
|
1189
473
455 (M + H)
|
|
1190
474
513 (M + H)
|
|
1191
475
504 (M + H)
|
|
1192
476
494 (M + H)
|
|
[1896]
106
TABLE 105
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1193
477
512 (M + H)
|
|
1194
478
504 (M + H)
|
|
1195
479
516 (M + H)
|
|
1196
480
497 (M + H)
|
|
1197
481
456 (M + H)
|
|
1198
482
509 (M + H)
|
|
[1897]
107
TABLE 106
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1199
483
483 (M + H)
|
|
1200
484
427 (M + H)
|
|
1201
485
427 (M + H)
|
|
1202
486
477 (M + H)
|
|
1203
487
519 (M + H)
|
|
1204
488
440 (M + H)
|
|
[1898]
108
TABLE 107
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1205
489
454 (M + H)
|
|
1206
490
325 (M + H)
|
|
1207
491
341 (M + H)
|
|
1208
492
385 (M + H)
|
|
1209
493
363 (M + H)
|
|
1210
494
332 (M + H)
|
|
[1899]
109
TABLE 108
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1211
495
351 (M + H)
|
|
1212
496
335 (M + H)
|
|
1213
497
349 (M + H)
|
|
1214
498
321 (M + H)
|
|
1215
499
375 (M + H)
|
|
1216
500
367 (M + H)
|
|
[1900]
110
TABLE 109
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1217
501
433 (M + H)
|
|
1218
502
391 (M + H)
|
|
1219
503
337 (M + H)
|
|
1220
504
385 (M + H)
|
|
1221
505
341 (M + H)
|
|
1222
506
332 (M + H)
|
|
[1901]
111
TABLE 110
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1223
507
395 (M + H)
|
|
1224
508
375 (M + H)
|
|
1225
509
351 (M + H)
|
|
1226
510
321 (M + H)
|
|
1227
511
426 (M + H)
|
|
1228
512
460 (M + H)
|
|
[1902]
112
TABLE 111
|
|
|
Ex. No.
Formula
MS
|
|
|
1229
513
442 (M + H)
|
|
1230
514
468 (M + H)
|
|
1231
515
456 (M + H)
|
|
1232
516
494 (M + H)
|
|
1233
517
451 (M + H)
|
|
1234
518
468 (M + H)
|
|
[1903]
113
TABLE 112
|
|
|
Ex. No.
Formula
MS
|
|
|
1235
519
498 (M + H)
|
|
1236
520
476 (M + H)
|
|
1237
521
502 (M + H)
|
|
1238
522
505 (M + H)
|
|
1239
523
469 (M + H)
|
|
[1904]
114
TABLE 113
|
|
|
Ex. No.
Formula
MS
|
|
|
1240
524
483 (M + H)
|
|
1241
525
408 (M + H)
|
|
1242
526
460 (M + H)
|
|
1243
527
468 (M + H)
|
|
1244
528
494 (M + H)
|
|
1245
529
454 (M + H)
|
|
[1905]
115
TABLE 114
|
|
|
Ex. No.
Formula
MS
|
|
|
1246
530
468 (M + H)
|
|
1247
531
498 (M + H)
|
|
1248
532
482 (M + H)
|
|
1249
533
468 (M + H)
|
|
1250
534
460 (M + H)
|
|
[1906]
116
TABLE 115
|
|
|
Ex. No.
Formula
MS
|
|
|
1251
535
442 (M + H)
|
|
1252
536
468 (M + H)
|
|
1253
537
456 (M + H)
|
|
1254
538
494 (M + H)
|
|
[1907]
117
TABLE 116
|
|
|
Ex. No.
Formula
MS
|
|
|
1255
539
451 (M + H)
|
|
1256
540
468 (M + H)
|
|
1257
541
498 (M + H)
|
|
1258
542
470 (M + H)
|
|
[1908]
118
TABLE 117
|
|
|
Ex. No.
Formula
MS
|
|
|
1259
543
476 (M + H)
|
|
1260
544
502 (M + H)
|
|
1261
545
505 (M + H)
|
|
1262
546
469 (M + H)
|
|
[1909]
119
TABLE 118
|
|
|
Ex. No.
Formula
MS
|
|
|
1263
547
483 (M + H)
|
|
1264
548
408 (M + H)
|
|
1265
549
460 (M + H)
|
|
1266
550
468 (M + H)
|
|
[1910]
120
TABLE 119
|
|
|
Ex. No.
Formula
MS
|
|
|
1267
551
494 (M + H)
|
|
1268
552
454 (M + H)
|
|
1269
553
468 (M + H)
|
|
1270
554
498 (M + H)
|
|
[1911]
121
TABLE 120
|
|
|
Ex. No.
Formula
MS
|
|
|
1271
555
482 (M + H)
|
|
1272
556
468 (M + H)
|
|
1273
557
494 (M + H)
|
|
1274
558
484 (M + H)
|
|
[1912]
122
TABLE 121
|
|
|
Ex. No.
Formula
MS
|
|
|
1275
559
519 (M + H)
|
|
1276
560
427 (M + H)
|
|
1277
561
456 (M + H)
|
|
1278
562
516 (M + H)
|
|
[1913]
123
TABLE 122
|
|
|
Ex. No.
Formula
MS
|
|
|
1279
563
436 (M + H)
|
|
1280
564
426 (M + H)
|
|
1281
565
440 (M + H)
|
|
1282
566
454 (M + H)
|
|
1283
567
468 (M + H)
|
|
[1914]
124
TABLE 123
|
|
|
Ex. No.
Formula
MS
|
|
|
1284
568
482 (M + H)
|
|
1285
569
406 (M + H)
|
|
1286
570
420 (M + H)
|
|
1287
571
508 (M + H)
|
|
1288
572
508 (M + H)
|
|
[1915]
125
TABLE 124
|
|
|
Ex. No.
Formula
MS
|
|
|
1289
573
509 (M + H)
|
|
1290
574
455 (M + H)
|
|
1291
575
494 (M + H)
|
|
1292
576
418 (M + H)
|
|
[1916]
126
TABLE 125
|
|
|
Ex. No.
Formula
MS
|
|
|
1293
577
490 (M + H)
|
|
1294
578
496 (M + H)
|
|
1295
579
477 (M + H)
|
|
1296
580
508 (M + H)
|
|
1297
581
470 (M + H)
|
|
[1917]
127
TABLE 126
|
|
|
Ex. No.
Formula
MS
|
|
|
1298
582
435 (M + H)
|
|
1299
583
488 (M + H)
|
|
1300
584
454 (M + H)
|
|
1301
585
504 (M + H)
|
|
[1918]
128
TABLE 127
|
|
|
Ex. No.
Formula
MS
|
|
|
1302
586
513 (M + H)
|
|
1303
587
399 (M + H)
|
|
1304
588
530 (M + H)
|
|
1305
589
504 (M + H)
|
|
1306
590
440 (M + H)
|
|
[1919]
129
TABLE 128
|
|
|
Ex. No.
Formula
MS
|
|
|
1307
591
494 (M + H)
|
|
1308
592
508 (M + H)
|
|
1309
593
518 (M + H)
|
|
1310
594
532 (M + H)
|
|
1311
595
522 (M + H)
|
|
[1920]
130
TABLE 129
|
|
|
Ex. No.
Formula
MS
|
|
|
1312
596
546 (M + H)
|
|
1313
597
484 (M + H)
|
|
1314
598
517 (M + H)
|
|
1315
599
488 (M + H)
|
|
1316
600
481 (M + H)
|
|
[1921]
131
TABLE 130
|
|
|
Ex. No.
Formula
MS
|
|
|
1317
601
413 (M + H)
|
|
1318
602
423 (M + H)
|
|
1319
603
504 (M + H)
|
|
1320
604
510 (M + H)
|
|
1321
605
522 (M + H)
|
|
1322
606
522 (M + H)
|
|
[1922]
132
TABLE 131
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1323
607
484 (M + H)
|
|
1324
608
449 (M + H)
|
|
1325
609
502 (M + H)
|
|
1326
610
491 (M + H)
|
|
1327
611
496 (M + H)
|
|
[1923]
133
TABLE 132
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1328
612
497 (M + H)
|
|
1329
613
470 (M + H)
|
|
1330
614
530 (M + H)
|
|
1331
615
502 (M + H)
|
|
1332
616
522 (M + H)
|
|
[1924]
134
TABLE 133
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1333
617
491 (M + H)
|
|
1334
618
536 (M + H)
|
|
1335
619
547 (M + H)
|
|
1336
620
484 (M + H)
|
|
1337
621
484 (M + H)
|
|
1338
622
498 (M + H)
|
|
[1925]
135
TABLE 134
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1339
623
528 (M + H)
|
|
1340
624
498 (M + H)
|
|
1341
625
514 (M + H)
|
|
1342
626
513 (M + H)
|
|
1343
627
488 (M + H)
|
|
1344
628
502 (M + H)
|
|
[1926]
136
TABLE 135
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1345
629
488 (M + H)
|
|
1346
630
502 (M + H)
|
|
1347
631
499 (M + H)
|
|
1348
632
480 (M + H)
|
|
1349
633
522 (M + H)
|
|
1350
634
546 (M + H)
|
|
[1927]
137
TABLE 136
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1351
635
482 (M + H)
|
|
1352
636
484 (M + H)
|
|
1353
637
609 (M + H)
|
|
1354
638
532 (M + H)
|
|
1355
639
480 (M + H)
|
|
1356
640
566 (M + H)
|
|
[1928]
138
TABLE 137
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1357
641
602 (M + H)
|
|
1358
642
596 (M + H)
|
|
1359
643
491 (M + H)
|
|
1360
644
491 (M + H)
|
|
1361
645
491 (M + H)
|
|
1362
646
496 (M + H)
|
|
[1929]
139
TABLE 138
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1363
647
512 (M + H)
|
|
1364
648
494 (M + H)
|
|
1365
649
488 (M + H)
|
|
1366
650
481 (M + H)
|
|
1367
651
524 (M + H)
|
|
1368
652
497 (M + H)
|
|
[1930]
140
TABLE 139
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1369
653
472 (M + H)
|
|
1370
654
469 (M + H)
|
|
1371
655
470 (M + H)
|
|
1372
656
469 (M + H)
|
|
1373
657
494 (M + H)
|
|
1374
658
458 (M + H)
|
|
[1931]
141
TABLE 140
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1375
659
612 (M + H)
|
|
1376
660
554 (M + H)
|
|
1377
661
542 (M + H)
|
|
1378
662
526 (M + H)
|
|
1379
663
496 (M + H)
|
|
1380
664
510 (M + H)
|
|
[1932]
142
TABLE 141
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1381
665
540 (M + H)
|
|
1382
666
525 (M + H)
|
|
1383
667
558 (M + H)
|
|
1384
668
523 (M + H)
|
|
1385
669
539 (M + H)
|
|
[1933]
143
TABLE 142
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1386
670
533 (M + H)
|
|
1387
671
500 (M + H)
|
|
1388
672
485 (M + H)
|
|
1389
673
523 (M + H)
|
|
1390
674
512 (M + H)
|
|
[1934]
144
TABLE 143
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1391
675
540 (M + H)
|
|
1392
676
527 (M + H)
|
|
1393
677
525 (M + H)
|
|
1394
678
507 (M + H)
|
|
1395
679
491 (M + H)
|
|
1396
680
506 (M + H)
|
|
[1935]
145
TABLE 144
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1397
681
522 (M + H)
|
|
1398
682
538 (M + H)
|
|
1399
683
522 (M + H)
|
|
1400
684
530 (M + H)
|
|
1401
685
600 (M + H)
|
|
1402
686
504 (M + H)
|
|
[1936]
146
TABLE 145
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1403
687
534 (M + H)
|
|
1404
688
475 (M + H)
|
|
1405
689
472 (M + H)
|
|
1406
690
455 (M + H)
|
|
1407
691
469 (M + H)
|
|
1408
692
547 (M + H)
|
|
[1937]
147
TABLE 146
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1409
693
529 (M + H)
|
|
1410
694
435 (M + H)
|
|
1411
695
504 (M + H)
|
|
1412
696
469 (M + H)
|
|
1413
697
522 (M + H)
|
|
1414
698
488 (M + H)
|
|
[1938]
148
TABLE 147
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1415
699
502 (M + H)
|
|
1416
700
488 (M + H)
|
|
1417
701
502 (M + H)
|
|
1418
702
455 (M + H)
|
|
1419
703
455 (M + H)
|
|
1420
704
522 (M + H)
|
|
[1939]
149
TABLE 148
|
|
|
|
Ex. No.
Formula
MS
|
|
|
1421
705
469 (M + H)
|
|
1422
706
536 (M + H)
|
|
1423
707
510 (M + H)
|
|
1424
708
494 (M + H)
|
|
1425
709
458 (M + H)
|
|
[1940]
150
TABLE 149
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1426
710
612 (M + H)
|
|
1427
711
526 (M + H)
|
|
1428
712
480 (M + H)
|
|
1429
713
441 (M + H)
|
|
1430
714
511 (M + H)
|
|
[1941]
151
TABLE 150
|
|
|
|
Ex. No.
Formula
MS
|
|
|
|
1431
715
530 (M + H)
|
|
1432
716
497 (M + H)
|
|
1433
717
441 (M + H)
|
|
1434
718
491 (M + H)
|
|
1435
719
491 (M + H)
|
|
1436
720
491 (M + H)
|
|
[1942]
152
TABLE 151
|
|
|
Ex. No.
Formula
MS
|
|
|
1437
721
524 (M + H)
|
|
1438
722
508 (M + H)
|
|
1439
723
474 (M + H)
|
|
1440
724
490 (M + H)
|
|
1441
725
508 (M + H)
|
|
1442
726
474 (M + H)
|
|
[1943]
153
TABLE 152
|
|
|
Ex. No.
Formula
MS
|
|
|
1443
727
516 (M + H)
|
|
1444
728
600 (M + H)
|
|
1445
729
504 (M + H)
|
|
1446
730
534 (M + H)
|
|
1447
731
475 (M + H)
|
|
[1944]
154
TABLE 153
|
|
|
Ex. No.
Formula
MS
|
|
|
1448
732
530 (M + H)
|
|
1449
733
440 (M + H)
|
|
1450
734
490 (M + H)
|
|
1451
735
474 (M + H)
|
|
1452
736
441 (M + H)
|
|
1453
737
508 (M + H)
|
|
[1945]
155
TABLE 154
|
|
|
Ex. No.
Formula
MS
|
|
|
1454
738
455 (M + H)
|
|
1455
739
522 (M + H)
|
|
1456
740
496 (M + H)
|
|
1457
741
516 (M + H)
|
|
1458
742
426 (M + H)
|
|
1459
743
482 (M + H)
|
|
[1946]
156
TABLE 155
|
|
|
Ex. No.
Formula
MS
|
|
|
1460
744
486 (M + H)
|
|
1461
745
516 (M + H)
|
|
1462
746
427 (M + H)
|
|
1463
747
476 (M + H)
|
|
1464
748
460 (M + H)
|
|
1465
749
502 (M + H)
|
|
[1947]
157
TABLE 156
|
|
|
Ex. No.
Formula
MS
|
|
|
1466
750
586 (M + H)
|
|
1467
751
518 (M + H)
|
|
1468
752
530 (M + H)
|
|
1469
753
598 (M + H)
|
|
1470
754
512 (M + H)
|
|
1471
755
544 (M + H)
|
|
[1948]
158
TABLE 157
|
|
|
Ex. No.
Formula
MS
|
|
|
1472
756
440 (M + H)
|
|
1473
757
490 (M + H)
|
|
1474
758
474 (M + H)
|
|
1475
759
441 (M + H)
|
|
1476
760
508 (M + H)
|
|
1477
761
455 (M + H)
|
|
[1949]
159
TABLE 158
|
|
|
Ex. No.
Formula
MS
|
|
1478
522 (M + H)
|
|
1479
496 (M + H)
|
|
1480
516 (M + H)
|
|
1481
426 (M + H)
|
|
1482
482 (M + H)
|
|
[1950]
160
TABLE 159
|
|
|
Ex. No.
Formula
MS
|
|
|
1483
762
486 (M + H)
|
|
1484
763
516 (M + H)
|
|
1485
764
427 (M + H)
|
|
1486
765
476 (M + H)
|
|
[1951]
161
TABLE 160
|
|
|
Ex. No.
Formula
MS
|
|
|
1487
766
460 (M + H)
|
|
1488
767
502 (M + H)
|
|
1489
768
586 (M + H)
|
|
1490
769
518 (M + H)
|
|
[1952]
162
TABLE 161
|
|
|
Ex. No.
Formula
MS
|
|
|
1491
770
530 (M + H)
|
|
1492
771
598 (M + H)
|
|
1493
772
512 (M + H)
|
|
1494
773
544 (M + H)
|
|
[1953]
163
TABLE 162
|
|
|
Ex. No.
Formula
MS
|
|
|
1495
774
580 (M + H)
|
|
1496
775
550 (M + H)
|
|
1497
776
606 (M + H)
|
|
1498
777
580 (M + H)
|
|
1499
778
550 (M + H)
|
|
[1954]
164
TABLE 163
|
|
|
Ex. No.
Formula
MS
|
|
|
1500
779
606 (M + H)
|
|
1501
780
630 (M + H)
|
|
1502
781
600 (M + H)
|
|
1503
782
656 (M + H)
|
|
[1955]
165
TABLE 164
|
|
|
Ex. No.
Formula
MS
|
|
|
1504
783
630 (M + H)
|
|
1505
784
600 (M + H)
|
|
1506
785
656 (M + H)
|
|
1507
786
580 (M + H)
|
|
[1956]
166
TABLE 165
|
|
|
Ex. No.
Formula
MS
|
|
|
1508
787
550 (M + H)
|
|
1509
788
606 (M + H)
|
|
1510
789
580 (M + H)
|
|
1511
790
550 (M + H)
|
|
1512
791
546 (M + H)
|
|
[1957]
167
TABLE 166
|
|
|
Ex. No.
Formula
MS
|
|
|
1513
792
516 (M + H)
|
|
1514
793
572 (M + H)
|
|
1515
794
546 (M + H)
|
|
1516
795
516 (M + H)
|
|
1517
796
572 (M + H)
|
|
[1958]
168
TABLE 167
|
|
|
Ex. No.
Formula
MS
|
|
|
1518
797
602 (M + H)
|
|
1519
798
572 (M + H)
|
|
1520
799
628 (M + H)
|
|
1521
800
606 (M + H)
|
|
[1959]
169
TABLE 168
|
|
|
Ex. No.
Formula
MS
|
|
|
1522
801
573 (M + H)
|
|
1523
802
606 (M + H)
|
|
1524
803
602 (M + H)
|
|
1525
804
572 (M + H)
|
|
[1960]
170
TABLE 169
|
|
|
Ex. No.
Formula
MS
|
|
|
1526
805
628 (M + H)
|
|
1527
806
606 (M + H)
|
|
1528
807
606 (M + H)
|
|
1529
808
614 (M + H)
|
|
[1961]
171
TABLE 170
|
|
|
Ex. No.
Formula
MS
|
|
|
1530
809
584 (M + H)
|
|
1531
810
640 (M + H)
|
|
1532
811
618 (M + H)
|
|
1533
812
614 (M + H)
|
|
1534
813
584 (M + H)
|
|
[1962]
172
TABLE 171
|
|
|
Ex. No.
Formula
MS
|
|
|
1535
814
640 (M + H)
|
|
1536
815
627 (M + H)
|
|
1537
816
627 (M + H)
|
|
[1963]
173
TABLE 172
|
|
|
Ex. No.
Formula
MS
|
|
|
1538
817
560 (M + H)
|
|
1539
818
634 (M + H)
|
|
5640
819
593 (M + H)
|
|
1541
820
627 (M + H)
|
|
[1964]
174
TABLE 173
|
|
|
Ex. No.
Formula
MS
|
|
|
1542
821
627 (M + H)
|
|
1543
822
560 (M + H)
|
|
1544
823
634 (M + H)
|
|
1545
824
593 (M + H)
|
|
[1965]
175
TABLE 174
|
|
|
Ex. No.
Formula
MS
|
|
|
1546
825
627 (M + H)
|
|
1547
826
627 (M + H)
|
|
1548
827
560 (M + H)
|
|
1549
828
634 (M + H)
|
|
[1966]
176
TABLE 175
|
|
|
Ex. No.
Formula
MS
|
|
|
1550
829
627 (M + H)
|
|
1551
830
560 (M + H)
|
|
1552
831
532 (M + H)
|
|
1553
832
565 (M + H)
|
|
[1967]
177
TABLE 176
|
|
|
Ex. No.
Formula
MS
|
|
|
1554
833
599 (M + H)
|
|
1555
834
599 (M + H)
|
|
1556
835
532 (M + H)
|
|
1557
836
532 (M + H)
|
|
[1968]
178
TABLE 177
|
|
|
Ex. No.
Formula
MS
|
|
|
1558
837
584 (M + H)
|
|
1559
838
570 (M + H)
|
|
[1969]
179
TABLE 178
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
2
0.079
|
6
0.034
|
9
0.019
|
11
0.53
|
12
0.60
|
17
0.047
|
20
0.042
|
26
0.033
|
30
0.052
|
43
0.58
|
44
0.95
|
45
0.40
|
46
0.47
|
47
0.54
|
48
0.44
|
49
0.94
|
50
0.54
|
51
1.0
|
54
0.56
|
55
0.36
|
67
0.26
|
68
0.28
|
70
0.19
|
71
0.62
|
77
0.51
|
81
0.18
|
82
0.097
|
83
0.52
|
85
0.17
|
86
0.13
|
87
0.80
|
88
0.092
|
89
0.34
|
90
0.20
|
91
0.53
|
93
0.16
|
94
0.084
|
96
0.25
|
97
0.16
|
98
0.30
|
|
[1970]
180
TABLE 179
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
99
0.53
|
100
0.78
|
101
0.14
|
103
0.17
|
104
0.073
|
105
0.076
|
106
0.40
|
107
0.11
|
108
0.21
|
109
0.11
|
110
0.24
|
111
0.14
|
112
0.11
|
113
0.071
|
114
0.56
|
115
0.17
|
116
0.37
|
117
0.075
|
118
0.14
|
119
0.13
|
120
0.16
|
121
0.19
|
122
0.51
|
123
0.10
|
124
0.091
|
125
0.12
|
128
0.14
|
129
0.12
|
130
0.16
|
131
0.046
|
132
0.055
|
133
0.12
|
134
0.071
|
139
0.26
|
140
0.11
|
141
0.43
|
142
0.055
|
143
0.053
|
144
0.19
|
145
0.088
|
|
[1971]
181
TABLE 180
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
146
0.043
|
147
0.31
|
148
0.038
|
149
0.15
|
150
0.24
|
151
0.20
|
153
0.19
|
154
0.076
|
155
0.53
|
156
0.23
|
157
0.16
|
158
0.11
|
159
0.13
|
160
0.24
|
161
0.062
|
162
0.43
|
163
0.15
|
164
0.16
|
165
0.58
|
166
0.055
|
167
0.033
|
168
0.078
|
169
0.15
|
170
0.048
|
171
0.050
|
172
0.10
|
173
0.14
|
174
0.030
|
175
0.29
|
176
0.053
|
177
0.077
|
178
0.052
|
179
0.63
|
180
0.11
|
181
0.71
|
182
0.021
|
183
0.017
|
184
0.018
|
185
0.11
|
186
0.37
|
|
[1972]
182
TABLE 181
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
187
0.056
|
188
0.038
|
189
0.017
|
190
0.020
|
191
0.43
|
192
0.22
|
193
0.13
|
194
0.52
|
195
0.023
|
196
0.20
|
197
0.11
|
198
0.044
|
199
0.11
|
200
0.10
|
201
0.14
|
202
0.095
|
203
0.063
|
204
0.16
|
205
0.077
|
206
0.05
|
207
0.081
|
208
0.039
|
209
0.12
|
210
0.31
|
211
0.059
|
212
0.23
|
213
0.10
|
214
0.059
|
215
0.078
|
216
0.084
|
217
0.058
|
218
0.033
|
219
0.13
|
220
0.073
|
221
0.058
|
222
0.041
|
223
0.21
|
225
0.014
|
227
0.045
|
228
0.18
|
|
[1973]
183
TABLE 182
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
229
0.022
|
230
0.17
|
231
0.073
|
232
0.015
|
233
0.028
|
234
0.022
|
235
0.036
|
236
0.075
|
237
0.015
|
238
0.19
|
239
0.17
|
240
0.055
|
248
0.012
|
249
0.022
|
250
0.018
|
252
0.32
|
253
0.65
|
254
0.038
|
255
0.038
|
256
0.079
|
257
0.074
|
259
0.10
|
260
0.27
|
262
0.013
|
263
0.035
|
264
<0.01
|
265
0.014
|
266
0.018
|
267
0.014
|
268
0.012
|
269
0.013
|
270
0.012
|
271
0.024
|
272
0.066
|
273
0.041
|
276
0.023
|
279
0.017
|
280
0.016
|
281
0.052
|
282
0.019
|
|
[1974]
184
TABLE 183
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
283
0.014
|
284
0.014
|
285
0.012
|
286
0.014
|
287
0.012
|
288
0.013
|
289
<0.01
|
290
0.012
|
291
0.016
|
292
0.015
|
293
0.034
|
294
0.032
|
295
0.045
|
296
0.034
|
297
0.022
|
298
0.011
|
299
0.018
|
300
0.045
|
301
0.017
|
303
0.10
|
304
0.017
|
305
0.01
|
306
0.013
|
307
0.022
|
308
0.023
|
311
0.16
|
312
0.023
|
313
0.025
|
314
0.097
|
315
0.028
|
316
0.022
|
317
0.032
|
318
0.012
|
319
0.030
|
|
[1975]
185
TABLE 184
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
320
0.036
|
321
0.015
|
322
0.016
|
323
0.018
|
324
0.027
|
325
0.019
|
326
0.018
|
327
0.019
|
328
0.015
|
329
0.047
|
330
0.011
|
331
0.017
|
332
0.023
|
333
0.016
|
334
0.016
|
335
0.013
|
|
[1976]
186
TABLE 185
|
|
|
Example No. 249
1H NMR(δ) ppm
|
|
839
300MHz, DMSO-d6 8.02(1H, d, 1.5Hz), 8.11 (1H, d, J=1.8Hz), 7.96-7.81 (3H, m), 7.67(1H, s), 7.61-7.49(6H, m), 7.08(2H, d, J=8.6 Hz), 5.19(2H, s), 4.25(1H, m), 2.38-2.17(2H, m), 1.96-1.78(4H, m), 1.70-1.56(1H, m), 1.46-1.16(3H, m), 1.11 (9H, s)
|
|
Purity >90% (NMR)
|
MS 672 (M + 1)
|
Example No. 250
1H NMR(δ) ppm
|
|
840
300MHz, DMSO-d6 8.25(1H, d, J=1.5Hz), 8.16-8.08(2H, m), 7.99-7.88(2H, m), 7.66(2H, d, J=8.6Hz), 7.60-7.48(5H, m), 7.19(2H, d, J=8.6Hz), 5.17(2H, s), 4.31 (1H, m), 2.39-2.20(2H, m), 2.04-1.79(4H, m), 1.72-1.60 (1H, m), 1.50-1.18(3H, m)
|
|
Purity >90% (NMR)
|
MS 616 (M + 1)
|
Example No. 251
1H NMR(δ) ppm
|
|
841
300MHz, DMSO-d6 cis and trans mixture 8.13 and 8.11 (total 1H, each s), 7.90-7.74(2H, m), 7.42-7.22(5H, m), 4.56 and 4.52 (total 2H, each s), 4.42(1H, brs), 3.78-3.06 (2H, m), 2.33-1.33(18H, m)
|
|
Purity >90% (NMR)
|
MS 433 (M + 1)
|
|
[1977]
187
TABLE 186
|
|
|
Example No. 252
1H NMR(δ) ppm
|
|
842
300MHz, DMSO-d6 8.20(1H, d, J=1.5Hz), 7.96 (1H, d, J=8.6Hz), 7.84(1H, dd, J=8.6, 1.5Hz), 7.54(2H, d, J=6.9Hz), 7.48-7.26(8H, m), 7.09(1H, t, J=7.3Hz), 5.43 (2H, s), 4.06(1H, m), 2.40-2.20(2H, m), 2.01-1.80(4H, m), 1.75-1.64(1H, m), 1.51-1.28(3H, m)
|
|
Purity >90% (NMR)
|
MS 509 (M + 1)
|
Example No. 253
1H NMR(δ) ppm
|
|
843
300MHz, DMSO-d6 8.21(1H, d, J=1.5Hz), 7.93 (1H, d, J=8.7Hz), 7.85(1H, dd, J=8.4, 1.5Hz), 7.54-7.47 (2H, m), 7.40-7.24(6H, m), 7.15 (1H, d, J=3.6Hz), 7.11-7.05(1H, m), 6.81(1H, d, J=3.6 Hz), 5.26(2H, s), 4.96(1H, m), 2.32-2.13(2H, m), 1.95-1.72(4H, m), 1.68-1.55(1H, m), 1.43-1.18(3H, m)
|
|
Purity >90% (NMR)
|
MS 493 (M + 1)
|
Example No. 254
1H NMR(δ) ppm
|
|
844
300MHz, DMSO-d6 8.15(1H, s), 8.02(1H, d, J=8.7Hz), 7.90(1H, dd, J=8.4, 1.4Hz), 7.80-7.71(2H, m), 7.67(2H, d, J=8.7Hz), 7.33(2H, t, J=8.7Hz), 7.26(2H, d, J=8.7Hz), 5.46(2H, s), 4.78(2H, s), 4.31(1H, m), 2.39-2.19(2H, m), 2.03-1.79(4H, m), 1.71-1.59(1H, m), 1.50-1.17(3H, m)
|
|
Purity >90% (NMR)
|
MS 558 (M + 1)
|
|
[1978]
188
TABLE 187
|
|
|
Example No. 255
1H NMR(δ) ppm
|
|
845
300MHz, DMSO-d6 8.34(1H, s), 8.32(1H, d, J=8.8Hz), 8.09-8.03(3H, m), 7.83(2H, d, J=8.3Hz), 7.79(2H, d, J=8.8Hz), 7.36(2H, d, J=8.8Hz), 5.54(2H, s), 4.38(1H, m), 2.74(3H, s), 2.40-2.18(2H, m), 2.13-1.96(2H, m), 1.93-1.78(2H, m), 1.73-1.57(1H, m), 1.55-1.15(3H, m)
|
|
Purity >90% (NMR)
|
MS 568 (M + 1)
|
Example No. 256
1H NMR(δ) ppm
|
|
846
300MHz, DMSO-d6 12.67(1H, brs), 8.23(1H, s), 7.94 and 7.87(2H, ABq, J=8.6 Hz), 7.79(1H, dd, J=8.7, 5.4 Hz), 7.62-7.41(7H, m), 6.80 (1H, dd, J=11.9, 2.3Hz), 6.69(1H, dd, J=8.1, 2.1Hz), 5.20(2H, s), 3.93(1H, brt, J=15.3Hz), 2.30-2.11(2H, brm), 1.88-1.74(4H, brm), 1.64-1.58(1H, brm), 1.41-1.14(3H, brm)
|
|
Purity >90% (NMR)
|
MS (M + 1)
|
Example No. 257
1H NMR(δ) ppm
|
|
847
300MHz, DMSO-d6 8.19(1H, d, J=8.7Hz), 7.93 (1H, s), 7.83-7.71(3H, m), 7.50-7.39(4H, m), 7.34-7.10 (4H, m), 7.06(1H, dd, J=8.4, 2.9Hz), 5.09(2H, s), 4.34(1H, m), 3.82(3H, s), 2.39-2.19 (2H, m), 2.11-1.98(2H, m), 1.94-1.79(2H, m), 1.74-1.58 (1H, m), 1.52-1.21(3H, m)
|
|
Purity >90% (NMR)
|
MS 603 (M + 1)
|
|
[1979]
189
TABLE 188
|
|
|
|
Example No.
258
1H NMR (δ) ppm
|
|
848
300 MHz, DMSO-d6 7.79(1H, d, J=6.7 Hz), 7.56 (1H, d, J=7.5 Hz), 7.49 (2H, d, J=8.6 Hz), 7.42 (4H, s), 7.32-7.23 (3H, m), 7.09-7.03 (3H, m), 5.02 (2H, s), 4.46 (1H, m, 3.82 (3H, s), 1.95-1.83 (2H, m), 1.75-1.44 (5H, m), 1.30-1.10 (2H, m), 0.89-0.71 (1H, m)
|
|
|
Purity
>90% (NMR)
|
MS
567 (M + 1)
|
|
Example No.
259
1H NMR (δ) ppm
|
|
849
300 MHz, DMSO-d6 8.93 (2H, d, J=6.6 Hz), 8.36 (1H, s), 8.28 (1H, d, J=8.7 Hz), 8.10-8.03 (3H, m), 7.85 (2H, d, J=8.7 Hz), 7.33 (2H, d, J=8.7 Hz), 7.23 (1H, s), 7.23 (1H, s), 6.81 (1H, s), 5.56 (2H, s), 4.39 (1H, m), 2.97, 2.92 (6H, s), 2.40-2.18 (2H, m), 2.16-1.95 (2H, m), 1.90-1.75 (2H, m), 1.70-1.55 (1H, m), 1.50-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
591 (M + 1)
|
|
Example No.
260
1H NMR (δ) ppm
|
|
850
300 MHz, DMSO-d6 8.93 (2H, d, J=6.3 Hz), 8.35 (1H, s), 8.26 (1H, d, J=8.7 Hz), 8.09-8.02 (3H, m), 7.86 (2H, d, J=8.7 Hz), 7.50 (1H, s), 7.35 (2H, d, J=8.4 Hz), 7.24 (2H, d, J=7.8 Hz), 5.60 (2H, s), 4.39 (1H, m), 2.50-2.18 (2H, m), 2.15-1.95 (2H, m), 1.90-1.75 (2H, m), 1.70-1.55 (1H, m) 1.50-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
564 (M + 1)
|
|
[1980]
190
TABLE 189
|
|
|
|
Example No.
261
1H NMR (δ) ppm
|
|
851
300 MHz, DMSO-d6 8.22 (1H, d, J=7.8 Hz), 7.85 (1H, d, J=6.7 Hz), 7.63 (2H, d, J=9.0 H), 7.51-7.38 (5H, m), 7.29 (1H, d, J=8.3 Hz), 7.23 (1H, d, J=3.0 Hz), 7.06 (2H, d, J=9.0 Hz), 7.06 (1H, dd, J=8.6, 3.0 Hz), 5.05 (2H, s), 4.41-4.25 (1H, m), 3.83 (3H, s), 2.40-2.20 (2H, m), 2.03-1.78 (4H, m), 1.72-1.57 (1H, m), 1.50-1.18 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
567 (M + 1)
|
|
Example No.
262
1H NMR (δ) ppm
|
|
852
300 MHz, DMSO-d6 8.29 (1H, d, J=1.5 Hz), 8.26 (1H, d, J=9.0 Hz), 8.19 (1H, d, J=1.8 Hz), 8.13 (1H, brs), 8.08-7.96 (2H, m), 7.73 (2H, d, J=9.0 Hz), 7.57-7.43 (6H, m), 7.24 (2H, d, J=9.0 Hz), 5.14 (2H, s), 4.36 (1H, m), 2.38-2.18 (2H, m), 2.12-1.97 (2H, m), 1.93-1.80 (2H, m), 1.73-1.58 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
580 (M + 1)
|
|
Example No.
263
1H NMR (δ) ppm
|
|
853
300 MHz, DMSO-d6 12.85 (1H, brs), 8.72 (1H, d, J=4.8 Hz), 8.22 (1H, s), 8.14 (1H, d, J=6.3 Hz), 8.03 and 7.76 (4H, ABq, J=8.6 Hz), 7.93 and 7.85 (2H, A′ B′ q, J=8.6 Hz), 7.60 and 7.15 (4H, ABq, J=8.7 Hz), 7.55 (1H, dd, J=6.3, 4.8 Hz), 5.19 (2H, s), 4.26 (1H, brt, J=12.6 Hz), 2.35-2.18 (2H, brm), 1.95-1.77 (4H, brm), 1.70-1.60 (1H, brm), 1.45-1.15 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
548 (M + 1)
|
|
[1981]
191
TABLE 190
|
|
|
|
Example No.
264
1H NMR (δ) ppm
|
|
854
300 MHz, DMSO-d6 8.23 (1H, d, J=1.0 Hz), 7.92 (1H, dd, J=8.7, 1.0 Hz), 7.87 (1H, d, J=8.7 Hz), 7.60 (2H, d, J=8.6 Hz), 7.47 (2H, d, J=8.7 Hz), 7.44 (2H, d, J=8.7 Hz), 7.30 (1H, d, J=8.3 Hz), 7.23 H, d, J=2.6 Hz), 7.11 (2H, d, J=8.7 Hz), 7.06 (1H, dd, J=8.7, 2.6 Hz), 5.04 (2H, s), 4.36 (1H, m), 3.83 (3H, s), 2.80-2.70 (4H, m), 2.60-2.40 (2H, m), 2.30-2.20 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
586, 588 (M + 1)
|
|
Example No.
265
1H NMR (δ) ppm
|
|
855
300 MHz, DMSO-d6 8.30 (1H, d, J=1.5 Hz), 8.25 (1H, d, J=9.1 Hz), 8.03 (1H, dd, J=8.7, 1.5 Hz), 7.76-7.96 (3H, m), 7.55-7.49 (5H, m), 7.42 (1H, d, J=7.6 z), 7.23 (2H, d, J=8.7 Hz), 5.15 (2H, s), 4.35 (1H, m), 3.01 (3H, s), 2.97 (3H, s), 2.37-2.20 (2H, m), 2.09-1.97 (2H, m), 1.94-1.81 (2H, m), 1.72-1.60 (1H, m), 1.50-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
608 (M + 1)
|
|
Example No.
266
1H NMR (δ) ppm
|
|
856
300 MHz, DMSO-d6 8.27 (1H, d, J=1.5 Hz), 8.20 (1H, d, J=9.0 Hz), 8.00 (1H, dd, J=8.6, 1.5 Hz), 7.82 (2H, d, J=8.2 Hz), 7.76-7.65 (5H, m), 7.56 (1H, dd, J=7.9, 1.8 Hz), 7.47 (1H, d, J=7.5 Hz), 7.20 (2H, d, J=8.6 Hz), 5.16 (2H, s), 4.32 (1H, m), 3.02 (3H, s), 2.98 (3H, s), 2.38-2.19 (2H, m), 2.07-1.95 (2H, m), 1.93-1.80 (2H, m), 1.72-1.58 (1H, m), 1.52-1.18 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
642 (M + 1)
|
|
[1982]
192
TABLE 191
|
|
|
|
Example No.
267
1H NMR (δ) ppm
|
|
857
300 MHz, DMSO-d6 8.34 (2H, m), 8.03 (1H, d, J=8.3 Hz), 7.77-7.68 (3H, m), 7.54-7.40 (4H, m), 7.33 (2H, d, J=8.6 Hz), 7.24 (2H, d, J=9.0 Hz), 5.16 (2H, s), 4.36 (1H, m), 3.01 (3H, s), 2.97 (3H, s), 2.40-2.20 (2H, m), 2.11-1.97 (2H, m), 1.93-1.81 (2H, m), 1.71-1.60 (1H, m), 1.50-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
620 (M + 1)
|
|
Example No.
268
1H NMR (δ) ppm
|
|
858
300 MHz, DMSO-d6 8.67-8.59 (1H, m), 8.30 (1H, s), 8.13-8.20 (2H, m), 8.02-7.92 (2H, m), 7.65 (1H, t, J=8.3 Hz), 7.56-7.45 (5H, m), 7.18 (1H, dd, J=12.0, 2.2 Hz), 7.05 (1H, dd, J=8.6, 2.2 Hz), 5.14 (2H, s), 4.09 (1H, m), 2.82 (3H, d, J=4.5 Hz), 2.34-2.12 (2H, m), 1.99-1.79 (4H, m), 1.71-1.59 (1H, m), 1.49-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
612 (M + 1)
|
|
Example No.
269
1H NMR (δ) ppm
|
|
859
300 MHz, DMSO-d6 8.29 (1H, s), 8.13 (1H, d, J=9.0 Hz), 7.97 (1H, dd, J=8.6, 1.5 Hz), 7.71 (1H, d, J=1.8 Hz), 7.63 (1H, t, J=8.2 Hz), 7.56-7.41 (6H, m), 7.17 (1H, dd, J=12.0, 2.2 Hz), 7.03 (1H, dd, J=8.2, 1.8 Hz), 5.14 (2H, s), 4.15-4.00 (1H, m), 3.01 (3H, s), 2.98 (3H, s), 2.32-2.13 (2H, m) 1.95-1.79 (4H, m), 1.72-1.59 (1H, m), 1.45-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
626 (M + 1)
|
|
[1983]
193
TABLE 192
|
|
|
|
Example No.
270
1H NMR (δ) ppm
|
|
860
300 MHz, DMSO-d6 8.24 (1H, d, J=1.4 Hz), 8.19 (1H, d, J=1.8 Hz), 8.11 (1H, brs), 8.02-7.85 (3H, m), 7.60-7.44 (7H, m), 7.10 (1H, dd, J=12.0, 2.1 Hz), 6.98 (1H, dd, J=8.4, 2.1 Hz), 5.11 (2H, s), 3.98 (1H, m), 2.30-2.12 (2H, m), 1.91-1.73 (4H, m), 1.71-1.58 (1H, m), 1.45-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
598 (M + 1)
|
|
Example No.
271
1H NMR (δ) ppm
|
|
861
300 MHz, DMSO-d6 8.29 (1H, d, J=1.5 Hz), 8.24 (1H, d, J=8.7 Hz), 8.07-7.98 (3H, m), 7.80-7.68 (5H, m), 7.56 (1H, dd, J=8.0, 1.8 Hz), 7.47 (1H, d, J=8.0 Hz), 7.21 (2H, d, J=8.4 Hz), 5.18 (2H, s), 4.34 (1H, m), 3.27 (3H, s), 3.02 (3H, s), 2.98 (3H, s), 2.38-2.18 (2H, m), 2.10-1.95 (2H, m), 1.93-1.79 (2H, m), 1.72-1.59 (1H, m), 1.50-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
652 (M + 1)
|
|
Example No.
272
1H NMR (δ) ppm
|
|
862
300 MHz, DMSO-d6 8.97 (1H, d, J=1.8 Hz), 8.85 (1H, d, J=4.7 Hz), 8.46 (1H, d, J=8.0 Hz), 8.39-8.26 (2H, m), 8.06 (1H, d, J=8.7 Hz), 7.99-7.64 (6H, m), 7.24 (2H, d, J=8.7 Hz), 5.25 (2H, s), 4.36 (1H, m), 3.03 (3H, s), 2.97 (3H, s), 2.39-2.19 (2H, m), 2.14-1.96 (2H, m), 1.94-1.78 (2H, m), 1.73-1.60 (1H, m), 1.21-1.55 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
575 (M + 1)
|
|
[1984]
194
TABLE 193
|
|
|
|
Example No.
273
1H NMR (δ) ppm
|
|
863
300 MHz, DMSO-d6 8.30 (1H, s), 8.27(1H, d, J=8.7 Hz), 8.05 (1H, d, J=8.7 Hz), 7.77-7.67 (3H, m), 7.58-7.48 (6H, m), 7.22 (2H, d, J=8.4 Hz), 5.18 (2H, s), 4.35 (1H, brt, J=9.8 Hz), 3.06-2.88 (12H, brm), 2.38-2.20 (2H, brm), 2.08-1.96 (2H, brm), 1.90-1.80 (2H, brm), 1.70-1.60 (1H, brm), 1.49-1.22 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
645 (M + 1)
|
|
Example No.
274
1H NMR (δ) ppm
|
|
864
300 MHz, DMSO-d6 mixture of cis and trans 8.35, 8.34 (1H, s), 8.15-8.10 (2H, m), 7.79-7.70 (3H, m), 7.49 (2H, d, J=8.7 Hz), 7.44 (2H, d, J=8.7 Hz), 7.31 (1H, d, J=8.4 Hz), 7.25-7.19 (2H, m), 7.07 (1H, d, J=8.5 Hz), 5.08 (2H, s), 4.75 (1H, m), 3.83 (3H, s), 3.70-1.90 (8H, m)
|
|
Purity
about 80% (NMR)
|
MS
601 (M + 1)
|
|
Example No.
275
1H NMR (δ) ppm
|
|
865
300 MHz, DMSO-d6 8.33 (1H, s), 8.13 (1H, d, J=7.5 Hz), 7.93 (1H, d, J=8.8 Hz), 7.74 (2H, d, J=8.7 Hz), 7.49 (2H, d, J=8.6 Hz), 7.44 (2H, d, J=8.6 Hz), 7.31 (1H, d, J=8.5 Hz), 7.25-7.15 (3H, m), 7.07 (1H, d, J=8.5 Hz), 5.08 (2H, s), 4.98 (1H, m), 3.83 (3H, s), 3.65-3.45 (2H, m), 3.30-3.10 (2H, m), 3.00-2.75 (2H, m), 2.60-2.30 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
617 (M + 1)
|
|
[1985]
195
TABLE 194
|
|
|
|
Example No.
276
1H NMR (δ) ppm
|
|
866
300 MHz, DMSO-d6 8.25 (1H, s), 7.93 and 7.87 (2H, ABq, J=9.1 Hz), 7.55 (1H, t, J=8.6 Hz), 7.48 and 7.42 (4H, A′ B′ q, J=8.6 Hz), 7.31 (1H, d, J=8.5 Hz), 7.24 (1H, d, J=2.6 Hz), 7.09-6.95 (3H, m), 5.05 (2H, s), 4.11 (1H, brt, J=14.0 Hz), 3.84 (3H, s), 2.83-2.67 (4H, brm), 2.50-2.32 (2H, brm), 2.21-2.10 (2H, brm)
|
|
Purity
>90% (NMR)
|
MS
603 (M + 1)
|
|
Example No.
277
1H NMR (δ) ppm
|
|
867
300 MHz, DMSO-d6 cis and trans mixture 8.28 and 8.24 (total 1H, each s), 7.94-7.87 (1H, m), 7.60-7.41 (5H, m), 7.31 (1H, d, J=8.5 Hz), 7.23-7.21 (1H, m), 7.12-7.05 (2H, m), 7.00-6.95 (1H, m), 5.06 and 5.05 (total 2H, each s), 4.47 and 4.34 (total 1H, each brs), 3.83 (3H, s), 3.12-1.76 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
619 (M + 1)
|
|
Example No.
278
1H NMR (δ) ppm
|
|
868
300 MHz, DMSO-d6 12.9 (1H, brs), 8.27 (1H, s), 7.97 and 7.74 (2H, ABq, J=8.6 Hz), 7.58 (1H, t, J=8.6 Hz), 7.49 and 7.43 (4H, A′ B′ q, J=8.5 Hz), 7.31 (1H, d, J=8.5 Hz), 7.22 (1H, d, J=2.6 Hz), 7.13-6.92 (3H, m), 5.05 (2H, s), 4.67 (1H, brt, J=14.2 Hz), 3.57-3.40 (2H, brm), 3.20-3.05 (2H, brm), 2.91-2.70 (2H, brm), 2.28-2.11 (2H, brm)
|
|
Purity
>90% (NMR)
|
MS
635 (M + 1)
|
|
[1986]
196
TABLE 195
|
|
|
|
Example No.
279
1H NMR (δ) ppm
|
|
869
300 MHz, DMSO-d6 8.30 (1H, s), 8.23 (1H, d, J=8.7 Hz), 8.06-8.00 (2H, m), 7.83 (1H, dd, J=8.0, 1.8 Hz), 7.71 (2H, d, J=8.4 Hz), 7.64 (1H, d, J=8.0 Hz), 7.59-7.54 (4H, m), 7.22 (2H, d, J=8.4 Hz), 5.25 (2H, s), 4.33 (1H, m), 2.66 (3H, s), 2.66 (3H, s), 2.37-2.19 (2H, m), 1.93-1.80 (2H, m), 1.70-1.59 (1H, m), 1.47-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
644 (M + 1)
|
|
Example No.
280
1H NMR (δ) ppm
|
|
870
300 MHz, DMSO-d6 8.32-8.23 (3H, m), 8.08-8.01 (2H, m), 7.73 (2H, d, J=8.6 Hz), 7.65 (1H, d, J=8.2 Hz), 7.59-7.51 (4H, m), 7.25 (2H, d, J=8.6 Hz), 5.21 (2H, s), 4.34 (1H, m), 3.32 (3H, s), 2.37-2.19 (2H, m), 2.10-1.98 (2H, m), 1.93-1.80 (2H, m), 1.71-1.60 (1H, m), 1.51-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
615 (M + 1)
|
|
Example No.
281
1H NMR (δ) ppm
|
|
871
300 MHz, DMSO-d6 8.30 (1H, d, J=1.5 Hz), 8.24 (1H, s), 8.14 (1H, d, J=8.6 Hz), 8.07-7.95 (2H, m), 7.63 (1H, t, J=8.6 Hz), 7.57-7.47 (5H, m), 7.16 (1H, dd, J=12.0, 2.2 Hz), 7.03 (1H, dd, J=8.6, 2.2 Hz), 5.17 (2H, s), 4.06 (1H, m), 3.90 (3H, s), 2.31-2.11 (2H, m), 1.97-1.78 (4H, m), 1.71-1.59 (1H, m), 1.43-1.22 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
315
|
|
[1987]
197
TABLE 196
|
|
|
|
Example No.
282
1H NMR (δ) ppm
|
|
872
300 MHz, DMSO-d6 8.36 (1H, s), 8.35 (1H, d, J=9.3 Hz), 8.09 (1H, d, J=9.3 Hz), 7.78 (2H, d, J=8.7 Hz), 7.48-7.25 (9H, m), 5.09 (2H, s), 4.39 (1H, m), 3.04 (6H, s), 2.40-2.15 (2H, m), 2.10-1.95 (2H, m), 1.90-1.75 (2H, m), 1.70-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
580 (M + 1)
|
|
Example No.
283
1H NMR (δ) ppm
|
|
873
300 MHz, DMSO-d6 10.03 (1H, s), 8.33 (1H, s), 8.29 (1H, d, J=8.7 Hz), 8.06 (1H, d, J=9.0 Hz), 7.74 (2H, d, J=9.0 Hz), 7.51-7.42 (5H, m), 7.37-7.30 (2H, m), 7.22 (2H, d, J=8.7 Hz), 5.10 (2H, s), 4.37 (1H, m), 3.06 (3H, s), 2.40-2.18 (2H, m), 2.15-1.95 (2H, m), 1.90-1.80 (2H, m), 1.75-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
630 (M + 1)
|
|
Example No.
284
1H NMR (δ) ppm
|
|
874
300 MHz, DMSO-d6 8.30 (1H, s), 8.14 (1H, d, J=8.7 Hz), 7.97 (1H, d, J=8.7 Hz), 7.96-7.41 (8H, m), 7.16 (1H, dd, J=12.4, 2.2 Hz), 7.03 (1H, dd, J=8.4, 2.2 Hz), 5.15 (2H, s), 4.15 (1H, m), 3.54-3.16 (4H, m), 2.33-2.13 (2H, m), 1.97-1.79 (4H, m), 1.70-1.02 (9H, m)
|
|
Purity
>90% (NMR)
|
MS
654 (M + 1)
|
|
[1988]
198
TABLE 197
|
|
|
|
Example No.
285
1H NMR (δ) ppm
|
|
875
300 MHz, DMSO-d6 8.37 (1H, d, J=7.3 Hz), 8.30 (1H, s), 8.19-8.12 (2H, m), 8.02-7.95 (2H, m), 7.65 (1H, t, J=8.4 Hz), 7.56-7.43 (5H, m), 7.18 (1H, dd, J=12.0, 1.8 Hz), 7.06 (1H, dd, J=8.4, 2.1 Hz), 5.13 (2H, s), 4.22-4.03 (2H, m), 2.34-2.13 (2H, m), 1.99-1.78 (4H, m), 1.72-1.57 (1H, m), 1.44-1.14 (3H, m), 1.20, 1.18 (6H, each s)
|
|
Purity
>90% (NMR)
|
MS
640 (M + 1)
|
|
Example No.
286
1H NMR (δ) ppm
|
|
876
300 MHz, DMSO-d6 8.29 (1H, s), 8.13 (1H, d, J=8.7 Hz), 7.97 (1H, dd, J=8.7, 1.4 Hz), 7.69-7.40 (8H, m), 7.16 (1H, dd, J=12.0, 2.2 Hz), 7.02 (1H, dd, J=8.4, 2.2 Hz), 5.15 (2H, s), 4.07 (1H, m), 3.71-3.23 (2H, m), 1.98-1.71 (4H, m), 1.71-1.18 (10H, m)
|
|
Purity
>90% (NMR)
|
MS
666 (M + 1)
|
|
Example No.
287
1H NMR (δ) ppm
|
|
877
300 MHz, DMSO-d6 8.29 (1H, s), 8.13 (1H, d, J=8.0 Hz), 7.97 (1H, d, J=8.4 Hz), 7.83 (1H, s), 7.68-7.41 (7H, m), 7.17 (1H, d, J=12.0 Hz), 7.03 (1H, d, J=8.4 Hz), 5.15 (2H, s), 4.07 (1H, m), 3.58-3.41 (4H, m), 2.34-2.13 (2H, m), 1.97-1.77 (8H, m), 1.71-1.58 (1H, m), 1.49-1.18 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
652 (M + 1)
|
|
[1989]
199
TABLE 198
|
|
|
|
Example No.
288
1H NMR (δ) ppm
|
|
878
300 MHz, DMSO-d6 8.62(1N, m), 8.31 (1H, s), 8.22-8.14 (2H, m), 8.99 (2H, d, J=8.7 Hz), 7.66 (1H, t, J=7.7 Hz), 7.58-7.44 (5H, m), 7.19 (1H, dd, J=8.7, 2.2 Hz), 5.14 (2H, s), 4.11 (1H, m), 3.67-3.49 (2H, m), 3.45-3.30 (2H, m), 2.37-2.12 (2H, m), 2.00-1.76 (4H, m), 1.70-1.58 (1H, m), 1.48-1.17 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
642 (M + 1)
|
|
Example No.
289
1H NMR (δ) ppm
|
|
879
400 MHz, DMSO-d6 8.28 (1H, s), 8.11 (1H, d, J=8.9 Hz), 7.96 (1H, d, J=8.9 Hz), 7.68 (1H, s), 7.62 (1H, t, J=8.2 Hz), 7.55-7.41 (6H, m), 7.15 (1H, d, J=11.7 Hz), 7.02 (1H, d, J=8.4 Hz), 5.14 (2H, s), 4.12-3.13 (6H, m), 2.30-1.19 (13H, m)
|
|
Purity
>90% (NMR)
|
MS
682 (M + 1)
|
|
Example No.
290
1H NMR (δ) ppm
|
|
880
400 MHz, DMSO-d6 8.29 (1H, s), 8.15 (1H, d, J=8.6 Hz), 7.98 (1H, d, J=8.8 Hz), 7.72 (1H, s), 7.64 (1H, t, J=8.8 Hz), 7.57-7.43 (6H, m), 7.18 (1H, dd, J=12.1, 2.1 Hz), 7.03 (1H, d, J=10.7 Hz), 5.12 (2H, s), 4.15-4.01 (1H, m), 3.75-3.33 (8H, m), 2.31-2.14 (2H, m), 1.96-1.78 (4H, m), 1.70-1.58 (1H, m), 1.47-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
668 (M + 1)
|
|
[1990]
200
TABLE 199
|
|
|
|
Example No.
291
1H NMR (δ) ppm
|
|
881
400 MHz,DMSO-d6 8.29 (1H, s), 8.14 (1H, d, J=8.9 Hz), 7.97 (1H, d, J=8.6 Hz), 7.71 (1H, s), 7.63 (1H, t, J=8.2 Hz), 7.56-7.42 (6H, m), 7.17 (1H, d, J=12.3 Hz), 7.03 (1H, d, J=10.7 Hz), 5.14 (2H, s), 4.07 (1H, m), 3.96-3.52 (4H, m), 2.79-2.56 (4H, m), 2.32-2.14 (2H, m), 1.97-1.79 (4H, m), 1.71-1.58 (1H, m), 1.51-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
684 (M + 1)
|
|
Example No.
292
1H NMR (δ) ppm
|
|
882
300 MHz, DMSO-d6 9.07-8.99 (1H, m), 8.30 (1H, s), 8.23-8.12 (2H, m), 8.04-7.95 (2H, m), 7.65 (1H, t, J=8.2 Hz), 7.60-7.45 (5H, m), 7.19 (1H, dd, J=12.0, 2.6 Hz), 7.06 (1H, dd, J=8.6, 2.2 Hz), 5.16 (2H, s), 4.18-4.02 (1H, m), 3.97 (2H, d, J=6.0 Hz), 2.33-2.14 (2H, m), 1.99-1.79 (4H, m), 1.72-1.59 (1H, m), 1.45-1.19 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
656 (M + 1)
|
|
Example No.
293
1H NMR (δ) ppm
|
|
883
300 MHz, DMSO-d6: 8.21 (1H, s), 7.94 and 7.86 (2H, ABq, J=8.6 Hz), 7.72 (1H, d, J=2.4 Hz), 7.59 and 7.11 (4H, A′ B′ q, J=8.9 Hz), 7.53 (1H, dd, J=8.4, 2.4 Hz), 7.38 (1H, d, J=8.4 Hz), 7.36 and 7.32 (4H, A″B″q, J=8.1 Hz), 5.07 (2H, s), 4.27 (1H, brt, J=13.8 Hz), 2.87 (2H, t, J=7.8 Hz), 2.57 (2H, t, J=7.8 Hz), 2.35-2.20 (2H, brm), 1.96-1.79 (4H, brm), 1.68-1.59 (1H, brm), 1.47-1.18 (3H, brm)
|
|
Purity
>90% (NMR),
|
MS
637 (M + 1)
|
|
[1991]
201
TABLE 200
|
|
|
|
Example No.
294
1H NMR (δ) ppm
|
|
884
300 MHz, DMSO-d6 8.30 (1H, s), 8.25 and 8.03 (2H, ABq, J=8.9 Hz), 7.73 (1H, s), 7.73 (2H, d, J=8.6 Hz), 7.55 (1H, dd, J=8.0, 2.3 Hz), 7.40 (4H, s), 7.39 (1H, d, J=8.0 Hz), 7.23 (2H, d, J=8.6 Hz), 5.11 (2H, s), 4.55 (2H, s), 4.36 (1H, brt, J=14.8 Hz), 2.37-2.19 (2H, brm), 2.09-1.96 (2H, brm), 1.91-1.79 (2H, brm), 1.71-1.59 (1H, brm), 1.50-1.20 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
567 (M + 1)
|
|
Example No.
295
1H NMR (δ) ppm
|
|
885
300 MHz, DMSO-d6 8.30 (1H, s), 8.25 and 8.04 (2H, ABq, J=8.7 Hz), 7.74 (1H, s), 7.72 (2H, d, J=8.7 Hz), 7.56 (1H, d, J=8.7 Hz), 7.48-7.35 (5H, m), 7.22 (2H, d, J=8.7 Hz), 5.11 (2H, s), 4.46 (2H, s), 4.35 (1H, brt, J=14.8 Hz), 3.31 (3H, s), 2.37-2.17 (2H, brm), 2.07-1.95 (2H, brm), 1.92-1.79 (2H, brm), 1.73-1.56 (1H, brm), 1.52-1.20 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
581 (M + 1)
|
|
Example No.
296
1H NMR (δ) ppm
|
|
886
300 MHz, DMSO-d6 8.21 (1H, d, J=1.5 Hz), 7.98 (1H, d, J=1.2 Hz), 7.97-7.91 (2H, m), 7.84 (1H, dd, J=8.7, 1.5 Hz), 7.77 (1H, d, J=2.1 Hz), 7.70 (1H, d, J=7.5 Hz), 7.60-7.54 (4H, m), 7.43 (1H, d, J=8.4 Hz), 7.09 (2H, d, J=8.7 Hz), 5.05 (2H, s), 4.25 (1H, brt, J=14.8 Hz), 2.36-2.18 (2H, brm), 1.95-1.79 (4H, brm), 1.71-1.6 (1H, brm), 1.43-1.18 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
581 (M + 1)
|
|
[1992]
202
TABLE 201
|
|
|
|
Example No.
297
1H NMR (δ) ppm
|
|
887
300 MHz, DMSO-d6 12.7 (1H, brs), 8.21 (1H, s), 7.94 and 7.85 (2H, ABq, J=8.6 Hz), 7.60-7.55 (3H, m), 7.49 and 7.45 (4H, A′ B′ q, J=8.3 Hz), 7.12 (2H, d, J=8.7 Hz), 5.05 (2H, s), 4.26 (1H, brt, J=13.0 Hz), 2.54 (3H, s), 2.38-2.20 (2H, brm), 1.97-1.80 (4H, brm), 1.71-1.59 (1H, brm), 1.47-1.20 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
583 (M + 1)
|
|
Example No.
298
1H NMR (δ) ppm
|
|
888
300 MHz, DMSO-d6 8.22 (1H, s), 8.01 (1H, s), 7.95 and 7.86 (2H, ABq, J=8.6 Hz), 7.79 (1H, d, J=7.8 Hz), 7.58 (3H, t, J=7.5 Hz), 7.53 (4H, s), 7.13 (2H, d, 8.7 Hz), 5.15 (2H, s), 4.26 (1H, brt, J=13.8 Hz), 2.83 (3H, s), 2.37-2.18 (2H, brm), 1.95-1.78 (4H, brm), 1.70-1.59 (1H, brm), 1.47-1.17 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
599 (M + 1)
|
|
Example No.
299
1H NMR (δ) ppm
|
|
889
300 MHz, DMSO-d6 8.43-8.16 (3H, m), 8.07-7.94 (2H, m), 7.72 (2H, d, J=8.6 Hz), 7.62-7.49 (5H, m), 7.23 (2H, d, J=8.6 Hz), 5.16 (2H, s), 4.34 (1H, m), 2.39-2.20 (2H, m), 2.10-1.96 (2H, m), 1.93-1.80 (2H, m), 1.71-1.58 (1H, m), 1.49-1.19 (3H, m)
|
|
|
Purity
>90% (NMR)
|
MS
562 (M + 1)
|
|
[1993]
203
TABLE 202
|
|
|
|
Example No.
300
1H NMR (δ) ppm
|
|
890
300 MHz, DMSO-d6: 2.77(1H, brs), 8.83 (2H, d, J=1.9 Hz), 8.56 (2H, dd, J=4.9, 1.9 Hz), 8.22 (1H, d, J=1.5 Hz), 7.97 (2H, dt, J=7.9, 1.9 Hz), 7.95 (1H, d, J=8.6 Hz), 7.87 (1H, dd, J=8.6, 1.5 Hz), 7.57 (1H, t, J=8.7 Hz), 7.46 (2H, dd, J=7.9, 4.9 Hz), 7.26 (1H, dd, J=12.0, 4.9 Hz), 7.14 (1H, dd, J=8.8, 2.3 Hz), 6.99 (2H, s), 3.94 (1H, brt), 2.26-2.09 (2H, m), 1.87-1.73 (4H, m), 1.67-1.57 (1H,
|
# m), 1.42-1.12 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
523 (M + 1)
|
|
Example No.
301
1H NMR (δ) ppm
|
|
891
300 MHz, DMSO-d6 8.22 (1H, s), 7.95(1H, d, J=8.7 Hz), 7.87 (1H, dd, J=1.5 Hz, 9.0 Hz), 7.62 (4H, d, J=8.4 Hz), 7.55 (1H, t, J=9.0 Hz), 7.44 (4H, d, J=8.1 Hz), 7.20 (1H, dd, J=2.1 Hz, 12.0 Hz), 7.11 (1H, dd, J=2.1 Hz, 8.7 Hz), 6.86 (1H, s), 3.94 (1H, m), 2.96, 2.88 (12H, s), 2.35-2.00 (2H, m), 1.95-1.70 (4H, m), 1.65-1.50 (1H, m), 1.45-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
663 (M + 1)
|
|
Example No.
302
1H NMR (δ) ppm
|
|
892
300 MHz, DMSO-d6 8.14 (1H, s), 7.88 (1H, d, J=8.4 Hz), 7.68 (1H, d, J=8.7 Hz), 7.64-7.55 (3H, m), 7.50 (1H, t, J=8.7 Hz), 7.22-7.17 (3H, m), 7.11 (1H, s), 7.08-7.00 (2H, m), 3.90 (1H, m), 2.15-2.00 (2H, m), 1.95-1.50 (5H, m), 1.45-1.00 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
532 (M + 1)
|
|
[1994]
204
TABLE 203
|
|
|
|
Example No.
303
1H NMR (δ) ppm
|
|
893
300 MHz, CDCl3 8.49 (1H, s), 7.98(1H, dd, J=8.6, 1.5 Hz), 7.71 (1H, d, J=1.8 Hz), 7.66 (1H, d, J=8.6 Hz), 7.55-7.29 (7H, m), 6.80 (1H, dd, J=8.2, 2.2 Hz), 6.69 (1H, dd, J=11.2, 2.2 Hz), 4.99 (2H, s), 4.10-3.92 (1H, m), 3.95 (3H, s), 3.15 (3H, s), 3.06 (3H, s), 2.31-2.14 (2H, m), 2.04-1.86 (4H, m), 1.81-1.71 (1H, m), 1.41-1.21 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
640 (M + 1)
|
|
Example No.
304
1H NMR (δ) ppm
|
|
894
300 MHz, DMSO-d6 8.21 (1H, s), 7.94 (1H, d, J=8.7 Hz), 7.84 (1H, d, J=9.1 Hz), 7.70 (1H, s), 7.26-7.39 (9H, m), 7.11 (2H, d, J=8.4 Hz), 5.11 (2H, s), 4.26 (1H, m), 3.01 (3H, s), 2.97 (3H, s), 2.38-2.19 (2H, m), 1.97-1.78 (4H, m), 1.72-1.57 (1H, m), 1.48-1.17 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
608 (M + 1)
|
|
Example No.
305
1H NMR (δ) ppm
|
|
895
300 MHz, DMSO-d6 8.24 (2H. s), 8.03 (1H, d, J=8.0 Hz), 7.96 (1H, d, J=8.8 Hz), 7.87 (1H, d, J=9.1 Hz), 7.60-7.46 (6H, m), 7.09 (1H, dd, J=12.0, 1.8 Hz), 6.97 (1H, dd, J=8.4, 1.8 Hz), 5.16 (2H, s), 3.97 (1H, m), 2.31-2.11 (2H, m), 1.92-1.73 (4H, m), 1.70-1.57 (1H, m), 1.46-1.13 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
599 (M + 1)
|
|
[1995]
205
TABLE 204
|
|
|
|
Example No.
306
1H NMR (δ) ppm
|
|
896
300 MHz, DMSO-d6 12.84 (1H, brs), 8.21 (1H s), 7.98-7.84 (5H, m), 7.58 (2H, d, J=8.7 Hz), 7.54 (2H, d, J=7.8 Hz), 7.34 (1H,, d, J=8.7 Hz), 7.26 (1H, d, J=2.4 Hz), 7.13-7.06 (3H, m), 5.06 (2H, s), 4.26 (1H, brt, J=12.7 Hz), 3.84 (3H, s), 2.36-2.17 (2H, brm), 1.99-1.80 (4H, brm), 1.73-1.59 (1H, brm), 1.47-1.17 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
577 (M + 1)
|
|
Example No.
307
1H NMR (δ) ppm
|
|
897
300 MHz, DMSO-d6 8.22 (1H, s), 8.04 (1H, s), 7.96 (2H, d, J=8.1 Hz), 7.87 (2H, s), 7.72 (1H, d, J=1.2 Hz), 7.59-7.41 (7H, m), 5.12 (2H, s), 4.25 (1H, brt, J=11.8 Hz), 3.02 (3H, brs), 2.98 (3H, brs), 2.38-2.15 (2H, brm), 1.93-1.76 (4H, brm), 1.71-1.59 (1H, brm), 1.46-1.16 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
617 (M + 1)
|
|
Example No.
308
1H NMR (δ) ppm
|
|
898
300 MHz, DMSO-d6 8.27 (1H, s), 8.08 (1H, d, J=9.0 Hz), 7.93 (1H, d, J=8.7 Hz), 7.65 (2H, d, J=8.7 Hz), 7.46 (2H, d, J=8.1 Hz), 7.42 (2H, d, J=8.4 Hz), 7.30-7.04 (5H, m), 5.03 (2H, s), 4.32 (1H, m), 2.40-2.10 (2H, m), 2.05-1.10 (8H, m)
|
|
Purity
>90% (NMR)
|
MS
552 (M + 1)
|
|
[1996]
206
TABLE 205
|
|
|
|
Example No.
309
1H NMR (δ) ppm
|
|
899
300 MHz, DMSO-d6 8.33 (1H, s), 8.15 and 7.99 (2H, ABq, J=8.9 Hz), 7.84 and 7.59 (4H, A′ B′ q, J=8.3 Hz), 7.46 (2H, d, J=8.4 Hz), 7.22-7.16 (3H, m), 7.01-6.98 (2H, m), 4.27 and 4.23 (2H, A″B″q, J=12.9 Hz), 3.78 (3H, s), 2.39-2.21 (2H, brm), 2.07-1.95 (2H, brm), 1.91-1.80 (2H, brm), 1.72-1.59 (1H, brm), 1.49-1.17 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
|
|
Example No.
310
1H NMR (δ) ppm
|
|
900
300 MHz, DMSO-d6 8.33 (1H, s), 8.09 and 7.95 (2H, ABq, J=8.7 Hz), 7.87 and 7.71 (4H, A′ B′ q, J=8.0 Hz), 7.43 (2H, d, J=7.8 Hz), 7.15 (1H, d, J=8.7 Hz), 7.07-7.02 (4H, m), 4.66 (2H, s), 4.23 (1H, brt, J=11.8 Hz), 3.76 (3H, s), 2.38-2.20 (2H, brm), 2.04-1.93 (2H, brm), 1.89-1.79 (2H, brm), 1.70-1.59 (1H, brm), 1.49-1.18 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
615 (M + 1)
|
|
Example No.
311
1H NMR (δ) ppm
|
|
901
300 MHz, DMSO-d6 8.30 (1H, s), 8.21 and 8.01 (2H, ABq, J=8.7 Hz), 7.65 (2H, d, J=8.4 Hz), 7.52-7.41 (6H, m), 7.20 (1H, d, J=8.4 Hz), 7.14 (1H, d, J=2.7 Hz), 6.97 (1H, dd, J=8.4, 2.4 Hz), 4.31 (1H, brt, J=9.8 Hz), 4.28 (2H, s), 3.78 (3H, s), 2.37-2.20 (2H, brm), 2.07-1.95 (2H, brm), 1.92-1.80 (2H, brm), 1.71-1.60 (1H, brm), 1.50-1.19 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
583 (M + 1)
|
|
[1997]
207
TABLE 206
|
|
|
|
Example No.
312
1H NMR (δ) ppm
|
|
902
300 MHz, DMSO-d6 8.22 (1H, s), 8.12 (1H, d, J=8.4 Hz), 8.00-7.84 (5H, m), 7.70 (4H, d, J=8.4 Hz), 7.56 (1H, t, J=8.6 Hz), 7.23 (1H, d, J=12.0 Hz), 7.13 (1H, d, J=8.6 Hz), 6.97 (1H, s), 3.92 (1H, m), 2.35-2.00 (2H, m), 1.95-1.70 (4H, m), 1.65-1.55 (1H, m), 1.50-1.05 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
609 (M + 1)
|
|
Example No.
313
1H NMR (δ) ppm
|
|
903
300 MHz, DMSO-d6 8.89 (1H, brs), 8.63 (1H, brs), 8.24 (1H, s), 8.11 (1H, d, J=7.8 Hz), 7.99 (1H, d, J=8.8 Hz), 7.89 (1H, d, J=9.9 Hz), 7.61-7.55 (4H, m), 7.43 (2H, t, J=7.7 Hz), 7.34 (1H, t, J=7.2 Hz), 7.24 (1H, d, J=12.0 Hz), 7.14 (1H, d, J=8.6 Hz), 6.95 (1H, s), 3.96 (1H, m), 2.35-2.05 (2H, m), 2.00-1.50 (5H, m), 1.45-1.10 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
522 (M + 1)
|
|
Example No.
314
1H NMR (δ) ppm
|
|
904
300 MHz, CDCl3 8.48 (1H, d, J=1.4 Hz), 8.05 (1H, d, J=1.8 Hz), 8.98 (1H, d, J=8.6 Hz), 7.82 (1H, d, J=7.9 Hz), 7.66 (1H, d, J=8.6 Hz), 7.55-7.24 (6H, m), 6.78 (1H, dd, J=8.6, 2.6 Hz), 6.69 (1H, dd, J=11.6 Hz), 2.2 Hz), 6.40-6.30 (1H, m), 4.99 (2H, s), 4.02 (1H, m), 3.95 (3H, s), 3.05 (3H, d, J=4.8 Hz), 2.32-2.13 (2H, m), 2.03-1.87 (4H, m), 1.81-1.71 (1H, m), 1.46-1.23 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
626 (M + 1)
|
|
[1998]
208
TABLE 207
|
|
|
|
Example No.
503
1H NMR (δ) ppm
|
|
905
300 MHz, DMSO-d6 8.23 (1H, s), 7.76 (1H, d, J=8.7 Hz), 7.58 (1H, d, J=8.8 Hz), 7.51-7.32 (7H, m), 7.17 (2H, d, J=8.7 Hz), 6.55 (1H, s), 5.18 (2H, s), 4.75 (1H, m), 2.35-2.12 (2H, m), 2.10-1.85 (4H, m), 1.80-1.50 (2H, m)
|
|
Purity
>90% (NMR)
|
MS
412 (M + 1)
|
|
Example No.
701
1H NMR (δ) ppm
|
|
906
300 MHz, DMSO-d6 8.96 (1H, s), 8.50 (1H, s), 7.77 (2H, d, J=8.7 Hz), 7.50-7.40 (4H, m), 7.30 (1H, d, J=8.4 Hz), 7.24 (1H, d, J=2.4 Hz), 7.16 (2H, d, J=8.4 Hz), 7.06 (1H, dd, J=2.4 Hz, 8.1 Hz), 5.06 (2H, s), 4.31 (1H, s), 3.83 (3H, s), 2.80-2.55 (2H, m), 2.00-1.80 (4H, m), 1.70-1.55 (1H, m), 1.40-1.15 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
568 (M + 1)
|
|
[1999]
209
TABLE 208
|
|
|
Example No. 315
1H NMR(γ) ppm
|
907
300MHz, DMSO-d6 8.84(2H, d, J=6.3Hz), 8.28(1H, s), 8.17 and 7.99(2H, ABq, J=8.7 Hz), 7.87-7.85(3H, m), 7.70-7.50(3H, m), 7.52(1H, d, J=8.3Hz), 7.18(2H, d, J=8.7Hz), 5.22(2H, s)4.31(1H, br t, J=12.5Hz), 2.36-2.18(2H, m), 2.03-1.78(4H, m), 1.70-1.58 8(1H, m), 1.50-1.23(3H, m)
|
Purity > 90% (NMR)
|
MS 538(M + 1)
|
|
Example No. 316
1H NMR(γ) ppm
|
908
300MHz, DMSO-d6 9.23(1H, t, J=6.3Hz), 8.29(1H, s), 8.25-8.22(2H, m), 8.03(2H, d, J=7.9Hz), 7.55-7.48(5H, m) 7.34(4H, d, J=4.4Hz), 7.28-7.22 (3H, m), 5.15(2H, s), 4.52(2H, d, J=5.9Hz), 4.35(1H, br t, J=12.1Hz), 2.37-2.18(2H, m), 2.08-1.95(2H, m), 1.91-1.79 (2H, m), 1.72-1.59(1H, m), 1.47-1.19(3H, m)
|
Purity > 90% (NMR)
|
MS 670(M + 1)
|
|
Example No. 317
1H NMR(γ) ppm
|
909
300MHz, DMSO-d6 8.59(1H, t, J=5.5Hz), 8.28(1H, s), 8.21 and 8.01(2H, ABq, J=8.8 Hz), 8.16(1H, s), 7.97 and 7.46 (2H, A′B′q, J=8.0Hz), 7.71 and 7.23(4H, A″B″q, J=8.7Hz), 7.53 and 7.49(4H, A″′B″′q, J=9.2Hz), 5.14(2H, s), 4.34(1H, br t, J=12.8Hz), 3.14(2H, t, J=6.3 Hz), 2.38-2.18(2H, m),2.07-1.78(4H, m), 1.78-
|
#1.47(7H, m), 1.47-1.07(6H, m), 1.03-0.83(2H, m)
|
Purity > 90% (NMR)
|
MS 676 (M + 1)
|
|
[2000]
210
TABLE 209
|
|
|
Example No. 318
1H NMR(δ) ppm
|
910
300MHz, DMSO-d6 9.63 (1H, t, J=4.8Hz), 8.86 and 7.97 (4H, ABq, J=6.6Hz), 8.30(1H, s), 8.27(1H, s), 8.23 and 8.03(2H, A ′B′q, J=8.8Hz), 8.09 and 7.54(2H, A″B″q, J=8.1Hz), 7.73 and 7.24(4H, A″′B″′q, J=8.8Hz), 7.54 and 7.52(4H, A″″B″″q, J=8.8Hz), 5.16(2H, s)4.78(2H, d, J=5.6Hz),
|
#4.35(1H, br t, J=11.0Hz), 2.39-2.19(2H, m), 2.07-1.96(2H, m), 1.91-1.78 (2H, m), 1.70-1.57(1H, m)1.50-1.19(3H, m)
|
Purity > 90% (NMR)
|
MS 671 (M + 1)
|
|
Example No. 319
1H NMR(δ) ppm
|
911
300MHz, DMSO-d6 8.28(1H, s), 8.24 and 8.03(2H, A Bq, J=9.0Hz), 7.77(1H, s), 7.70 (2H, d, J=8.4Hz), 7.64-7.10 (13H, m), 5.16(2H, s), 4.74 and 4.57 (total 2H, each br s), 4.34(1H, br t, J=11.7Hz), 2.90(3H, s), 2.35-2.17(2H, m), 2.07-1.93(2H, m), 1.93-1.78(2H, m), 1.71-1.57 (1H, m), 1.51-1.19(3H, m)
|
Purity > 90% (NMR)
|
MS 684 (M + 1)
|
|
Example No. 320
1H NMR(δ) ppm
|
912
300MHz, DMSO-d6 8.94 and 8.06(4H, ABq, J=6.8Hz), 8.33(1H, s), 8.28 and 8.05(2H, A′B′q, J=8.7Hz), 7.80(1H, s), 7.73 and 7.22(4H, A″B″q, J=8.7Hz), 7.63 and 7.57(2H, A″′B″′q, J=7.9Hz), 5.30(2H, s), 4.34(1H, br t, J=12.1Hz), 3.04(3H, s), 2.97 (3H, s), 2.38-2.18(2H, m), 2.10-1.96(2H, m), 1.93-1.80(2H, m),
|
# 1.72-1.58(1H, m), 1.52-1.08 3H, m)
|
Purity > 90% (NMR)
|
MS 575 (M + 1)
|
|
[2001]
211
TABLE 210
|
|
|
Example No. 321
1H NMR(δ) ppm
|
913
300MHz, DMSO-d6 11.19(1H, br s), 8.31(1H, s), 8.23 and 8.02 (2H, ABq, J=9.0Hz), 7.77(1H, s), 7.72 and 7.23(4H, A′B′q. J=8.7Hz), 7.59 and 7.48(2H, A″B″q, J=7.9Hz), 7.53 and 7.51(4H, A″′B″′q, J=9.0Hz), 5.16(2H, s), 4.72-2.97(8H, br m), 4.34(1H, br t, J=12.1Hz), 2.79(3H, s), 2.38-
|
# 2.17(2H, m), 2.07-1.93(2H, m), 1.93-1.78(2H, m), 1.69-1.58 (1H, m), 1.50-1.10(3H, m)
|
Purity > 90% (NMR)
|
MS 663 (M + 1)
|
|
Example No. 322
1H NMR(δ) ppm
|
914
300MHz, DMSO-d6 9.54(1H, t, J=5.7Hz), 8.91(1H, s), 8.81(1H, d, J=4.9Hz), 8.48 (1H, d, J=7.9Hz), 8.32(1H, s), 8.27(1H, d, J=9.0Hz), 8.25(1H, s), 8.07-7.97(3H, m), 7.74 and 7.25(4H, ABq, J=8.9Hz), 7.56-7.49 (5H, m), 5.16(2H, s), 4.69(2H, d, J=5.6Hz), 4.36(1H, br t, J=12.4Hz), 2.37-2.20(2H, m),
|
# 2.09-1.97(2H, m), 1.91-1.78 (2H, m), 1.70-1.57(1H, m), 1.50-1.17(3H, m)
|
Purity > 90% (NMR)
|
MS 671 (M + 1)
|
|
Example No. 323
1H NMR(δ) ppm
|
915
300MHz, DMSO-d6 9.52(1H, t, J=6.0Hz), 8.72(1H, d, J=5.3Hz), 8.30-8.19(4H, m), 8.08(1H, d, J=7.9Hz), 8.02(1H, d, J=7.6HZ), 7.77-7.64(4H, m), 7.57-7.49(5H, m), 7.24(2H, d, J=8.7Hz), 5.16(2H, s), 4.77(2H, d, J=5.6Hz), 4.34(1H, t, J=12.8 Hz), 2.36-2.19(2H, m), 2.07-1.95(2H, m), 1.91-1.78(2H, m),
|
#1.69-1.59(1H, m), 1.45-1.20(3H, m)
|
Purity > 90% (NMR)
|
MS 671(M + 1)
|
|
[2002]
212
TABLE 211
|
|
|
Example No. 324
1H NMR(δ) ppm
|
916
300MHz, DMSO-d6 8.36(1H, d, J=7.9Hz), 8.30(1H, s), 8.28 and 8.05(2H, ABq, J=8.8 Hz), 8.16(1H, s), 7.79 and 7.46 (2H, A′B′q, J=8.3Hz), 7.74 and 7.25(4H, A″B″q, J=8.9Hz), 7.52 and 7.50(4H, A″′B″′q, J=8.7Hz), 5.14(2H, s), 4.36(1H, br t, J=12.1Hz), 3.80(1H, br s), 2.39-2.18(2H, m), 2.10-
|
# 1.98(2H, m), 1.93-1.57(8H, m), 1.49-1.04(8H, m)
|
Purity > 90% (NMR)
|
MS 662(M + 1)
|
|
Example No. 325
1H NMR(δ) ppm
|
917
300MHz, DMSO-d6 8.86(1H, t, J=6.0Hz), 8.84 and 8.00(4H, ABq, J=6.6Hz), 8.33(1H, s), 8.27 and 8.04(2H, A′B′q, J=9.0Hz), 8.12(1H, s), 7.92 and 7.46(2H, A″B″q, J=7.9Hz), 7.74 and 7.23(4H, A″′B″′q, J=9.0Hz), 7.53 and 7.49(4H, A″″B″″q, J=9.1 Hz), 5.13(2H, s), 4.36(1H, br t, J=12.8Hz), 3.70(2H, td, J=
|
# 6.8, 6.0Hz), 3.21(2H, t, J=6.8Hz), 2.38-2.20(2H, m), 2.09-1.95(2H, m), 1.91-1.77(2H, m), 1.70-1.59(1H, m), 1.49-1.20(3H, m)
|
Purity > 90% (NMR)
|
MS 685 (M + 1)
|
|
Example No. 326
1H NMR(δ) ppm
|
MS 685 (M +1)
|
918
300MHz, DMSO-d6 12.80(1H, brs), 8.23(1H, s), 7.90(1H, d, J=8.7Hz), 7.83(1H, d, J=8.7Hz) ,7.60-7.50(5H, m), 7.39(2H, d, J=7.8Hz), 7.23-7.10(3H, m), 7.05(1H,d, J=7.8Hz), 6.85(1H, s), 3.94(1H, s), 2.97, 2.88(6H, s), 2.30-2.10(2H, m), 1.90-1.50(5H, m), 1.40-1.00(3H,m)
|
Purity > 90% (NMR)
|
MS 610(M + 1)
|
|
[2003]
213
TABLE 212
|
|
|
Example No. 327
1H NMR(δ) ppm
|
919
300MHz, DMSO-d6 13.20-12.60(2H, brs), 8.23(1H, s), 7.98(2H, d, J=6.6Hz), 7.95 (1H, d, J=8.7Hz), 7.87(1H, d, J=8.7Hz), 7.70-7.50(5H, m), 7.27-7.20(3H, m), 7.08(1H, d, J=7.8 Hz), 6.90(1H, s), 3.93(1H, s), 2.51-2.05(2H, m), 1.90-1.70(4H, m), 1.65-1.55(1H, m), 1.40-1.10(3H, m)
|
Purity > 90% (NMR)
|
MS 583 (M + 1)
|
|
[2004]
214
TABLE 213
|
|
|
|
920
|
|
Ex.
|
No.
R
R′
|
|
2001
—H
4-C-Me)
|
2002
—H
3-(-CF3)
|
2003
5-(-F)
—H
|
2004
3-(-F)
2-(-F)
|
2005
3-(-F)
3-(-F)
|
2006
3-(-F)
4-(-F)
|
2007
4-(-F)
4-(-F)
|
2008
5-(-F)
4-(-F)
|
2009
6-(-F)
4-(-F)
|
2010
4-(-F)
4-(-Cl)
|
2011
5-(-F)
4-(-Me)
|
2012
5-(-F)
4-(-CF3)
|
2013
5-(-F)
4-(-CO2H)
|
2014
5-(-F)
4-(CO2Me)
|
|
2015
5-(-F-)
921
|
|
2016
5-(-F)
4-(-CONH2)
|
2017
5-(-F)
4-{-CON(Me)2}
|
2018
5-(-F)
4-(-OMe)
|
2019
5-(-F)
4-(-SMe)
|
|
2020
5-(-F)
922
|
|
2021
5-(-F)
923
|
|
2022
4-(-Cl)
—H
|
2023
4-(-Cl)
4-(-F)
|
2024
4-(-Cl)
4-(-Cl)
|
2025
4-(-Cl)
4-(-Me)
|
2026
5-(-Cl)
4-C-CF3)
|
2027
4-(-Cl)
4-(-CO2H)
|
2028
5-(-Cl)
4-(-CO2Me)
|
|
2029
5-(-Cl)
924
|
|
2030
4-(-Cl)
4-(-CONH2)
|
2031
5-(-Cl)
4-{-CON(Me)2}
|
|
2032
5-(-Cl)
3-(-OMe)
|
2033
4-(-Cl)
4-(-SMe)
|
|
2034
5-(-Cl)
925
|
|
2035
4-(-Cl)
926
|
|
2036
5-(-CN)
4-(-F)
|
2037
4-(-CN)
4-(-Cl)
|
2038
5-(-NO2)
4-(-F)
|
2039
4-(-NO2)
4-(-Cl)
|
2040
5-(-Me)
4-(-CO2H)
|
2041
5-(-Me)
4-(-CO2Me)
|
|
2042
5-(-Me)
927
|
|
2043
5-(-CF3)
4-C-CO2H)
|
2044
5-(-CF3)
4-(-CO2Me)
|
|
2045
5-(-CF3)
928
|
|
2046
5-(-CO2H)
4-(-F)
|
2047
4-(-CO2H)
4-(-Cl)
|
2048
5-(-CO2Me)
4-(-F)
|
2049
5-(-CO2Me)
4-(-Cl)
|
2050
5-(-Ac)
4-(-F)
|
2051
5-(-Ac)
4-(-Cl)
|
|
2052
929
—H
|
|
2053
930
4-(-F)
|
|
2054
931
4-(-Cl)
|
|
2055
932
4-(-CN)
|
|
2056
933
4-(-NO2)
|
|
2057
934
4-(-Me)
|
|
2058
935
4-(-CF3)
|
|
2059
936
4-(-Ac)
|
|
2060
937
4-(-CO2H)
|
|
2061
938
4-(-CO2Me)
|
|
2062
939
940
|
|
2063
941
4-(-CONH2)
|
|
2064
942
4-{-CON(Me)2}
|
|
2065
943
4-{-C(═NH)NH2}
|
|
2066
944
4-(-OMe)
|
|
2067
945
946
|
|
2068
947
4-(-NHMe)
|
|
2069
948
4-(-NHAc)
|
|
2070
949
950
|
|
2071
951
4-(-SMe)
|
|
2072
952
953
|
|
2073
954
955
|
|
2074
956
957
|
|
2075
958
959
|
|
2076
5-(-CONH2)
—H
|
2077
5-(-CONH2)
4-(-F)
|
2078
5-(-CONH2)
2,3,4,5,6-penta-(-F)
|
2079
5-(-CONH2)
2-(-Cl)
|
2080
5-(-CONH2)
3-(-Cl)
|
2081
3-(-CONH2)
2-(-Cl)
|
2082
3-(-CONH2)
3-(-Cl)
|
2083
3-(-CONH2)
4-(-Cl)
|
2084
4-(-CONH2)
2-(-Cl)
|
2085
4-(-CONH2)
3-(-Cl)
|
2086
4-(-CONH2)
4-(-Cl)
|
2087
6-(-CONH2)
2-(-Cl)
|
2088
6-(-CONH2)
3-(-Cl)
|
2089
6-(-CONH2)
4-(-Cl)
|
2090
5-(-CONH2)
3,5-di-(Cl)
|
2091
5-(-CONH2)
4-(-CN)
|
2092
5-(-CONH2)
4-(-NO2)
|
2093
5-(-CONH2)
4-(-Me)
|
2094
5-(-CONH2)
2,6-di-(-Me)
|
2095
5-(-CONH2)
4-(-CF3)
|
2096
5-(-CONH2)
4-(-Ac)
|
2097
5-(-CONH2)
4-(-CO2H)
|
2098
5-(-CONH2)
4-(-CO2Me)
|
|
2099
5-(-CONH2)
960
|
|
2100
5-(-CONH2)
4-(-CONH2)
|
2101
5-(-CONH2)
3,5-di-(-CONH2)
|
2102
5-(-CONH2)
4-{-CON(Me)2}
|
2103
5-(-CONH2)
4-{-C(═NH)NH2}
|
2104
5-(-CONH2)
4-(-OMe)
|
2105
5-(-CONH2)
3,4,5-tri-(-OMe)
|
|
2106
5-(-CONH2)
961
|
|
2107
5-(-CONH2)
4-(-NHMe)
|
2108
5(-CONH2)
4-(-NHAc)
|
|
2109
5(CONH2)
962
|
|
2110
5-(-CONH2)
4-(-SMe)
|
|
2111
5-(-CONH2)
963
|
|
2112
5-(-CONH2)
964
|
|
2113
5-(-CONH2)
965
|
|
2114
5-(-CONH2)
966
|
|
2115
5-{-CON(Me)2}
—H
|
2116
5-{-CON(Me)2}
4-(-F)
|
2117
4-{-CON(Me)2}
4-(-Cl)
|
2118
5-{-CON(Me)2}
4-(-CN)
|
2119
5-{-CON(Me)2}
4-(-NO2)
|
2120
5-{-CON(Me)2}
4-(-Me)
|
2121
4-{-CON(Me)2}
4-(-CF3)
|
2122
5-{-CON(Me)2}
4-(-Ac)
|
2123
5-{-CON(Me)2}
4-(-CO2H)
|
2124
5-{-CON(Me)2}
4-(-CO2Me)
|
|
2125
5-{-CON(Me)2}
967
|
|
2126
5-{-CON(Me)2}
3-(-CONH2)
|
2127
4-{-CON(Me)2}
4-{-CON(Me)2}
|
2128
5-{-CON(Me)2}
4-{-C(=NH)NH2}
|
2129
5-{-CON(Me)2}
4-(-OMe)
|
|
2130
5-{-CON(Me)2}
968
|
|
2131
5-{-CON(Me)2}
4-(-NHMe)
|
2132
5-{-CON(Me)2}
4-(-NHAc)
|
|
2133
5-{-CON(Me)2}
969
|
|
2134
4-{-CON(Me)2}
4-(-SMe)
|
|
2135
5-{-CON(Me)2}
970
|
|
2136
4-{-CON(Me)2}
971
|
|
2137
5-{-CON(Me)2}
972
|
|
2138
5-{-CON(Me)2}
973
|
|
2139
5-(-OMe)
—H
|
2140
5-(-OMe)
4-(-F)
|
2141
3-(-OMe)
4-(-Cl)
|
2142
4-(-OMe)
4-(-Cl)
|
2143
5-(-OMe)
2-(-Cl)
|
2144
5-(-OMe)
3-(-Cl)
|
2145
6-(-OMe)
4-(-Cl)
|
2146
5-(-OMe)
4-(-CN)
|
2147
5-(-OMe)
4-(-NO2)
|
2148
5-(-CMe)
4-(-Me)
|
2149
5-(-OMe)
4-(-CF3)
|
2150
5-(-OMe)
4-(-Ac)
|
2151
4-(-OMe)
4-(-CO2H)
|
2152
4,5-di-(-OMe)
4-(-CO2H)
|
2153
5-(-OMe)
4-(-CO2Me)
|
|
2154
5-(-OMe)
974
|
|
2155
5-(-OMe)
4-(-CONH2)
|
2156
5-(-OMe)
4-{-CON(Me)2}
|
2157
5-(-OMe)
4-{-C (=NH)NH2}
|
2158
5-(-OMe)
4-(-OMe)
|
|
2159
5-(-OMe)
975
|
|
2160
5-(-OMe)
4-(-NHMe)
|
2161
5-(-OMe)
4-(-NHAc)
|
|
2162
5-(-OMe)
976
|
|
2163
5-(-OMe)
4-(-SMe)
|
|
2164
5-(-OMe)
977
|
|
2165
5-(-OMe)
978
|
|
2166
5-(-OMe)
979
|
|
2167
5-(-OMe)
980
|
|
2168
5-(-NHMe)
4-(-F)
|
2169
5-(-NHMe)
4-(-Cl)
|
2170
5-(-NHAc)
4-(-F)
|
2171
5-(-NHAc)
4-(-Cl)
|
2172
5-(-NHAc)
4-(-Ac)
|
2173
5-(-NHAc)
4-(-CONH2)
|
2174
5-(-NHAc)
4-{-CON(Me)2}
|
|
2175
981
4-(-F)
|
|
2176
982
4-(-Cl)
|
|
2177
983
4-(-Me)
|
|
2178
984
4-(-CF3)
|
|
2179
985
4-(-CO2H)
|
|
2180
986
4-(-CO2Me)
|
|
2181
987
988
|
|
2182
989
4-(-SMe)
|
|
2183
990
991
|
|
2184
992
993
|
|
2185
5-(-SMe)
4-(-F)
|
2186
4HSMe)
4-(-Cl)
|
2187
5-(-SMe)
4-(-Me)
|
2188
5-(-SMe)
4-(CF3)
|
2189
5-(-SMe)
4-(-Ac)
|
2190
5-(-SMe)
4-(-CONH2)
|
2191
5-(-SMe)
4-{-CON(Me)2}
|
|
2192
994
4-(-F)
|
|
2193
995
4-(-Cl)
|
|
2194
996
4-(-Me)
|
|
2195
997
4-(-CF3)
|
|
2196
998
4-(-Ac)
|
|
2197
999
4-(-CONH2)
|
|
2198
1000
4-{-CON(Me)2}
|
|
2199
1001
4-(-F)
|
|
2200
1002
4-(-Cl)
|
|
2201
1003
4-(-Me)
|
|
2202
1004
4-(-CF3)
|
|
2203
1005
4-(-Ac)
|
|
2204
1006
4-(-CONH2)
|
|
2205
1007
4-{-CON(Me)2}
|
|
2206
1008
4-(-F)
|
|
2207
1009
4-(-Cl)
|
|
2208
1010
2,4-di-(-Cl)
|
|
2209
1011
4-(-Me)
|
|
2210
1012
3-(-CF3)
|
|
2211
1013
4-(-CF3)
|
|
2212
1014
4-(-CONH2)
|
|
2213
1015
4-{-CON(Me)2}
|
|
2214
1016
4-(-SMe)
|
|
2215
1017
1018
|
|
2216
1019
1020
|
|
2217
1021
4-(-F)
|
|
2218
1022
4-(-Cl)
|
|
2219
1023
4-(-Me)
|
|
2220
1024
4-(-CF3)
|
|
2221
1025
4-(-CONH2)
|
|
2222
1026
4-{-CON(Me)2}
|
|
2223
1027
4-(-SMe)
|
|
2224
1028
1029
|
|
2225
1030
1031
|
|
2226
5-{-O-(CH2)2-OH}
4-(-Cl)
|
2227
5-{-O-(CH3)3-OH}
4-(-Cl)
|
|
2228
1032
4-(-Cl)
|
|
2229
1033
4-(-Cl)
|
|
2230
1034
4-(-Cl)
|
|
2231
1035
4-(-Cl)
|
|
2232
1036
4-(-Cl)
|
|
2233
1037
4-(-Cl)
|
|
2234
1038
4-(-Cl)
|
|
2235
1039
4-(-Cl)
|
|
2236
1040
4-(-Cl)
|
|
2237
1041
4-(-Cl)
|
|
2238
1042
4-(-Cl)
|
|
2239
1043
4-(-Cl)
|
|
2240
1044
4-(-Cl)
|
|
2241
1045
4-(-Cl)
|
|
2242
1046
4-(-Cl)
|
|
2243
1047
4-(-Cl)
|
|
2244
1048
4-(-Cl)
|
|
2245
1049
4-(-Cl)
|
|
2246
1050
4-(-Cl)
|
|
2247
1051
4-(-Cl)
|
|
2248
1052
4-(-Cl)
|
|
2249
1053
4-(-Cl)
|
|
2250
1054
4-(-Cl)
|
|
2251
1055
4-(-Cl)
|
|
2252
1056
4-(-Cl)
|
|
2253
1057
4-(-Cl)
|
|
2254
1058
4-(-Cl)
|
|
[2005]
215
TABLE 214
|
|
|
|
1059
|
|
Ex.
|
No.
R
R′
|
|
2255
—H
—H
|
2256
—H
4-(-Me)
|
2257
—H
3-(-CF3)
|
2258
5-(-F)
—H
|
2259
5-(-F)
4-(-F)
|
2260
5-(-F)
4-(-Cl)
|
2261
5-(-F)
4- (-Me)
|
2262
5-(-F)
1 4-(-CF3)
|
2263
5-(-F)
4-(-CO2H)
|
2264
5-(-F)
4-(-CO2Me)
|
|
2265
5-(-F)
1060
|
|
2266
5-(-F)
4-(-CONH2)
|
2267
5-(-F)
4-{-CON(Me)2}
|
2268
5-(-F)
4-(-OMe)
|
2269
5-(-F)
4-(-SMe)
|
|
2270
5-(-F)
1061
|
|
2271
5-(-F)
1062
|
|
2272
4-(-Cl)
—H
|
2273
5-(-Cl)
4-(-F)
|
2274
4-(-Cl)
4-(-Cl)
|
2275
5-(-Cl)
4-(-Me)
|
2276
5-(-Cl)
4-(-CF3)
|
2277
5-(-Cl)
4-(-CO2H)
|
2278
5-(-Cl)
4-(-CO2Me)
|
|
2279
5-(-Cl)
1063
|
|
2280
5-(-Cl)
4-(-CONH2)
|
2281
5-(-Cl)
4-{-CON(Me)2}
|
2282
5-(-Cl)
4-(-OMe)
|
2283
5-(-Cl)
4-(-SMe)
|
|
2284
5-(-Cl)
1064
|
|
2285
5-(-Cl)
1065
|
|
2286
5-(-CN)
4-(-F)
|
2287
5-(-CN)
4-(-Cl)
|
2288
5-(-NO2)
4-(-F)
|
2289
5-(-NO2)
4-(-Cl)
|
2290
5-(-Me)
4-(-CO2H)
|
2291
5-(-Me)
4-(-CO2Me)
|
|
2292
5-(-Me)
1066
|
|
2293
5-(-CF3)
4-(-CO2H)
|
2294
5-(-CF3)
4-(-CO2Me)
|
|
2295
5-(-CF3)
1067
|
|
2296
5-(-CO2H)
4-(-F)
|
2297
4-(-CO2H)
4-(-F)
|
2299
5-(-CO2Me)
4-(-Cl)
|
2300
5-(-Ac)
4-(-F)
|
2301
5-(-Ac)
4-(-Cl)
|
|
2302
1068
—H
|
|
2303
1069
4-(-F)
|
|
2304
1070
4-(-Cl)
|
|
2305
1071
4-(CN)
|
|
2306
1072
4-(-NO2)
|
|
2307
1073
4-(-Me)
|
|
2308
1074
4-(-CF3)
|
|
2309
1075
4-(-Ac)
|
|
2310
1076
4-(-CO2H)
|
|
2311
1077
4-(-CO2Me)
|
|
2312
1078
1079
|
|
2313
1080
4-(-CONH2)
|
|
2314
1081
4-{-CON(Me)2}
|
|
2315
1082
4-{-C(=NH)NH2}
|
|
2316
1083
4-(-OMe)
|
|
2317
1084
1085
|
|
2318
1086
4-(-NHMe)
|
|
2319
1087
4-(-NHAc)
|
|
2320
1088
1089
|
|
2321
1090
4-(-SMe)
|
|
2322
1091
1092
|
|
2323
1093
1094
|
|
2324
1095
1096
|
|
2325
1097
1098
|
|
2326
5-(-CONH2)
—H
|
2327
5-(-CONH2)
4-(-F)
|
2328
4-(-CONH2)
4-(-Cl)
|
2329
5-(-CONH2)
4-(-CN)
|
2330
5-(-CONH2)
4-(-NO2)
|
2331
5-(-CONH2)
4-(-Me)
|
2332
5-(-CONH2)
4-(-CF3)
|
2333
5-(-CONH2)
4-(-Ac)
|
2334
5-(-CONH2)
4-(-CO2H)
|
2335
5-(-CONH2)
4-(-CO2Me)
|
|
2336
5-(-CONH2)
1099
|
|
2337
5-(-CONH2)
4-(-CONH2)
|
2338
5-(-CONH2)
4-{-CON(Me)
|
2339
5-(-CONH2)
4-{-C(=NH)NH2}
|
2340
5-(-CONH2)
4-(-OMe)
|
|
2341
5-(-CONH2)
1100
|
|
2342
5-(-CONH2)
4-(-NHMe)
|
2343
5-(-CONH2)
4-(-NHAc)
|
|
2344
5-(-CONH2)
1101
|
|
2345
5-(-CONH2)
4-(-SMe)
|
|
2346
5-(-CONH2)
1102
|
|
2347
5-(-CONH2)
1103
|
|
2348
5-(-CONH2)
1104
|
|
2349
5-(-CONH2)
1105
|
|
2350
5-{-CON(Me)2}
—H
|
2351
5-{-CON(Me)2}
4-(-F)
|
2352
4-{-CON(Me)2}
4-(-Cl)
|
2353
5-{-CON(Me)2}
4-(-CN)
|
2354
5-{-CON(Me)2}
4-(-NO2)
|
2355
5-{-CON(Me)2}
4-(-Me)
|
2356
5-{-CON(Me)2}
4-(-CF3)
|
2357
5-{-CON(Me)2}
4-(-Ac)
|
2358
5-{-CON(Me)2}
4-(-CO2H)
|
2359
5-{-CON(Me)2}
4-(-CO2Me)
|
|
2360
5-{-CON(Me)2}
1106
|
|
2361
5-{-CON(Me)2}
4-(-CONH2)
|
2362
5-{-CON(Me)2}
4-{-CON(Me)2}
|
2363
5-{-CON(Me)2}
4-{-C(=NH)NH2}
|
2364
5-{-CON(Me)2}
4-(-OMe)
|
|
2365
5-{-CON(Me)2}
1107
|
|
2366
5-{-CON(Me)2}
4-(-NHMe)
|
2367
5-{-CON(Me)2}
4-(-NHAc)
|
|
2368
5-{-CON(Me)2}
1108
|
|
2369
5-{-CON(Me)2}
4-(-SMe)
|
|
2370
5-{-CON(Me)21
1109
|
|
2371
5-{-CON(Me)2}
1110
|
|
2372
5-{-CON(Me)2}
1111
|
|
2373
5-{-CON(Me)2}
1112
|
|
2374
5-(-OMe)
—H
|
2375
5-(-OMe)
4-(-F)
|
2376
5-(-OMe)
4-(-Cl)
|
2377
5-(-OMe)
4-(-CN)
|
2378
5-(-OMe)
4-(-NO2)
|
2379
5-(-OMe)
4-(-Me)
|
2380
5-(-OMe)
4-(-CF3)
|
2381
5-(-OMe)
4-(-Ac)
|
2382
5-(-OMe)
4-(-CO2H)
|
2383
5-(-OMe)
4-(-CO2Me)
|
|
2384
5-(-OMe)
1113
|
|
2385
5-(-OMe)
4-(-CONH2)
|
2386
5-(-OMe)
4-{-CON(Me)2}
|
2387
5-(-OMe)
4-{-C(=NH)NH2}
|
2388
5-(-OMe)
4-(-OMe)
|
|
2389
5-(-OMe)
1114
|
|
2390
5-(-OMe)
4-(-NHMe)
|
2391
5-(-OMe)
4-(-NHAc)
|
|
2392
5-(-OMe)
1115
|
|
2393
5-(-OMe)
4-(-SMe)
|
|
2394
5-(-OMe)
1116
|
|
2395
5-(-OMe)
1117
|
|
2396
5-(-OMe)
1118
|
|
2397
5-(-OMe)
1119
|
|
2398
5-(-NHMe)
4-(-F)
|
2399
5-(-NHMe)
4-(-Cl)
|
2400
5-(-NHAc)
4-(-F)
|
2401
5-(-NHAc)
4-(-Cl)
|
2402
5-(-NHAc)
4-(-Ac)
|
2403
5-(-NHAc)
4-(-CONH2)
|
2404
5-(-NHAc)
4-{-CON(Me)2}
|
|
2405
1120
4-(-F)
|
|
2406
1121
4-(-Cl)
|
|
2407
1122
4-(-Me)
|
|
2408
1123
4-(-CF3)
|
|
2409
1124
4-(-CO2H)
|
|
2410
1125
4-(-CO2Me)
|
|
2411
1126
1127
|
|
2412
1128
4-(-SMe)
|
|
2413
1129
1130
|
|
2414
1131
1132
|
|
2415
5-(-SMe)
4-(-F)
|
2416
5-(-SMe)
4-(-Cl)
|
2417
5-(-SMe)
4-(-Me)
|
2418
5-(-SMe)
4-(-CF3)
|
2419
5-(-SMe)
4-(-Ac)
|
2420
5-(-SMe)
4-(-CONH2)
|
2421
5-(-SMe)
14-{-CON(Me)2}
|
|
2422
1133
4-(-F)
|
|
2424
1134
4-(-Me)
|
|
2425
1135
4-(-CF3)
|
|
2426
1136
4-(-Ac)
|
|
2427
1137
4-(-CONH2)
|
|
2428
1138
4-{-CON(Me)2}
|
|
2429
1139
4-(-F)
|
|
2430
1140
4-(-Cl)
|
|
2431
1141
4-(-Me)
|
|
2432
1142
4-(-CF3)
|
|
2433
1143
4-(-Ac)
|
|
2434
1144
4-(-CONH2)
|
|
2435
1145
4-{-CON(Me)2}
|
|
2436
1146
4-(-F)
|
|
2437
1147
4-(-Cl)
|
|
2438
1148
4-(-Me)
|
|
2439
1149
4-(-CF3)
|
|
2440
1150
4-(-CONH2)
|
|
2441
1151
4-{-CON(Me)2}
|
|
2442
1152
4-(-SMe)
|
|
2443
1153
1154
|
|
2444
1155
1156
|
|
2445
1157
4-(-F)
|
|
2446
1158
4-(-Cl)
|
|
2447
1159
4-(-Me)
|
|
2448
1160
4-(-CF3)
|
|
2449
1161
4-(-CONH2)
|
|
2450
1162
4-{-CON(Me)2}
|
|
2451
1163
|
|
2452
1164
1165
|
|
2453
1166
1167
|
|
[2006]
216
TABLE 215
|
|
|
|
1168
|
|
Ex. No.
R
R′
|
|
2454
2-(—F)
2-(—F)
|
2455
2-(—F)
3-(—F)
|
2456
2-(—F)
4-(—F)
|
2457
3-(—Cl)
3-(—Cl)
|
2458
3,5-di-(—Cl)
3,5-di-(—Cl)
|
2459
3-(—CN)
3-(—CN)
|
2460
3-(—NO2)
3-(—NO2)
|
2461
3-(—Me)
3-(—Me)
|
2462
3-(—CF3)
3-(—CF3)
|
2463
3-(—Ac)
3-(—Ac)
|
2464
3-(—CO2H)
3-(—CO2H)
|
2465
3-(—CO2Me)
3-(—CO2Me)
|
|
2466
1169
1170
|
|
2467
3-(—CONH2)
3-(—CONH2)
|
2468
3-(—CONH2)
3-(—F)
|
2469
3-(—CONH2)
3-(—Cl)
|
2470
3-{—CON(Me)2}
3-{—CON(Me)2}
|
2471
3-{—CON(Me)2}
3-(—F)
|
2472
3-{—CON(Me)2}
3-(—Cl)
|
2473
3-{—C(═NH)NH2}
3-{—C(═NH)NH2}
|
2474
3-(—OMe)
3-(—OMe)
|
|
2475
1171
1172
|
|
2476
3-(—NHMe)
3-(—NHMe)
|
2477
3-(—NHAc)
3-(—NHAc)
|
|
2478
1173
1174
|
|
2479
3-(—SMe)
3-(—SMe)
|
|
2480
1175
1176
|
|
2481
1177
1178
|
|
2482
1179
1180
|
|
2483
1181
1182
|
|
2484
3-(—F)
4-(—F)
|
2485
3-(—Cl)
4-(—Cl)
|
2486
4-(—CN)
4-(—CN)
|
2487
4-(—NO2)
4-(—NO2)
|
2488
3-(—Me)
4-(—Me)
|
2489
4-(—Me)
2,6-di-(—Me)
|
2490
4-(—CF3)
4-(—CF3)
|
2491
4-(—Ac)
4-(—Ac)
|
2492
4-(—CO2H)
4-(—CO2H)
|
2493
4-(—CO2Me)
4-(—CO2Me)
|
|
2494
1183
1184
|
|
2495
4-(—CONH2)
4-(—CONH2)
|
2496
4-(—CONH2)
4-(—F)
|
2497
4-(—CONH2)
2,3,4,5,6-penta-(—F)
|
2498
4-(—CONH2)
4-(—Cl)
|
2499
4-{—CON(Me)2}
4-{—CON(Me)2}
|
2500
4-{—CON(Me)2}
4-(—F)
|
2501
4-{—CON(Me)2}
4-(—Cl)
|
2502
4-{—CON(Me)2}
3,5-di-(—Cl)
|
2503
4-{—C(═NH)NH2}
4-{—C(═NH)NH2}
|
2504
4-(—OMe)
4-(—OMe)
|
2505
4-(—OMe)
3,4,5-tri-(—OMe)
|
|
2506
1185
1186
|
|
2507
4-(—NHMe)
4-(—NHNe)
|
2508
4-(—NHAc)
4-(—NHAc)
|
|
2509
1187
1188
|
|
2510
4-(—SMe)
4-(—SMe)
|
|
2511
1189
1190
|
|
2512
1191
1192
|
|
2513
1193
1194
|
|
2514
1195
1196
|
|
[2007]
217
TABLE 216
|
|
|
|
1197
|
|
Ex. No.
R
R′
|
|
2515
—H
—H
|
2516
2-(—F)
3-(—F)
|
2517
3-(—Cl)
3-(—Cl)
|
2518
3-(—CN)
3-(—CN)
|
2519
3-(—NO2)
3-(—NO2)
|
2520
3-(—Me)
3-(—Me)
|
2521
3-(—CF3)
3-(CF3)
|
2522
3-(—Ac)
3-(—Ac)
|
2523
3-(—CO2H)
3-(—CO2H)
|
2524
3-(—CO2Me)
3-(—CO2Me)
|
|
2525
1198
1199
|
|
2526
3-(—CONH2)
3-(—CONH2)
|
2527
3-(—CONH2)
3-(—F)
|
2528
3-(—CONH2)
3-(—Cl)
|
2529
3-{—CON(Me)2}
3-{—CON(Me)2}
|
2530
3-{—CON(Me)2}
3-(—F)
|
2531
3-{—CON(Me)2}
3-(—Cl)
|
2532
3-{—(C═NH)NH2}
3-{—(C═NH)NH2}
|
2533
3-(—OMe)
3-(—OMe)
|
|
2534
1200
1201
|
|
2535
3-(—NHMe)
3-(—NHMe)
|
2536
3-(—NHAc)
3-(—NHAc)
|
|
2537
1202
1203
|
|
2538
3-(—SMe)
3-(—SMe)
|
|
2539
1204
1205
|
|
2540
1206
1207
|
|
2541
1208
1209
|
|
2542
1210
1211
|
|
2543
3-(—F)
4-(—F)
|
2544
4-(—Cl)
4-(—Cl)
|
2545
4-(—CN)
4-(—CN)
|
2546
4-(—NO2)
4-(—NO2)
|
2547
4-(—Me)
4-(—Me)
|
2548
4-(—CF3)
4-(—CF3)
|
2549
4-(—Ac)
4-(—Ac)
|
2550
3-(—CO2H)
4-(—CO2H)
|
2551
4-(—CO2Me)
4-(—CO2Me)
|
|
2552
1212
1213
|
|
2553
4-(—CONH2)
4-(—CONH2)
|
2554
4-(—CONH2)
4-(—F)
|
2555
4-(—CONH2)
4-(—Cl)
|
2556
3-{—CON(Me)2)
4-{—CON(Me)2)
|
2557
3-{—CON(Me)2}
4-(—F)
|
2558
4-{—CON(Me)2}
4-(—Cl)
|
2559
4-{—C(═NH)NH2}
4-{—C(═NH)NH2}
|
2560
4-(—OMe)
4-(—OMe)
|
|
2561
1214
1215
|
|
2562
4-(—NHMe)
4-(—NHMe)
|
2563
4-(—NHAc)
4-(—NHAc)
|
|
2564
1216
1217
|
|
2565
4-(—SMe)
4-(—SMe)
|
|
2566
1218
1219
|
|
2567
1220
1221
|
|
2568
1222
1223
|
|
2569
1224
1225
|
|
[2008]
218
TABLE 217
|
|
|
|
1226
|
|
Ex. No.
Py
R′
|
|
2570
3-Py
—H
|
2571
3-Py
3-(—F)
|
2572
3-Py
3-(—Cl)
|
2573
3-Py
3-(—Me)
|
2574
3-Py
3-(—CF3)
|
2575
3-Py
3-(—Ac)
|
2576
3-Py
3-(—CO2H)
|
2577
3-Py
3-(—CO2Me)
|
|
2578
3-Py
1227
|
|
2579
3-Py
3-(—CONH2)
|
2580
3-Py
3-{—CON(Me)2}
|
2581
3-Py
4-(—F)
|
2582
3-Py
4-(—Cl)
|
2583
3-Py
4-(—Me)
|
2584
3-Py
4-(—CF3)
|
2585
3-Py
4-(—Ac)
|
2586
2-Py
4-(—CO2H)
|
2587
3-Py
4-(—CO2Me)
|
|
2588
3-Py
1228
|
|
2589
4-Py
4-(—CONH2)
|
2590
3-Py
4-{—CON(Me)2}
|
|
[2009]
219
TABLE 218
|
|
|
|
1229
|
|
Ex. No.
Py
R′
|
|
2591
3-Py
—H
|
2592
3-Py
3-(—F)
|
2593
3-Py
3-(—Cl)
|
2594
3-Py
3-(—Me)
|
2595
3-Py
3-(—CF3)
|
2596
3-Py
3-(—Ac)
|
2597
3-Py
3-(—CO2H)
|
2598
3-Py
3-(—CO2Me)
|
|
2599
3-Py
1230
|
|
2600
3-Py
3-(—CONH2)
|
2601
3-Py
3-{—CON(Me)2}
|
2602
3-Py
4-(—F)
|
2603
3-Py
4-(—Cl)
|
2604
3-Py
4-(—Me)
|
2605
3-Py
4-(—CF3)
|
2606
3-Py
4-(—Ac)
|
2607
3-Py
4-(—CO2H)
|
2608
3-Py
4-(—CO2Me)
|
|
2609
3-Py
1231
|
|
2610
3-Py
4-(—CONH2)
|
2611
3-Py
4-{—CON(Me)2}
|
|
[2010]
220
TABLE 219
|
|
|
Example No.
328
1H NMR (δ) ppm
|
|
1232
300MHz, DMSO-d6 8.29(1H, s), 8.23(1H, d, J=9.0Hz), 8.02(1H, d, J=8.4Hz), 7.80 (1H, s), 7.71(2H, d, J=8.4Hz), 7.61(1H, d, J=9.3Hz), 7.55-7.45(3H, m), 7.46(2H, d, J=8.1Hz), 7.22(2H, d, J=8.7Hz), 5.16 (2H, s,), 4.34(1H, m), 4.2-3.40 (4H, m), 2.60-2.15(6H, m), 2.10-1.90(2H, m), 1.85-1.70(2H, m), 1.65-1.55(1H, m), 1.50-1.10(3H,m)
|
Purity
>90% (NMR)
|
MS
662(M + 1)
|
|
Example No.
329
1H NMR (δ) ppm
|
|
1233
400MHz, DMSO-d6 9.80(1H, brs), 8.32(1H, s), 8.3O (1H, d, J=8.8Hz), 8.06(1H, d, J=8.8Hz), 7.74(2H ,d, J=8.6Hz), 7.48-7.37(4H, m), 7.22 (1H, d, J=8.6Hz), 7.17(1H, d, J=8.2Hz), 7.05(1H, d, J=2.3Hz), 6.88(1H, dd, J=8.3, 2.5Hz), 5.04(2H, s), 4.37(1H, m), 2.37-2.22(2H, m), 2.11-1.98(2H, m), 1.93-1.81(2H, m), 1.70-1. 58(1H, m), 1.56-1.22(3H, m)
|
Purity
>90% (NMR)
|
MS
553(M + 1)
|
|
Example No.
330
1H NMR (δ) ppm
|
|
1234
300MHz, DMSO-d6 8.38(1H, d, J=7.5Hz), 8.32(1H, s), 8.29(1H, d, J=9.0Hz), 8.16(1H, s), 8.05(1H, d, J=9.0Hz), 7.96 (1H, d, J=7.5Hz), 7.75(2H, d, J=8.4Hz), 7.53-7.43(5H, m), 7.25 (2H, d, J=8.4Hz), 5.13(2H, s), 4.36(1H, m), 4.12(1H, sept, J=6.9Hz), 2.40-2.15(2H, m), 2.10-1.95 (2H, m), 1.90-1.75(2H, m), 1.70-1.55 (1H, m), 1.50-1.20(3H, m), 1.18(6H, d, J=6.6Hz)
|
Purity
>90% (NMR)
|
MS
622(M + 1)
|
|
[2011]
221
TABLE 220
|
|
|
Example No.
331
1H NMR (δ) ppm
|
|
1235
300MHz, DMSO-d6 8.31(1H, s), 8.27(1H, d, J=8.7Hz), 8.05(1H, d, J=8.7Hz), 7.75-7.41(9H, m), 7.23(2H, d, J=8.7Hz), 4.36(1H, m), 4.00-3.90(1H, m), 2.84(3H, brs), 2.40-2.15 2H, m), 2.10-2.00(2H, m), 1.95-1.75(2H, m), 1.70-1.55(1H, m), 1.50-1.00(7H, m)
|
Purity
>90% (NMR)
|
MS
636(M + 1)
|
|
Example No.
332
1H NMR (δ) ppm
|
|
1236
300MHz, DMSO-d6 10.42(1H, s), 8.29(1H, s), 8.27 (1H, s), 8.10(1H, d, J=7.9Hz), 8.03(1H, d, J=8.6Hz), 7.82 2H, d, J=7.5Hz), 7.73(2H, d, J=8.7Hz), 7.56-7.52(5H, m), 7.38(2H, t, J=7.9Hz), 7.26(2H, d, J=8.7Hz), 7.13(1H, t, J=7.5Hz), 5.20(2H, s), 4.35(1H, br t, J=11.7Hz), 2.37-2.19 (2H, m), 2.07-1.96(2H, m), 1.92-1.79 (2H, m), 1.69-1.58(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
656(M + 1)
|
Example No.
333
1H NMR (δ) ppm
|
|
1237
300MHz, DMSO-d6 8.30(1H, s), 8.24 and 8.03(2H, A Bq, J=8.8Hz), 7.71 and 7.22(4H, A′B′q, J=8.8Hz), 7.69(1H, s), 7.52(4H, s), 7.50 and 7.43(2H, A″B″q, J=7.7Hz), 5.15(2H, s)4.35(1H, br t, J=12.1Hz), 4.05-3.15(5H, br m), 3.27(3H, s), 2.39-2.20(2H, m), 2.07-1.75(6H, m), 1.70-1.5 8(1H, m)1.55-1.20(5H, m)
|
Purity
>90% (NMR)
|
MS
678(M + 1)
|
|
[2012]
222
TABLE 221
|
|
|
Example No.
334
1H NMR (δ) ppm
|
|
1238
300MHz, DMSO-d6 8.22(1H, d, J=1.5Hz),8.01(1H, d, J=9.0Hz), 7.89(1H, dd, J=8.6, 1.5Hz), 7.61(2H, d, J=8.6Hz), 7.50-7.39(4H, m), 7.27(1H, d, J=8.6Hz),7.22(1H, d, J=2.6Hz), 7.13(2H, d, J=8.6Hz), 7.04(1H, dd, J=8.2, 2.6Hz), 5.04(2H, s), 4.28(1H, m), 4.11(2H, t, J=6.3Hz), 3.57(2H, t, J=6.3Hz), 2.38-2.17(2H, m), 2.00-1.79(6H, m), 1.70-1.59(1H, m), 1.52-1.16(3H, m)
|
Purity
>90% (NMR)
|
MS
611(M + 1)
|
|
Example No.
335
1H NMR (δ) ppm
|
|
1239
300MHz, DMSO-d6 8.30(1H, d, J=1.5Hz), 8.27(1H, d, J=9.0Hz), 8.04(1H, dd, J=8.6, 1.5Hz), 7.72(2H, d, J=9.0Hz), 7.60-7.40(4H, m), 7.32-7.19 (4H, m), 7.06(1H, dd, J=8.6, 3.0Hz), 5.08(2H, s), 4.36(1H, m), 4.06 (2H, t, J=4.8Hz), 3.74(2H, t, J=4.8Hz), 2.38-2.19(2H, m), 2.13-1.97 (2H, m), 1.94-1.78(2H, m), 1.72-1.59(1H, m), 1.52-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
597 (M + 1)
|
|
[2013]
223
TABLE 222
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
340
0.017
|
341
0.025
|
342
0.015
|
343
0.017
|
344
0.016
|
345
0.012
|
346
0.025
|
347
0.022
|
348
0.013
|
349
0.021
|
350
0.020
|
351
0.019
|
352
0.013
|
353
0.023
|
354
0.013
|
355
0.015
|
356
0.016
|
357
0.019
|
358
0.017
|
359
0.015
|
360
0.014
|
361
0.028
|
362
0.020
|
363
0.11
|
364
0.12
|
365
0.020
|
366
0.024
|
367
0.011
|
368
0.024
|
369
0.022
|
370
0.017
|
371
0.015
|
372
0.033
|
373
0.013
|
374
0.013
|
375
0.012
|
376
0.014
|
377
0.012
|
378
0.018
|
379
0.021
|
|
[2014]
224
TABLE 223
|
|
|
HCV polymerase
|
Ex.
inhibitory activity
|
No.
IC50 [μM]
|
|
|
380
0.023
|
381
0.011
|
382
0.015
|
383
0.013
|
384
0.016
|
385
0.019
|
386
0.018
|
387
0.025
|
388
0.020
|
389
0.012
|
390
0.014
|
391
0.017
|
392
0.014
|
393
0.011
|
394
0.019
|
395
0.016
|
396
0.025
|
397
0.037
|
398
0.077
|
399
0.032
|
409
0.020
|
410
0.018
|
411
0.015
|
412
0.019
|
413
0.026
|
414
0.024
|
415
0.019
|
416
0.024
|
417
0.029
|
418
0.016
|
419
0.021
|
420
0.015
|
421
0.017
|
422
0.017
|
423
0.017
|
424
0.020
|
425
0.026
|
426
0.053
|
427
0.020
|
428
0.026
|
|
[2015]
225
TABLE 224
|
|
|
HCV polymerase
|
inhibitory
|
Ex.
activity
|
No.
IC50 [μM]
|
|
|
429
0.017
|
430
0.017
|
431
0.015
|
432
0.022
|
433
0.014
|
434
0.011
|
435
0.012
|
436
0.026
|
440
0.070
|
442
0.024
|
443
0.030
|
445
0.33
|
446
0.016
|
447
0.12
|
448
0.20
|
449
0.025
|
450
0.040
|
451
0.031
|
452
0.028
|
454
0.013
|
455
0.015
|
456
0.017
|
457
0.015
|
458
0.015
|
459
0.014
|
460
0.017
|
461
0.021
|
462
0.028
|
463
0.026
|
464
0.030
|
465
0.033
|
466
0.023
|
467
0.032
|
468
0.028
|
469
0.024
|
502
0.024
|
503
0.196
|
601
0.32
|
701
0.052
|
|
[2016]
226
TABLE 225
|
|
|
Example No.
341
1H NMR (δ) ppm
|
|
1240
300MHz, DMSO-d6 8.29(1H, d, J=1.5Hz), 8.25(1H, d, J=8.7Hz, 8.03(1H, dd, J=8.7Hz), 7.72and7.22(4H, Abq, J=8.8Hz), 7.67(1H, d, J=1.5Hz), 7.52(4H, s), 7.49(1H, dd, J=7.9, 1.5Hz), 7.43(1H, d, J=7.9Hz), 4.46(1H, brs), 4.35(1H, brt, J=12.4Hz), 3.62(1H, brs), 3.06 (1H, brs), 2.79(1H, brs), 2.38-2.20(2H, brm), 2.08-1.81 (4H, brm), 1.77-1.52(4H, brm), 1.46-1.20(3H, brm), 1.19-1.00
|
# (2H, brm), 0.94and0.92 (total3H, each s)
|
Purity
>90% (NMR)
|
MS
662 (M + 1)
|
|
342
1H NMR (δ) ppm
|
|
1241
300MHz, DMSO-d6 8.28(1H, d, J=1.5Hz), 8.26(1H, d, J=1.8Hz), 8.19(1H, d, J=8.8Hz), 8.07(1H, dd, J=7.7, 1.8Hz), 8.00(1H, dd, J=8.8, 1.5Hz), 7.70and7.22(4H, Abq, J=8.8Hz), 7.56-7.50(1H, m), 7.56(4H, s), 5.17(2H, s), 4.33(1H, brt, J=12.5Hz), 2.05(3H, s), 2.37-2.20 (2H, brm), 2.06-1.80(4H, brm), 1.70-1.60(1H, brm), 1.50-1.20(3H, brm)
|
Purity
>90% (NMR)
|
MS
679 (M + 1)
|
|
Example No.
343
1H NMR (δ) ppm
|
|
1242
300 MHz, DMSO-d6 8.20(1H, d, J=1.5Hz), 7.93(1H, d, J=8.6Hz), 7.84(1H, dd, J=8.3Hz, 1.5Hz), 7.57(2H, d, J=8.6Hz), 7.50-7.40(4H, m), 7.27(1H, d, J=8.2Hz), 7.22(1H, d, J=2.6Hz), 7.10(2H, d, J=8.6Hz) 7.01(1H, dd, J=8.6Hz, 2.6Hz), 5.02(2H, s), 4.89(2H, 2), 4.78(1H, d, J=4.1Hz), 4.38-4.18(1H, m), 3.96-3.81(1H, m), 3.78-3.62(2H, m), 3.27-2.99(2H, m), 2.35-1.15(14H, m)
|
|
[2017]
227
TABLE 226
|
|
|
Example No.
344
1H NMR (δ) ppm
|
|
1243
300MHz, DMSO-d6 8.30(1H, s), 8. 23(1H, d, J=8.7Hz), 8.02(1H, d, J=8.4Hz), 7.71(2H, d, J=8.7Hz), 7.55-7.15 (8H, m), 7.07(1H, dd, J=8.4Hz, 3.0Hz), 5.07(2H, s), 4.35(1H, m), 4.17(2H, t, J=4.5Hz), 3.69(2H, t, J=4.5Hz), 3.32(3H, s), 2.40-2.15 (2H, m), 2.10-1.80(4H, m), 1.75-1.60(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
611 (M + 1)
|
|
Example No.
345
1H NMR (δ) ppm
|
|
1244
300MHz, DMSO-d6 8.29(1H, d, =1.5Hz), 8.22(1H, d, J=8.7Hz), 8.01(1H, d, J=8.7Hz), 7.70(1H, d, J=8.7Hz), 7.50-7.15(8H, m), 7.07(1H, dd, J=8.4Hz, 2.4Hz), 5.07(2H, s), 4.35 (1H, m), 4.17(2H, t, J=4.2Hz), 3.76(2H, t, J=4.5Hz), 3.65-3.40 (4H, m), 3.25(3H, s), 2.40-2.20 (2H, m), 2.10-1.80(4H, m), 1.75-1.65(1H, m), 1.65-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
655 (M + 1)
|
|
Example No.
346
1H NMR (δ) ppm
|
|
1245
300Mz, DMSO-d6 8.26(1H, d, J=1.9Hz), 8.23(1H, d, J=1.5Hz), 8.08-9.02(2H, m), 7.91(1H, dd, J=8.7, 1.5Hz), 7.63and7.16(4H, Abq, J=8.9Hz), 7.56-7.51(5H, m), 5.15(2H, s), 4.29(1H, brt, J=11.7Hz), 2.96 (2H, d, J=6.9Hz), 2.37-2.12 (3H, m), 2.00-1.79(4H, brm), 1.71-1.60(1H,brm)1.49-1.19 (3H, brm),0.97and0.95(total6H, each s)
|
Purity
>90% (NMR)
|
MS
621 (M + 1)
|
|
[2018]
228
TABLE 227
|
|
|
Example No.
347
1H NMR (δ) ppm
|
|
1246
300Mz, DMSO-d6 8.26(1H, s), 8.22(1H, s), 8.06 (1H, s), 8.05(1H, d, J=8.0Hz), 7.94and7.85(2H, ABq, J=8.8Hz), 7.59and7.15(4H, A′B′q, J=8.6Hz), 7.52(4H, s), 7.44(1H, d, J=8.0Hz), 5.12(2H, s), 4.27(1H, brt, J=11.4Hz),2.38-2.18(2H, brm), 1.97-1.77(4H, brm), 1.70-1.59 (1H, brm), 1.49-1.17(3H, brm)
|
Purity
>90% (NMR)
|
MS
634 (M + 1)
|
|
Example No.
348
1H NMR (δ) ppm
|
|
1247
300MHz, DMSO-d6 8.32(1H, s), 8.29(1H, d, J=9.0Hz), 8.06(1H, d, J=8.7Hz), 7.74 (2H, d, J=9.0Hz), 7.72(1H, brs), 7.60-7.45(5H, m), 7.42(1H, d, J=7.8Hz), 7.24(2H, d, J8.7Hz), 5.15(2H, s), 4.37(1H, m),4.00-3.10(6H, m), 2.40-2.18(2H, m), 2.15-1.95(2H, m), 1.90-1.80 (2H, m), 1.75-1.20(6H, m)
|
Purity
>90% (NMR)
|
MS
680 (M + 1)
|
|
Example No.
349
1H NMR (δ) ppm
|
|
1248
300MHz, DMSO-d6 8.41(1H, d, J=1.5Hz), 8.33 (1H, d, J=4.5Hz), 8.26(1H, d, J=8.7Hz), 8.18(1H, dd, J=2.0Hz, 8.0Hz), 8.04(1H, dd, J=1.5Hz, 9.0Hz), 7.75(2H, d, J=8.7Hz), 7.63(1H, d, J=8.1Hz), 7.62-7.45 (4H, m), 7.26(2H, d, J=8.7Hz), 5.25(2H, s), 4.35(1H, m), 2.45 (3H, s),2 40-2.18(2H, m), 2.15-1.95(2H, m), 1.90-1.80(2H, m), 1.75-1.55(1H, m), 1.50-1.20 (3H, m)
|
Purity
>90% (NMR)
|
MS
619 (M + 1)
|
|
[2019]
229
TABLE 228
|
|
|
|
Example No.
350
1H NMR (δ) ppm
|
|
1249
300 MHz, DMSO-d6 8.36 (1H, d, J=7.7 Hz), 8.29 (1H, s), 8.23 (1H, d, J=8.8 Hz), 8.02 (1H, d, J=8.6 Hz), 7.94 (1H, d, J=7.9 Hz), 7.84 (1H, d, J=1.6 Hz), 7.80-7.65 (3H, m), 7.53 (4H, s), 5.15 (2H, s), 4.34 (1H, m), 4.12 (1H, m), 2.35-2.20 (2H, m), 2.10-1.60 (5H, m), 1.50-1.20 (3H, m), 1.17 (6H, d, J=6.5 Hz)
|
|
Purity
>90% (NMR)
|
MS
622 (M + 1)
|
|
Example No.
351
1H NMR (δ) ppm
|
|
1250
300 MHz, DMSO-d6 8.29 (1H, s), 8.24 (1H, d, J=8.8 Hz), 8.02 (1H, d, J=8.6 Hz), 7.80-7.65 (3H, m), 7.55-7.45 (5H, m), 7.32 (1H, d, J=1.5 Hz), 7.22 (2H, d, J=8.8 Hz), 5.13 (2H, s), 4.35 (1H, m), 3.60 (2H, m), 3.33 (2H, m), 2.40-2.15 (2H, m), 2.10-1.15 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
648 (M + 1)
|
|
Example No.
352
1H NMR (δ) ppm
|
|
1251
300 MHZ, DMSO-d6 13.20 (1H, brs), 8.30-8.24 (2H, m), 8.13 (1H, s), 8.04 (1H, d, J=8.7 Hz), 7.94 (1H, d, J=8.0 Hz), 7.75-7.70 (3H, m), 7.55-7.43 (5H, m), 7.25 (2H, d, J=8.7 Hz), 5.13 (2H, s), 4.36 (1H, m), 3.53 (2H, s), 2.40-2.18 (2H, m), 2.15-1.95 (2H, m), 1.90-1.80 (2H, m), 1.75-1.55 (1H, m), 1.50-1.20 (9H, m)
|
|
Purity
>90% (NMR)
|
MS
652 (M + 1)
|
|
[2020]
230
TABLE 229
|
|
|
|
Example No.
353
1H NMR (δ) ppm
|
|
1252
300 MHz, DMSO-d6 8.41 (1H, s), 8.33-8.29 (2H, m), 8.16 (1H, d, J=8.2 Hz), 8.07 (1H, d, J=8.6 Hz), 7.77 (2H, d, J=8.7 Hz), 7.62 (1H, d, J=8.0 Hz), 7.59-7.51 (4H, m), 7.28 (2H, d, J=8.8 Hz), 5.21 (2H, s), 4.56 (2H, s), 4.37 (1H, m), 2.40-2.18 (2H, m), 2.15-1.95 (2H, m), 1.90-1.80 (2H, m), 1.75-1.55 (1H, m), 1.50-1.20 (9H, m)
|
|
Purity
about 90% (NMR)
|
MS
634 (M + 1)
|
|
Example No.
354
1H NMR (δ) ppm
|
|
1253
300 MHz, DMSO-d6 8.31 (1H, s), 8.25 (1H, d, J=9.0 Hz), 8.03 (1H, d, J=8.7 Hz), 7.76-7.71 (3H, m), 7.51-7.47 (5H, m), 7.33 (1H, s), 7.23 (2H, d, J=9.0 Hz), 5.14 (2H, s), 4.36 (1H, m), 4.02 (1H, m), 3.75 (1H, m), 3.56 (1H, m), 3.22 (2H, m), 2.40-2.18 (2H, m), 2.15-1.95 (2H, m), 1.90-1.55 (5H, m), 1.50-1.20 (5H, m)
|
|
Purity
>90% (NMR)
|
MS
664 (M + 1)
|
|
Example No.
355
1H NMR (δ) ppm
|
|
1254
300 MHz, DMSO-d6 8.62 (1H, t, J=5.7 Hz), 8.32-8.30 (2H, m), 8.25 (1H, d, J=8.7 Hz), 8.03 (1H, d, J=8.7 Hz), 7.96(1H, d, J=8.1 Hz), 7.86 (1H, s), 7.75 (1H, d, J=9.0 Hz), 7.72 (2H, d, J=9.0 Hz), 7.55-7.50 (4H, m), 7.22 (2H, d, J=9.0 Hz), 5.17 (2H, s), 4.35 (1H, m), 3.52 (2H, t, J=6.0 Hz), 3.36 (2H, t, J=6.0 Hz), 2.40-2.18 (2H, m), 2.15-1.95 (2H, m),
|
# 1.90-1.80(2H, m), 1.75-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
624 (M + 1)
|
|
[2021]
231
TABLE 230
|
|
|
|
Example No.
356
1H NMR (δ) ppm
|
|
1255
300 Mz, DMSO-d6 9.30 (1H, t, J=5.9 Hz), 8.54 (2H, d, J=5.9 Hz), 8.22 (1H, s), 8.02-7.79 (5H, m), 7.59 and 7.12 (4H, ABq, J=8.6 Hz), 7.55 (4H, s), 7.37 (2H, d, J=5.9 Hz), 5.15 (2H, s), 4.54 (2H, d, J=5.7 Hz), 4.26 (m, brt, J=12.8 Hz), 2.36-2.18 (2H, brm), 1.97-1.78 (4H, brm), 1.70-1.60 (1H, brm), 1.47-1.17 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
671 (M + 1)
|
|
Example No.
357
1H NMR (δ) ppm
|
|
1256
300 Mz, DMS0-d6 8.31 (1H, d, J=1.5 Hz), 8.43 (1H, d, J=8.4 Hz), 8.03 (1H, dd, J=8.4, 1.5 Hz), 7.74 (1H, d, J=8.1 Hz), 7.73 and 7.23 (4H, ABq, J=9.0 Hz), 7.54-7.51 (5H, m), 7.37 (1H, d, J=1.8 Hz), 5.14 (2H, s), 4.36 (1H, brt, J=12.1 Hz), 2.98 (6H, brs), 2.37-2.20 (2H, brm), 2.08-1.81 (4H, brm), 1.70-1.60 (1H, brm), 1.50-1.21 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
608 (M + 1)
|
|
Example No.
358
1H NMR (δ) ppm
|
|
1257
300 MHz, DMSO-d6 8.33 (1H, s), 8.31 (1H, d, J=8.7 Hz), 8.14 (1H, s), 8.07(1H, d, J=8.7 Hz), 7.92 (1H, d, J=8.0 Hz), 7.76 (2H, d, J=8.7 Hz), 7.52-7.40 (5H, m), 7.31-7.26 (3H, m), 5.15 (2H, s), 4.37 (1H, m), 2.40-2.18 (2H, m), 2.15-1.95 (2H, m), 1.90-1.80 (2H, m), 1.75-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
about 90% (NMR)
|
MS
635 (M + 1)
|
|
[2022]
232
TABLE 231
|
|
|
|
Example No.
359
1H NMR (δ) ppm
|
|
1258
300 MHz, DMSO-d6 8.31 (1H, s), 8.25 (1H, d, J=8.7 Hz), 8.10-7.90 (2H, m), 7.82 (1H, dd, J=7.8 Hz, 1.8 Hz), 7.72 (2H, d, J=9.0 Hz), 7.63 (1H, d, J=8.1 Hz), 7.23 (2H, d, J=9.0 Hz), 5.25 (2H, s), 4.34 (1H, m), 3.65-3.50 (1H, m), 3.20-3.05 (2H, m), 2.90-2.75 (2H, m) , 2.40-2.15 (2H, m), 2.10-1.10 (12H. m)
|
|
Purity
>90% (NMR)
|
MS
700 (M + 1)
|
|
Example No.
360
1H NMR (δ) ppm
|
|
1259
300 MHz, DMSO-d6 8.33 (1H, s), 8.30 (1H, d, J=8.5 Hz), 8.06 (1H, d, J=10.1 Hz), 8.80-8.65 (3H, m), 8.60-8.45 (3H, m), 7.42 (1H, d, J=7.8 Hz), 7.35-7.15 (4H, m), 5.15 (2H, s), 4.36 (1H, m), 3.01, 2.97 (6H, s), 2.40-2.15 (2H, m), 2.10-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
592 (M + 1)
|
|
Example No.
361
1H NMR (δ) ppm
|
|
1260
300 MHz, DMSO-d6 8.35-8.20 (2H, m), 8.05 (1H, d, J=8.7 Hz), 8.80-8.65 (3H, m), 7.60-7.40 (3H, m), 7.40-7.30 (5H, m), 5.17 (2H, s), 4.35 (1H, m), 3.01, 2.97 (6H, s), 2.40-2.15 (2H, m), 2.10-1.80 (4H, m), 1.70-1.20 (4H, m)
|
|
Purity
>90% (NMR)
|
MS
592 (M + 1)
|
|
[2023]
233
TABLE 232
|
|
|
|
Example No.
362
1H NMR (δ) ppm
|
|
1261
300 MHz, DMSO-d6 8.33 (1H, s), 8.29 (1H, d, J=8.7 Hz), 8.06 (1H, d, J=8.7 Hz), 7.79 (2H, d, J=9.0 Hz), 7.76 (1H, d, J=9.0 Hz), 7.60 (1H, d, J=8.1Hz), 7.53 (1H, dd, J=1.7 Hz, 8.0 Hz), 7.35 (2H, d, J=8.7 Hz), 6.85-6.80 (2H, m), 5.29 (2H, s), 4.38 (1H, m), 3.01, 2.96 (6H, s), 2.40-2.18 (2H, m), 2.15-1.95 (2H, m),
|
# 1.90-1.80 (2H, m), 1.75-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
614 (M + 1)
|
|
Example No.
363
1H NMR (δ) ppm
|
|
1262
300 MHz, DMSO-d6 8.28 (1H, d, J=1.3 Hz), 8.20-8.10 (2H, m), 8.98 (1H, d, J=8.6 Hz), 7.90-7.80 (2H, m), 7.75 (2H, d, J=8.7 Hz), 7.36 (2H, d, J=8.7 Hz), 7.04 (1H, d, J=1.3 Hz), 5.35 (2H, s), 4.36 (1H, m), 2.39 (3H, s), 2.35-2.15 (2H, m), 2.05-1.75 (4H, m), 1.70-1.60 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
586 (M + 1)
|
|
Example No.
364
1H NMR (δ) ppm
|
|
1263
300 MHz, DMSO-d6 8.31 (1H, s), 8.26 (1H, d, J=8.7 Hz), 8.13 (1H, s), 8.04 (1H, d, J=9.0 Hz), 7.90-7.70 (4H, m), 7.65 (1H, s), 7.39 (2H, d, J=9.0 Hz), 5.37 (2H, s), 4.38 (1H, m), 2.40-2.20 (2H, m), 2.15-2.00 (2H, m), 1.95-1.80 (2H, m), 1.75-1.60 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
604 (M + 1)
|
|
[2024]
234
TABLE 233
|
|
|
|
Example No.
365
1H NMR (δ) ppm
|
|
1264
300 MHz, DMSO-d6 8.28 (1H, s), 8.23 (1H, s), 8.17 (1H, d, J=8.7 Hz), 8.00 (2H, t, J=6.9 Hz), 7.69 (2H, d, J=8.4 Hz), 7.60-7.45 (5H, m), 7.21 (2H, d, J=8.4 Hz), 7.05 (1H, s) 5.19 (2H, s), 4.33 (1H, m), 2.41(3H, s), 2.40-2.20 (2H, m), 2.10-1.80 (4H, m), 1.70-1.60 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
618 (M + 1)
|
|
Example No.
366
1H NMR (δ) ppm
|
|
1265
300 MHz, DMSO-d6 8.26 (1H, s), 8.17 (1H, s), 8.11 (1H, d, J=8.7 Hz), 7.95 (2H, d, J=9.6 Hz), 7.70-7.40 (8H, m), 7.19 (2H, d, J=8.4 Hz), 5.18 (2H, s), 4.30 (1H, m), 2.51 (3H, s), 2.40-2.15 (2H, m), 2.05-1.80 (4H, m), 1.75-1.60 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
634 (M + 1)
|
|
Example No.
367
1H NMR (δ) ppm
|
|
1266
300 Mz, DMSO-d6 8.42 (1H, d, J=1.9 Hz), 8.30 (1H, J=, 1.5 Hz), 8.27 (1H, d, J=8.7 Hz), 8.18 (1H, dd, J=7.9, 1.9 Hz), 8.04 (1H, dd, J=8.7, 1.5 Hz), 7.75 and 7.29 (4H, ABq, J=8.9 Hz) 7.63 (1H, d, J=7.9 Hz), 5.23 (2H, s), 4.36 (1H, brt, J=12.3 Hz) 2.37-2.20 (2H, brm), 2.08-1.80 (4H, brm), 1.71-1.60 (1H, brm), 1.51-1.21 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
605 (M + 1)
|
|
[2025]
235
TABLE 234
|
|
|
|
Example No.
368
1H NMR (δ) ppm
|
|
1267
300 Mz, DMSO-d6 8.30 (1H, d, J=1.5 Hz), 8.25 (1H, d, J=8.6 Hz), 8.04 (1H, dd, J=8.6, 1.5 Hz), 7.93 and 7.67 (4H, ABq, J=8.1 Hz), 7.80 (1H, d, J=2.2 Hz), 7.72 and 7.21 (4H, A′ B′ q, J=8.6 Hz), 7.60 (1H, dd, J=8.1, 2.2 Hz), 7.44 (1H, d, J=8.1 Hz), 5.13 (2H, s), 4.34 (1H, brt, J=11.7 Hz), 2.37-2.19 (2H, brm), 2.09-1.80 (4H, brm), 1.72-
|
#1.60 (1H,brm), 150-1.21 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
562 (M + 1)
|
|
Example No.
369
1H NMR (δ) ppm
|
|
1268
300 Mz, DMSO-d6 8.30 (1H, d, J=1.5 Hz), 8.25 (1H, d, J=8.6 Hz), 8.16 and 7.72 (4H, ABq, J=8.4 Hz), 8.13 (1H, dd, J=8.6, 1.5 Hz), 7.80 (1Hd, J=2.2 Hz), 7.70 and 7.24 (4H, A′ B′ q, J=8.8 Hz), 7.61 (1H, dd, J=8.1, 2.2 Hz), 7.48 (1H, d, J=8.1 Hz), 5.17 (2H, s), 4.33 (1H, brt, J=12.1 Hz), 2.36-2.18 (2H, brm), 2.08-1.77 (4H, brm), 1.69-
|
#1.57 (1H, brm), 1.49-1.17 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
605 (M + 1)
|
|
Example No.
370
1H NMR (δ) ppm
|
|
1269
300 MHz, DMSO-d6 10.94 (1H, brs), 8.33 (1H, s), 8.27 (1H, d, J=8.7 Hz), 8.04 (1H, d, J=8.7 Hz), 7.74 (2H, d, J=8.4 Hz), 7.56-7.29 (6H, m), 7.23 (2H, d, J=8.7 Hz), 7.13 (1H, d, J=8.7 Hz), 5.08 (2H, s), 4.51 (2H, brs), 4.36 (1H, m), 3.94 (1H, brs), 3.75-3.00 (6H, m), 3.20-1.20 (14H, m)
|
|
Purity
>90% (NMR)
|
MS
680 (M + 1)
|
|
[2026]
236
TABLE 235
|
|
|
|
Example No.
371
1H NMR (δ) ppm
|
|
1270
300 MHz, DMSO-d6 8.31 (1H, d, J=1.5 Hz), 8.17 (1H, d, J=9.0 Hz), 7.99 (1H, dd, J=8.7 Hz, 1.4 Hz), 7.70-7.55 (2H, m), 7.50-7.30 (6H, m), 7.19 (1H, dd, J=12.0 Hz, 2.2 Hz), 7.06 (1H, dd, J=8.6 Hz, 2.2 Hz), 5.08 (2H, 4.10 (1H, m), 3.68 (2H, brt, J=5.2), 2.50 (2H, brt, J=1.8 Hz), 2.30-2.10 (2H, m), 2.00-1.75 (8H, m), 1.70-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
652 (M + 1)
|
|
Example No.
372
1H NMR (δ) ppm
|
|
1271
300 Mz, DMSO-d6 8.29 (1H, d, J=1.5 Hz), 8.11 (1H, d, J=8.6 Hz), 7.96 (1H, dd, J=8.6, 1.5 Hz), 7.89 (1H, s), 7.78 and 7.56 (4H, ABq, J=8.4 Hz), 7.69 (1H, s), 7.66 (1H, t, J=8.8 Hz), 7.31 (1H, dd, J=12.1, 2.2 Hz), 7.18 (1H, dd, J=8.8, 2.2 Hz), 5.37 (2H, s), 4.08 (1H, brt, J=11.0 Hz), 3.02 (3H, s), 2.96 (3H, s), 2.31-2.14 (2H, brm), 1.95-1.77 (4H, brm,) 1.69-1.59 (31H, brm), 1.46-1.18 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
626 (M + 1)
|
|
Example No.
373
1H NMR (δ) ppm
|
|
1272
300 MHz, DMSO-d6 11.40 (1H, brs), 9.25 (2H, brs), 8.29 (1H, d, J=1.3 Hz), 8.12-8.09 (2H, m), 7.96 (1H, d, J=8.7 Hz), 7.88 (1H, dd, J=1.8 Hz, 8.1 Hz), 7.67-7.63 (2H, m), 7.56 (2H, d, J=8.7 Hz), 7.51 (2H, d, J=8.7 Hz), 7.17 (1H, d, J=12.0 Hz), 7.05 (1H, d, J=8.6 Hz), 5.16 (2H, s), 4.05 (1H, m), 2.40-2.10 (2H, m), 2.00-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
613 (M + 1)
|
|
[2027]
237
TABLE 236
|
|
|
|
Example No.
374 1H NMR (δ) ppm
|
|
1273
300 MHz, DMSO-d6 13.21 (1H, brs), 8.31 (1H, d, J=1.4 Hz), 8.18-8.15 (2H, m), 7.99 (1H, d, J=8.7 Hz), 7.94 (1H, dd, J=1.8 Hz, 8.0 Hz) 7.70-7.53 (6H, m), 7.17 (1H, d, J=12.0 Hz), 7.05 (1H, d, J=8.6 Hz), 5.20 (2H, s), 4.09 (1H, m), 2.40-2.10 (2H, m), 2.00-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
639 (M + 1)
|
|
Example No.
375
1H NMR (δ) ppm
|
|
1274
300 MHz, DMSO-d6 8.32 (1H, d, J=1.5 Hz), 8.23 (1H, d, J=1.5 Hz), 8.19 (1H, d, J=9.0 Hz), 8.03-7.98 (2H, m), 7.68 (1H, t, J=8.4 Hz), 7.60 (1H, d, J=8.1 Hz), 7.56 (2H, d, J=9.3 Hz), 7.53 (2H, d, J=9.0 Hz), 7.22 (1H, dd, J=2.1 Hz, 12.0 Hz), 7.09 (1H, dd, J=2.1 Hz, 8.4 Hz), 5.21 (2H, s), 4.12 (1H, m), 2.40-2.10 (2H, m), 2.00-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
658 (M + 1)
|
|
Example No.
376
1H NMR (δ) ppm
|
|
1275
300 MHz, DMSO-d6 13.61 (1H, brs), 8.34-8.30 (2H, m), 8.21 (1H, d, J=8.7 Hz), 8.07 (1H, dd, J=1.8 Hz, 8.1 Hz), 8.02 (1H, dd, J=1.5 Hz, 8.7 Hz), 7.69 (1H, t, J=8.4 Hz), 7.57-7.49 (5H, m), 7.22 (1H, dd, J=2.7 Hz, 12.0 Hz), 7.09 (1H, dd, J=2.4 Hz, 9.0 Hz), 5.19 (2H, s), 4.12 (1H, m), 2.40-2.10 (2H, m), 2.00-1.75 (4H, m), 1.70-1.55 (1H, m), 1.50-1.20 (3H, m)
|
|
Purity
>90% (NMR)
|
MS
655 (M + 1)
|
|
[2028]
238
TABLE 237
|
|
|
|
Example No.
377
1H NMR (δ) ppm
|
|
1276
300 Mz, DMSO-d6 8.60 (1H, d, J=4.5 Hz), 8.29 (1H, d, J=1.5 Hz), 8.14 (1H, d, J=8.9 Hz), 8.13 (1H, d, J=1.5 Hz), 7.98 (1H, dd, J=8.9, 1.5 Hz), 7.94 (1H, dd, J=8.1, 1.5 Hz), 7.64 (1H, t, J=8.7 Hz), 7.52 and 7.49 (4H, ABq, J=9.0 Hz), 7.46 (1H, d, J=8.1 Hz), 7.18 (1H, dd, J=12.1, 2.3 Hz), 7.05 (1H, dd, J=8.7, 2.3 Hz), 5.13 (2H, s), 4.08 (1H, brt, J=12.1 H), 2.95-
|
#2.84 (1H, m), 2.31-2.14 (2H, brm), 1.97-1.78
|
|
Purity
>90% (NMR)
|
MS
638 (M + 1)
|
|
Example No.
378
1H NMR (δ) ppm
|
|
1277
300 Mz, DMSO-d6 8.77 (1H, d, J=1.4 Hz), 8.30 (1H, d, J=1.4 Hz), 8.16 (1H, d, J=1.8 Hz), 8.13 (1H, d, J=8.4 Hz), 7.98 (2H, dd, J=8.4, 1.8 Hz), 7.65 (1H, t, J=8.4 Hz), 7.53 and 7.49 (4H, ABq, J=8.8 Hz), 7.47 (1H, d, J=7.7 Hz), 7.18 (1H, dd, J=12.1, 2.2 Hz), 7.05 (1H, dd, J=8.4, 2.2 Hz), 5.13 (2H, s), 4.53-4.40 (1H, m), 4.09 (1H, brt, J=12.8 Hz),
|
# 2.31-2.02 (6H, brm), 1.96-1.80 (4H, brm), 1.78-1.60 (3H, brm), 1.47-1.21 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
652 (M + 1)
|
|
Example No.
379
1H NMR (δ) ppm
|
|
1278
300 Mz, DMSO-d6 8.29 (1H, d, J=1.1 Hz), 8.11 (1H, d, J=4.5 Hz), 8.11 (1H, d, J=8.8 Hz), 7.98-7.91 (2H, m), 7.89 (1H, s), 7.63 (1H, t, J=8.8 Hz), 7.52 and 7.48 (4H, ABq, J=8.6 Hz), 7.44 (1H, d, J=8.1 Hz), 7.17 (1H, dd, J=12.1, 2.2 Hz), 7.04 (1H, dd, J=8.8, 2.2 Hz), 5.12 (2H, s), 4.07 (1H, brt, J=12.4 Hz), 2.33-2.14 (2H, brm), 1.96-1.79 (4H, brm), 1.70-1.60 (1H, brm), 1.48-1.21 (3H, brm),
|
# 1.41 (9H, s)
|
|
Purity
>90% (NMR)
|
MS
654 (M + 1)
|
|
[2029]
239
TABLE 238
|
|
|
Example No.
380
1H NMR(67 ) ppm
|
|
|
1279
300 Mz, DMSO-d6 8.62(1H, t, J = 5.5 Hz), 8.30(1H, d, J = 1.5 Hz), 8.17 (1H, d, J = 1.8 Hz), 8.14(1H, d, J = 8.8 Hz),7.98 (1H, dd, J = 8.1, 1.8 Hz), 7.64(1H, t, J = 8.8 Hz), 7.52 and 7.50(4H, ABq, J = 8.8 Hz), 7.48(1H, d, J = 8.1 Hz), 7.18(1H, dd, J = 12.1, 2.2 Hz), 7.05(1H, dd, J = 8.8, 2.2 Hz), 5.14(2H, s), 4.08(1H, brt, J = 12.1 Hz), 3.13(1H, t, J = 6.2 Hz), 2.31 -2.14(2H, brm),
|
# 1.97-1.78(5H, brm), 1.70-1.60(1H, brm), 1.47-1.21(3H, brm), 0.92(3H, s), 0.90(3H, s)
|
|
Purity
>90% (NMR)
|
MS
654 (M + 1)
|
|
Example No.
381
1H NMR(δ) ppm
|
|
|
1280
300 Mz, DMSO-d6 8.29(1H, d, J = 1.5 Hz), 8.27 (1H, d, J = 8.3 Hz), 8.18(1H, d, J = 1.9 Hz), 8.13 (1H, d, J = 8.7 Hz), 8.01-7.96(2H, m), 7.64(1H, t, J = 8.7 Hz), 7.52 and 7.49(1H, ABq, J = 8.8 Hz), 7.49(1H, d, J = 7.9 Hz), 7.18 (1H, dd, J = 12.1, 2.3 Hz), 7.05 1H, dd, J = 8.7, 2.3 Hz), 5.13(2H, s), 4.12-4.00 (2H, m), 3.52-3.34 (2H, m), 2.31-2.14(2H, brm), 1.97-1.79(4H,
|
# brm), 1.71-1.60 1H, brm), 1.48-1.21(3H, m), 1.17 and 1.15(total3H, each s)
|
|
Purity
>90% (NMR)
|
MS
656 (M + 1)
|
|
Example No.
382
1H NMR(δ) ppm
|
|
|
1281
300 Mz, DMSO-d6 8.30(1H, d, J = 1.5 Hz), 8.13(1H, d, J = 8.8 Hz), 8.09(1H, d, J = 1.5 Hz), 7.98(1H, dd, J = 8.8, 1.5 Hz), 7.86(1H, dd, J = 8.1, 1.5 Hz), 7.64(1H, J = 8.8 Hz), 7.55-7.47(5H, m), 7.17(1H, dd, J = 12.1, 2.2 Hz), 7.05(1H, dd, J = 8.8, 2.2 Hz), 5.14(2H, s), 4.08(1H, brt, J = 12.8 Hz), 3.75(3H, s), 2.32-2.14(2H, brm), 1.96-1.78(4H, brm), 1.70-1.59(1H, brm), 1.47-1.21(3H, brm)
|
|
Purity
>90% (NMR)
|
MS
628 (M + 1)
|
|
[2030]
240
TABLE 239
|
|
|
Example No.
383
1H NMR(δ) ppm
|
|
|
1282
300 Mz, DMSO-d6 8.57(1H, t, J = 5.5 Hz), 8.29(1H, d, J = 1.4 Hz), 8.19(1H, d, J = 1.5 Hz), 8.12(1H, d, J = 9.2 Hz), 8.01-7.95(2H, m), 7.64(1H, t, J = 8.8 Hz), 7.53 and 7.50(4H, ABq, J = 8.8 Hz), 7.48(1H, d, J = 7.7 Hz), 7.17 (1H, dd, J = 12.1, 2.2 Hz), 7.04(1H, dd, J = 8.8, 2.2 Hz), 5.14(2H, s), 4.08(1H, brt, J = 13.9 Hz), 3.70-3.66(1M, m), 3.48-3.36 (3H, m),
|
# 3.28-3.20(1H, m), 2.32-2.13 (2H, brm), 1.96-1.79(4H, brm), 1.71-1.60(1H, brm), 1.47-1.19 (3H, brm)
|
|
Purity
>90% (NMR)
|
MS
672 (M + 1)
|
|
Example No.
384
1H NMR(δ) ppm
|
|
|
1283
300 Mz, DMSO-d6 8.30(1H, d, J = 1.5 Hz), 8.14(1H, d, J = 8.4 Hz), 7.98(1H, dd, J = 8.4, 1.5 Hz), 7.68(1H, brs), 7.63(1H, t, J = 8.4 Hz), 7.51(5H, s), 7.43 (1H, d, J = 8.1 Hz), 7.17(1H, dd, J = 12.5, 1.8 Hz), 7.03(1H, dd, J = 8.4, 1.8 Hz), 4.08(1H, brt, J = 11.4 Hz), 3.50 and 3.30 (total2H, each brs), 2.97(3H, brs), 2.33-2.13 (2H, brm), 1.96-1.79(4H, brm), 1.70-1.59(1H, brm), 1.47-1.03 (6H, brm),
|
|
Purity
>90% (NMR)
|
MS
640 (M + 1)
|
|
Example No.
385
1H NMR(δ) ppm
|
|
|
1284
300 Mz, DMSO-d6 8.29(1H, d, J = 1.5 Hz), 8.12(1H, d, J = 8.8 Hz), 7.97(1H, dd, J = 8.8, 1.5 Hz), 772-7.60(2H, m), 7.55-7.42(6H, m), 7.16(1H, d, J = 11.1 Hz), 7.03(1H, d, J = 8.4 Hz), 5.15(2H, s), 4.07(1H, brt, J = 12.5 Hz), 3.44 and 3.22(total2H, each s), 2.97(3H, brs), 2.32-2.13(2H, brm), 1.72-1.50(3H, brm), 1.47-1.23(3H, brm), 0.93 and 0.72(total3H, each brs)
|
|
Purity
>90% (NMR)
|
MS
654 (M + 1)
|
|
[2031]
241
TABLE 240
|
|
|
Example No.
386
1H NMR(δ) ppm
|
|
|
1285
300 Mz, DMSO-d6 8.29(1H, d, J = 1.5 Hz), 8.12(1H, d, J = 8.7 Hz), 7.97(1H, dd, J = 8.7, 1.5 Hz) 7.74-7.60(2H, m), 7.54-7.42(6H, m), 7.17(1H, dd, J = 12.1, 2.2 Hz), 7.02(1H, dd, J = 8.3, 2.2 Hz), 5.15(2H, s), 4.06(1H, brt, J = 12.8 Hz), 3.92(1H, brs), 2.85(3H, brs), 2.32-2.14(2H, brm), 1.96-1.79(4H, brm), 1.70-1.59(1H, brm), 1.46-1.07(3H, brm), 1.15(6H, brs)
|
|
Purity
>90% (NMR)
|
MS
654 (M + 1)
|
|
Example No.
387
1H NMR(δ) ppm
|
|
|
1286
300 Mz, DMSO-d6 8.29(1H, s), 8.14 and 7.97(2H, ABq, J = 8.7 Hz), 7.63 (1H, s),7.63 (1H, t, J = 8.7 Hz), 7.51-7.41 (6H, m), 7.16(1H, dd, J = 12.1, 1.9 Hz), 7.02(1H, dd, J = 8.7, 1.9 Hz), 5.16(2H, s), 4.26(2H, brs), 4.07(1H, brt, J = 12.1 Hz), 2.32-2.14(2H, brm), 1.97-1.78(5H, brm) 1.70-1.15(9H, brm), 1.24(3H, s), 1.21(3H, s)
|
Purity
>90% (NMR)
|
MS
694 (M + 1)
|
|
Example No.
388
1H NMR(δ) ppm
|
|
|
1287
300 MHz, DMSO-d6 8.58(1H, m), 8.29(1H, s), 8.20-7.90(2H, m), 7.64(1H < t, J = 8.4 Hz), 7.60-7.40 (5H, m), 7.15(1H, d, J = 12.3 Hz), 7.04(1H, d, J = 8.4 Hz), 5.13(2H, 1s), 4.08(1H, m), 3.40-3.20(2H, m), 2.35-2.10(2H, m), 2.00-1.20(12H, m), 0.91(3H, t, J = 6.9 Hz)
|
Purity
>90% (NMR)
|
MS
654 (M + 1)
|
|
[2032]
242
TABLE 241
|
|
|
Example No.
389
1H NMR(δ) ppm
|
|
|
1288
300 MHz, DMSO-d6 8.60(1H, m), 8.29(1H, s), 8.20-7.90(4H, m), 7.64(1H, t, J = 9.0 Hz), 7.60-7.40(5H, m), 7.17(1H, d, J = 12.0 Hz), 7.04(1H, d, J = 8.7 Hz), 5.13(2H, s), 4.80(1H, m), 3.35-3.15(2H, m), 2.30-2.05(2H, m), 2.00-1.10(10H, m), 0.91(3H, t, J = 7.5 Hz)
|
|
Purity
>90% (NMR)
|
MS
640 (M + 1)
|
|
Example No.
390
1H NMR(δ) ppm
|
|
|
1289
300 MHz, DMSO-d6 8.62 (1H, m), 8, 30(1H, s), 8.20-8.10(2H, m), 8.05-7.90(2H, m), 7.65(1H, t, J = 8.4 Hz), 7.60-7.40(5H, m), 7.18(1H, d, J = 12.0 Hz), 7.05(1H, d, J = 8.4 Hz), 5.14(2H, s), 4.09(1H, m), 3.40-3.20(2H, m), 2.35-2.10 (2H, m), 2.00-1.80(4H, m), 1.75-1.60(1H, m), 1.45-1.20(3H, m), 1.15(3H, t, J = 7.2 Hz)
|
|
Purity
>90% (NMR)
|
MS
626 (M + 1)
|
|
Example No.
391
1H NMR(δ) ppm
|
|
|
1290
400 NHz, DMSO-d6 8.54(1H, s), 8.31(1H, s), 8.19(1H, d, J = 8.6 Hz), 8.01(1H, d, J = 8.6 Hz), 7.81(1H, d, J = 2.1 Hz), 7.64(1H, t, J = 8.4 Hz), 7.61(1H, dd, J = 2, 3 Hz, 8.4 Hz), 7.47(2H, d, J = 8.6 Hz), 7.43(2H, d, J = 8.8 Hz), 7.25(1H, d, J = 8.4 Hz), 7.17 (1H, dd, J = 2.3 Hz, 12.1 Hz), 7.05(1H, dd, J = 2.3 Hz, 8.6 Hz), 5.05(2H, s), 4.12(1H, m), 2.96(6H, s), 2.40-2.10(2H, m), 2.00-1.75(4H, m),
|
# 1.70-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
641 (M + 1)
|
|
[2033]
243
TABLE 242
|
|
|
Example No.
392
1H NMR(δ) ppm
|
|
|
1291
300 Mz, DMSO-d6 8.79(1H, s), 8.29(1H, d, J = 1.5 Hz), 8.13(1H, d, J = 8.8 Hz), 7.98(1H, dd, J = 8.8, 1.5 Hz), 7.80(1H, d, 2.2 Hz), 7.63(1H, t, J = 8.4 Hz), 7.61(1H, dd, J = 8.2, 2.2 Hz), 7.47 and 7.43(4H, ABq, J = 8.8 Hz), 7.26(1H, d, J = 8.2 Hz), 7.14 (1H, dd, J = 12.1, 2.2 Hz), 7.02(1H, dd, J = 8.4, 2.2 Hz), 5.05(2H, s), 4.08(1H, brt, J = 12.1 Hz), 3.64-3.61(2H, m), 3.48-3.45(2H, m),
|
# 2.32-2.13(2H, brm), 1.96-1.78(4H, brm), 1.70-1.66(1H, brm), 1.44-1.19(3H, brm)
|
|
Purity
>90% (NMR)
|
MS
683 (M + 1)
|
|
Example No.
393
1H NMR(δ) ppm
|
|
|
1292
400 MHz, DMSO-d6 8.94(1H, s), 8.31(1H, d, J = 1.0 Hz), 8.18(1H, d, J = 8.6 Hz), 8.00(1H, dd, J = 1.4 Hz, 8.8 Hz),7.71(1H, d, J = 2.2 Hz), 7.66(1H, t, J = 8.6 Hz), 7.52(1H, dd, J = 2.4 Hz, 8.6 Hz), 7.46(2H, d, J = 8.6 Hz), 7.42(2H, d, J = 8.2 Hz), 7.24(1H, d, J = 8.4Hz), 7.16(1H, d, J = 12.1 Hz), 7.04(1H, dd, J = 2.4 Hz, 8.8 Hz), 5.05(2H, s), 4.13(1H, m), 2.40-2.10(2H, m),
|
# 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
613 (M + 1)
|
|
Example No.
394
1H NMR(δ) ppm
|
|
|
1293
300 MHz, DMSO-d6 8.93(1H, s), 8.31(1H, d, J = 1.4 Hz), 8.19(1H, d, J = 8.8 Hz), 8.01(1H, d, J = 8.7 Hz), 7.71(1H, d, J = 2.2 Hz), 7.66(1H, t, J = 8.5 Hz), 7.51(1H, dd, J = 2.2 Hz, 8.4 Hz), 7.46(2H, d, J = 8.6 Hz), 7.41(2H, d, J = 8.7 Hz), 7.23(1H, d, J = 8.4 Hz), 7.16(1H, d, J = 12.2 Hz), 7.05(1H, d, J = 8.7 Hz), 5.05(2H, s), 4.13(1H, m), 3.12(2H, q, J = 7.2 Hz), 2.40-2.10(2H, m),
|
# 2.00-1.75(4H, m), 1.70-1.60(1H, m), 1.55-1.20(3H, m), 1.06(3H, t, J = = 7.2 Hz)
|
|
Purity
>90% (NMR)
|
MS
641 (M + 1)
|
|
[2034]
244
TABLE 243
|
|
|
Example No.
395
1H NMR(δ) ppm
|
|
|
1294
300 MHz, DMSO-d6 8.83(1H, s), 8.32(1H, d, J = 1.4 Hz), 8.21(1H, d, J = 8.8 Hz), 8.02(1H, dd, J = 1.4 Hz, 8.7 Hz), 7.71 (1H, d, J = 2.1 Hz), 7.68(1H, t, J = 8.6 Hz), 7.49(1H, dd, J = 2.2 Hz, 8.4 Hz), 7.46(2H, d, J = 8.4 Hz), 7.41 (2H, d, J = 8.6 Hz), 7.23(1IH, d, J = 8.4 Hz), 7.17(1H, d, J = 12.2 Hz), 7.06(1H, d, J = 8.7 Hz), 6.30(1H, brs), 5.05(2H, s), 4.14(1H, m), 3.77(1H, sept, J = 6.5 Hz),
|
# 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m), 1.11(6H, d, J = 6.5 Hz)
|
|
Purity
>90% (NMR)
|
MS
655 (M + 1)
|
|
Example No.
396
1H NMR(δ) ppm
|
|
|
1295
300 MHz, DMSO-d6 8.37(1H, d, J = 7.3 Hz), 8.25 (1H, s), 8.15(1H, s), 7.97(2H, d, J = 8.8 Hz), 7.88(1H, d, J = 8.8 Hz), 7.58-7.47(4H, m), 7.31(1H, m), 7.11(1H, dd, J = 8.4, 2.2 Hz), 6.98(1H, dd, = 8.4, 2.2), 5.13(2H, s), 4.13(1H, q, J = 6.6 Hz), 3.98(1H, m), 2.19(2H, m), 1.86(4H, m) 1.62(1H, m) 1.31(3H, m), 1.20(6H, d, J = 6.6 Hz)
|
|
Purity
>90% (NMR)
|
MS
642 (M + 1)
|
|
Example No.
397
1H NMR(δ) ppm
|
|
|
1296
300 MHz, DMSO-d6 8.40(1H, d, J = 37.9 Hz), 8.28(1H, d, J = 1.9 Hz), 8.15(1H, d, J = 1.9 Hz), 8.11(1H, d, J = 8.7 Hz), 7.96(2H, m), 7.56(1H, t, J = 8.7 Hz), 7.45(3H, m), 7.18(1H, m), 7.08(1H, dd, J = 12.1, 1.9 Hz), 6.96(1H, dd, J = 8.3, 2.3 Hz), 5.09(2H, s), 4.14(1H, m), 4.04(1H, m), 2.23(2H, m), 1.86(3H, m), 1.62(1H, m), 1.33(3H, m), 1.20(6H, d, J = 6.4 Hz)
|
|
Purity
>90% (NMR)
|
MS
642 (M + 1)
|
|
[2035]
245
TABLE 244
|
|
|
Example No.
398
1H NMR(δ) ppm
|
|
|
1297
8.41(1H, d, J = 8.1 Hz), 8.29(1H, d, J = 1.5 Hz), 8.17(1H, d, J = 1.8 Hz), 8.12(1H, d, J = 8.4 Hz), 8.01-7.95(2H, m), 7.67-7.62(2H, m), 7.55-7.51(3H, m), 7.19(1H, dd, J = 12.1, 2.2 Hz), 7.05(1H, dd, J = 8.8 2.2 Hz), 5.13(2H, s), 4.10-4.00(2H, m), 2.32-2.13(4H, m), 1.71-1.60(1H, m), 1.49-1.14(3H, m), 1.21(3H, s), 1.19(3H, s)
|
|
Purity
>90% (NMR)
|
MS
674 (M + 1)
|
|
Example No.
399
1H NMR(δ) ppm
|
|
|
1298
300 Mz, DMSO-d6 8.39(1H, d, J = 7.7 Hz), 8.29(1H, d, J = 1.5 Hz), 8.16(1H, d, J = 1.8 Hz), 8.11(1H, d, J = 8.8 Hz), 8.00-7.95(2H, m), 7.69-7.61(2H, m), 7.54-7.46(3H, m), 7.18(1H, dd, J = 12.1, 2.2 Hz), 7.04(1H, dd, J = 8.8, 2.2 Hz), 5.13(2H, s), 4.20-4.02(2H, m), 2.33-2.13(2H, brm), 1.97-1.80(4H, m), 1.72-1.61(1H, m), 1.44-1.13(3H, m), 1.21(3H, s), 1.19(3H, s)
|
|
Purity
>90% (NMR)
|
MS
658 (M + 1)
|
|
Example No.
399
1H NMR(δ) ppm
|
|
|
1299
300 MHz, DMSO-d6 8.39(1H, d, J = 7.7 Hz), 8.29(1H, s), 8.17(1H, d, J = 1.5 Hz), 8.11(1H, d, J = 8.8 Hz), 7.98(2H, m), 7.73(2H, m), 7.64(1H, t, J = 8.4 Hz), 7.52(1H, d, J = 8.0 Hz), 7.46(1H, dd, J = 8.4, 1.8 Hz), 7.18(1H, dd, J = 11.9, 2.0 Hz), 7.05(1H, dd, J = 8.6, 2.4 Hz), 5.14(2H, s), 4.13(2H, m), 2.22(2H, m), 1.88(4H, m) 1.64(1H, m), 1.34(3H, m), 1.20(6H, d, J = 6.6 Hz)
|
Purity
>90% (NMR)
|
MS
642 (M + 1)
|
|
[2036]
246
TABLE 245
|
|
|
Example No.
401
1H NMR(δ) ppm
|
|
|
1300
300 MHz, DMSO-d6 8.38(1H, d, J = 7.8 Hz), 8.28(1H, s), 8.20-8.05(2H, m), 8.00-7.90(2H, m), 7.65-7.30(5H, m), 7.09(1H, d, J = 12.3 Hz), 6.97(1H, d, J = 10.2 Hz), 5.09(2H, s), 4.20-4.00(2H, m), 2.30-2.10(2H, m), 2.00-1.80(4H, m), 1.70-1.60(1H, m), 1.40-1.10(3H, m), 1.19(6H, d, J = 6.6 Hz)
|
|
Purity
>90% (NMR)
|
MS
658 (M + 1)
|
|
Example No.
402
1H NMR(6) ppm
|
|
|
1301
300 MHz, DMSO-d6 8.25(1H, s), 8.03(1H, d, J = 8.7 Hz), 7.91(1H, d, J = 8.7 Hz), 7.83(1H, s), 7.70-7.35(6H, m), 7.04(1H, d, J = 12.0 Hz), 6.93(1H, d, J = 8.4 Hz), 5.09(2H, s), 4.00(1H, m), 3.60-3.40(4H, m), 2.30-2.10 (2H, m), 1.45-1.15(3H, m)
|
|
Purity
>90% (NMR)
|
MS
670 (M + 1)
|
|
Example No.
403
1H NMR(δ) ppm
|
|
|
1302
400 MHz, DMSO-d6 8.25(1H, s), 8.08(1H, d, J = 8.4 Hz), 7.92(1H, d, J = 9.2 Hz), 7.79(1H, s), 7.66-7.49(4H, m), 7.42(1H, d, J = 7.6 Hz), 7.31-7.28(1H, m), 7.14(1H, d, J = 11.3 Hz), 6.99(1H, d, J = 8.8 Hz), 5.13(2H, s), 4.02(1H, m) 3.45-3.33(4H, m), 2.29-2.08(2H, m), 1.93-1.73(8H, m), 1.67-1.52(1H, m), 1.48-1.11(3H, m)
|
|
Purity
>90% (NMR)
|
MS
670 (M + 1)
|
|
[2037]
247
TABLE 246
|
|
|
Example No.
404
1H NMR(δ) ppm
|
|
|
1303
400 MHz, DMSO-d6 8.41(1H, d, J = 7.6 Hz), 8.32(1H, d, J = 1.5 Hz), 8.20(1H, d, J = 8.6 Hz), 8.17(1H, d, J = 1.7 Hz), 8.00(1H, dt, J = 8.8 Hz, 1.5 Hz), 7.71-7.64(2H, m), 7.54(1H, dd, J = 10.3 Hz, 1.9 Hz), 7.32(1H, dd, J = 8.2 Hz, 1.9 Hz), 7.22(1H, dd, J = 12.1 Hz, 2.3 Hz), 7.08(1H, dd, J = 8.6 Hz), 2.3 Hz), 5.17 (2H, s), 4.15 (1H, m), 2.31-2.14(2H, m), 1.99-1.70(4H, m),
|
# 1.70-1.60(1H, m), 1.46-1.20(3H, m), 1.19(6H, d, J = 6.6 Hz)
|
|
Purity
>90% (NMR)
|
MS
658 (M + 1)
|
|
Example No.
405
1H NMR(δ) ppm
|
|
|
1304
300 MHz, DMSO-d6 8.32(1H, s), 8.19(1H, d, J = 9.0 Hz), 8.03-7.98(2H, m), 7.75(1H, dd, J = 2.1 Hz, 8.4 Hz), 7.67(1H, t, J = 8.6 Hz), 7.40-7.36(3H, m), 7.32(2H, d, J = 8.4 Hz), 7.19(1H, dd, J = 2.1 Hz, 12.3 Hz), 7.07(1H, dd, J = 2.1 Hz, 8.7 Hz), 5.11(2H, s), 4.12(1H, m), 4.12(1H, m), 3.90(2H, t, J = 6.9 Hz), 2.54(2H, t, J = 8.1 Hz), 2. 50(3H, s), 2.40-2.05 (4H, m), 2.00-1.75(4H, m),
|
# 1.70-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
650 (M + 1)
|
|
Example No.
406
1H NMR(δ) ppm
|
|
|
1305
300 MHz, DMSO-d6 8.34(1H, d, J = 7.7 Hz), 8.29(1H, s), 8.15(1H, s), 8.11(1H, d, J = 8.8 Hz), 7.97(2H, d, J = 9.2 Hz), 7.63(1H, t, J = 8.8 Hz), 7.47-7.31(5H, m), 7.18(1H, dd, J = 12.4, 2.Example No.
404
2 Hz), 7.06(1H, dd, J = 12.4, 2.2 Hz), 5.13(2H, s), 4.13(2H, m), 1.96(2H, m), 1.87(4H, m), 1.62(1H, m), 1.34(3H, m), 1.20(6H, d, J = 6.2 Hz)
|
|
Purity
>90% (NMR)
|
MS
652 (M + 1)
|
|
[2038]
248
TABLE 247
|
|
|
Example No.
407
1H NMR(δ) ppm
|
|
|
1306
400 MHz, DMSO-d6 8.32(1H, d, J = 1.4 Hz), 8.20(1H, d, J = 8.8 Hz), 8.01(1H, dd, J = 1.6 Hz, 8.8 Hz), 7.90(1H, s), 7.67(1H, t, J = 8.4 Hz), 7.61(1H, s), 7.55-7.21(1H, dd, J ==2.3 Hz, 8.7 Hz), 5.10(2H, s), 4.11(1H, m), 3.78 (2H, t, J = 6.7 Hz), 3.47(2H, t, J = 7.4 Hz), 2.54-2.48 (2H, m), 2.40-2.10(2H, m), 2.00-1.80(4H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
708 (M + 1)
|
|
Example No.
408
1H NMR(δ) ppm
|
|
|
1307
400 MHz, DMSO-d6 8.32(1H, d, J = 1.6 Hz), 8.21(1H, d, J = 8.8 Hz), 8.02(1H, dd, J = 1.6 Hz, 8.8 Hz), 7.76(1H, s), 7.68(1H, t, J = 8.5 Hz), 7.59(1H, s), 7.54-7.51(4H, m), 7.21(1H, dd, J = 2.4 Hz, 12.1 Hz), 7.07(1H, dd, J = 2.4 Hz, 8.8 Hz), 5.08(2H, s), 4.11 (1H, m), 3.77(2H, t, J = 6.9 Hz), 2.47(2H, t, J = 8.0 Hz), 2.40-2.10(4H, m), 2.00-1.80(4H, m), 1.70-1.60(1H, m), 1.45-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
672 (M + 1)
|
|
Example No.
409
1H NMR(δ) ppm
|
|
|
300 MHz, DMSO-d68.28(1H, d, J = 1.5 Hz), 8.20-8.85(4H, m), 7.75(1H, d, J = 6.9 Hz), 7.70-7.45(6H, m), 7.13(1H, dd, J = 12.0 Hz, 2.1 Hz), 7.00(1H, dd, J = 8.7 Hz), 2.1 Hz), 5.22(2H, s), 4.05(1H, m), 3.40-3.20(1H, m), 2.30-2.10(2H, m), 2.00-1.55(5H, m), 1.45-1.10(3H, m), 1.00(6H, d, J = 6.6 Hz)
|
|
Purity
>90% (NMR)
|
MS
676 (M + 1)
|
|
[2039]
249
TABLE 248
|
|
|
Example No.
410
1H NMR(δ) ppm
|
|
|
1308
300 MHz, DMSO-d6 8.31(1H, s), 8.00(1H, d, J = 8.7 Hz), 7.88(1H, d, J = 8.7 Hz), 7.70(1H, s), 7.65 (1H, t, J = 8.4 Hz), 7.53 (2H, d, J = 8.4 Hz), 7.49 (2H, d, J = 8.7 Hz), 7.45-7.41(2H, m), 7.16(1H, d, J = 12.0 Hz), 7.04(1H, d, J = 8.7 Hz), 5.14(2H, s), 4.68(1H, quint, J = 8.4 Hz), 3.02, 2.98 6H, s), 2.30-1.85(6H, m), 1.80-1.50(2H, m)
|
|
Purity
>90% (NMR)
|
MS
612(M + 1)
|
|
Example No.
411
1H NMR(δ) ppm
|
|
|
1309
300 MHz, DMSO-d6 8.30(1H, s), 7.99(1H, d, 1 = 9.0 Hz), 7.87(1H, d, J = 8.7 Hz), 7.67(1H, s), 7.64(1H, t, J = 8.7 Hz), 7.53(2H, d, J = 8.7 Hz), 7.49(2H, d, J = 7.5 Hz), 7.45-7.41(2H, m), 7.15(1H, d, J = 12.3 Hz), 7.02(1H, d, J = 18.4 Hz), 5.15(2H, 5), 4.67(1H, quint, J = 8.7 Hz), 4.02(1H, m), 3.76(1H, m), 3.55(1H, m), 3.22(2H, m), 2.40-1.20(12H, m)
|
|
Purity
>90% (NMR)
|
MS
668(M + 1)
|
|
Example No.
412
1H NMR(δ) ppm
|
|
|
1310
300 MHz, DMSO-d6 8.38(1H, d, J = 7.5 Hz), 8.33(1H, s), 8.16(1H, s), 8.02(1H, d, J = 8.7 Hz), 7.98(1H, d, J = 9.0 Hz), 7.91(1H, d, J = 8.4 Hz), 7.67(1H, t, J = 8.4 Hz), 7.53(2H, d, J = 8.7 Hz), 7.48(2H, d, J = 8.7 Hz), 7.46(1H, d, J = 8.1 Hz), 7.18(1H, d, J = 11.7 Hz), 7.06(1H, d, J = 8.7 Hz), 5.13(2H, s), 4.70(1H, quint, J = 8.4 Hz), 4.13(1H, sept, J = 6.6 Hz), 2.30-1.85(6H, m), 1.80-1.50(2H, m),
|
# 1.16(6H, d, J = 6.3 Hz)
|
|
Purity
>90% (NMR)
|
MS
626(M + 1)
|
|
[2040]
250
TABLE 249
|
|
|
Example No.
413
1H NMR(δ) ppm
|
|
|
1311
300 Mz, DMSO-d6 8.39(1H, d, J = 7.5 Hz), 8.31(1H, d, J = 1.5 Hz), 8.16(1H, d, J = 1.9 Hz), 8.06(1H, dd, J = 8.8, 1.5 Hz), 7.99-7.95 (2H, m), 7.76 and 7.24 (4H, ABq, J = 8.9 Hz), 7.53 and 7.50(4H, A′ B′q, J = 9.1 Hz), 7.46(1H, d, J = 8.3 Hz), 5.14(2H, s), 4.94(1H, quint, J = 9.0 Hz), 4.19-4.08(1H, m), 2.32-2.11(4H, brm), 210-1.95(2H, brm), 1.78-1.62(2H, brm), 1.26(3H, s), 1.18(3H, s)
|
|
Purity
>90% (NMR)
|
MS
608(M + 1)
|
|
Example No.
414
1H NMR(δ) ppm
|
|
|
1312
300 Mz, DMSO-d6 8.31(1H, d, J = 1.5 Hz), 8.06(1H, dd, J = 8.7, 1.5 Hz), 7.97(1H, d, J = 8.7 Hz), 7.75 and 7.22(4H, ABq, J = 8.9 Hz), 7.70(1H, d, J = 1.9 Hz), 7.53(1H, dd, J = 7.9, 1.9 Hz), 7.52(4H, s), 7.43(1H, d, J = 7.9 Hz), 5.15(2H, s), 4.93(1H, quint, J = 8.9 Hz), 3.01(3H, s), 2.97(3H, s), 2.32-2.11(4H, brm), 2.09-1.94(2H, brm), 1.77-1.62(2H, brm)
|
|
Purity
>90% (NMR)
|
MS
594(M + 1)
|
|
Example No.
415
1H NMR(δ) ppm
|
|
|
1313
300 Mz, DMSO-d6 8.31(1H, d, J = 1.5 Hz), 8.06(1H, dd, J = 8.7, 1.5 Hz), 7.98(1H, d, J = 8.7 Hz), 7.75 and 7.22(4H, ABq, J = 8.9 Hz), 7.67(1H, d, J = 1.5 Hz), 7.52(4H, s), 7.49(1H, dd, J =7.9, 1.5 Hz), 7.43(1H, d, J = 8.9 Hz), 5.16(2H, s), 4.93(1H, quint, J = 8.9 Hz), 3.76(1H, brs), 3.55(2H, brs), 3.22(2H, brs), 2.31-2.11(4H, brm), 2.16-1.95(2H, brm), 1.88-1.62(4H, brm), 1.48-1.28(2H, brm)
|
|
Purity
>90% (NMR)
|
MS
650(M + 1)
|
|
[2041]
251
TABLE 250
|
|
|
Example No.
416
1H NMR(δ) ppm
|
|
|
1314
300 MHz, DMSO-d6 8.38(1H, d, J = 7.7 Hz), 8.30(1H, s), 8.20-7.90(4H, m), 7.72 (2H, d, J = 8.7 Hz), 7.60-7.40(5H, m), 7.22(2H, d, J = 8.7 Hz), 5.13(2H, s), 4.47(1H, m), 4.15(1H, m), 2.90-2.70(4H, m), 2.60-2.30(4H, m), 1.19(6H, d, J = 6.5 Hz)
|
|
Purity
22 90% (NMR)
|
MS
640(M + 1)
|
|
Example No.
417
1H NMR(δ) ppm
|
|
|
1315
400 MHz, DMSO-d6 8.33(1H, s), 8.17(1H, d, J = 8.6 Hz), 8.10(1H, d, J = 8.6 Hz), 7.82(1H, d, J = 1.4 Hz), 7.74(2H, d, J = 8.7 Hz), 7.64(1H, dd, J = 8.0 Hz, 1.7 Hz), 7.55-7.50(4H, m), 7.43(1H, d, J = 7.8 Hz), 7.24(1H, d, J = 8.7 Hz), 5.16(2H, s), 4.49(1H, m), 3.60-3.40(4H, m), 2.90-2.70(4H, m), 2.60-2.30(4H, m), 2.20-1.80(4H, m)
|
|
Purity
22 90% (NMR)
|
MS
652(M + 1)
|
|
Example No.
418
1H NMR(δ) ppm
|
|
|
1316
400 MHz, DMSO-d6 8.34(1H, d, J = 7.6 Hz), 8.25 (1H, s), 8.11(1H, d, J = 1.3 Hz), 7.90-8.00(3H, m), 7.59(1H, t, J = 8.6 Hz), 7.40-7.55(5H, m), 7.12(1H, d, J = 11.9 Hz), 7.00(1H, d, J = 8.6 Hz), 5.08(2H, s), 4.30-4.10(2H, m), 2.80-2.65(4H, m), 2.45-2.30(2H, m), 1.15(6H, d, J = 4.8 Hz)
|
|
Purity
22 90% (NMR)
|
MS
658(M + 1)
|
|
[2042]
252
TABLE 251
|
|
|
Example No.
419
1H NMR(δ) ppm
|
|
|
1317
400 MHz, DMSO-d6 8.30(1H, s), 8.05-7.95(3H, m), 7.80-7.75(1H, m), 7.63(1H, t, J = 8.6 Hz), 7.55-7.35(5H, m), 7.15(1H, dd, J = 12.1 Hz, 2.1 Hz), 7.03(1H, dd, J = 8.7 Hz, 2.3 Hz), 5.10(2H, s), 4.23(1H, m), 3.90(2H, t, J = 7.0 Hz), 2.95-2.70(4H, m), 2.60-2.35(4H, m), 2.30-2.00(4H, m)
|
|
Purity
>90% (NMR)
|
MS
656(M + 1)
|
|
Example No.
420
1H NMR(δ) ppm
|
|
|
1318
300 Mz, DMSO-d6 8.37(1H, d, J = 7.5 Hz), 8.28(1H, d, J = 1.5 Hz), 8.17(1H, d, J = 1.5 Hz), 8.13(1H, d, J = 8.7 Hz), 7.97(1H, dd, J = 8.1, 1.5 Hz), 7.94(1H, dd, J = 8.7, 1.5 Hz), 7.61(1H, t, J = 8.7 Hz), 7.51 and 7.49(4H, ABq, J = 8.9 Hz), 7.46(1H, d, J = 8.1 Hz), 7.08(1H, dd, J = 12.4, 2.3 Hz), 6.97(1H, dd, J = 8.7, 2.3 Hz), 5.10(2H, s), 4.20-4.08(1H, m), 3.62-3.56(2H, brm), 3.13-3.10(2H,
|
# brm), 1.79-1.60(3H, brm), 1.54-1.34(3H, brm), 1.21 (3H, s), 1.18(3H, s)
|
|
Purity
>90% (NMR)
|
MS
641(M + 1)
|
|
Example No.
421
1H NMR(δ) ppm
|
|
|
1319
300 Mz, DMSO-d6 8.24(1H, d, J = 1.5 Hz), 8.02(1H, d, J = 8.7 Hz), 7.88(1H, dd, J = 8.7, 1.5 Hz), 7.82(1H, d, J = 1.9 Hz), 7.63(1H, dd, J = 7.9, 1.9 Hz),7.54(1H, t, J = 8.7 Hz), 7.50(4H, s), 7.42(1H, d, J = 7.9 Hz), 7.01(1H, dd, J = 12.0, 2.3 Hz), 6.91 (1H, dd, J = 8.7, 2.3 Hz), 5.11(2H, s), 3.63-3.41(6H, m), 3.07-3.04(2H, brm), 1.95-1.79(4H, brm), 1.77-1.57(3H, brm), 1.50-1.32(3H, brm)
|
|
Purity
>90% (NMR)
|
MS
653(M + 1)
|
|
[2043]
253
TABLE 252
|
|
|
Example No.
422
1H NMR(δ) ppm
|
|
|
1320
300 MHz, DMSO-d6 10.99(2H, s), 8.44(1H, s), 8.30(1H, s), 8.18(1H, d, J = 8.7 Hz), 8.14(1H, d, J = 8.7 Hz), 7.98(1H, d, J = 9.0 Hz), 7.70-7.66(2H, m), 7.57(2H, d, J = 8.7 Hz), 7.54(2H, d, J = 8.7 Hz), 7.21(1H, d, J = 12.0 Hz), 7.09(1H,d,J8.4Hz), 5.19(2H, s), 4.05(4H, s), 2.40-2.18(2H, m), 2.15-1.80(4H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
623(M + 1)
|
|
Example No.
423
1H NMR(δ) ppm
|
|
|
1321
300 MHz, DMSO-d6 8.27(1H, s), 8.05(1H, d, J = 8.7 Hz), 7.93 (1H, d, J = 8.7 Hz), 7.90(1H, s), 7.70(1H, d, J = 8.4 Hz), 7.59(1H, t, J = 8.4 Hz), 7.50(2H, d, J = 9.0 Hz), 7.45(2H, d, J = 8.7 Hz), 7.41(1H, d, J = 8.4 Hz), 7.12(1H, d, J = 12.0 Hz), 7.00(1H, d, J = 8.7 Hz), 5.10(2H, s), 4.49(2H, t, J = 7.8 Hz), 4.14(2H, t, J = 8.0 Hz), 4.04(1H, m), 2.40-2.10(2H, m), 2.00-1.50(5H, m), 1.45-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
640(M + 1)
|
|
Example No.
424
1H NMR(δ) ppm
|
|
|
1322
300 MHz, DMSO-d6 8.30(1H, s), 8.14(1H, d, J = 8.4 Hz), 7.98(1H, d, J = 9.3 Hz), 7.89(1H, s), 7.68(1H, d, J = 8.4 Hz), 7.62(1H, d, J = 9.0 Hz), 7.48(2H, d, J = 8.4 Hz), 7.43(2H, d, J = 8.4 Hz), 7.33(1H, d, J = 8.4 Hz), 7.16(1H, d, J = 12.0 Hz), 7.04(1H, d, J = 9.0 Hz), 5.07(2H, s), 4.10(1H, m), 3.92(2H, t, J = 8.0 Hz), 3.45(2H, t, J = 8.0 Hz), 2.40-2.10(2H, m), 2.00-1.50(5H, m), 1.45-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
639(M + 1)
|
|
[2044]
254
TABLE 253
|
|
|
Example No.
425
1H NMR(δ) ppm
|
|
|
1323
300 MHz, DMSO-d6 9.05(1H, 5), 8.30(1H, s), 8.16(1H, d, J = 8.8 Hz), 7.99(1H, d, J = 8.6 Hz), 7.72(1H, s), 7.64(1H, t, J = 8.6 Hz), 7.52 (1H, d, J = 8.4 Hz), 7.47(2H, d, J = 8.7 Hz), 7.42(2H, d, J = 8.6 Hz), 7.25(1H, d, J = 8.4 Hz), 7.15(1H, d, J = 12.2 Hz), 7.04(1H, d, J = 8.6 Hz), 6.60(1H, brs), 5.05(2H, s), 4.10(1H, m), 3.68(2H, t, J = 6.1 Hz), 3.45(2H, t, J = 6.1 Hz), 2.40-2.10(2H, m), 2.00-1.55(5m, m),
|
#1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
639(M + 1)
|
|
Example No.
426
1H NMR(δ) ppm
|
|
|
1324
300 MHz, DMSO-d6 8.32(1H, s), 8.24(1H, d, J = 8.7 Hz), 8.03 (1H, d, J = 8.7 Hz), 7.78-7.73(4H, m), 7.38-7.32(4H, m), 5.52(2H, s), 4.88(2H, s), 4.40(2H, s), 4.37(1H, m), 2.92, 2.84(6H, s), 2.40-2.18(2H, m), 2.15-1.95(2H, m), 1.90-1.80(2H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
643(M + 1)
|
|
Example No.
427
1H NMR(δ) ppm
|
|
|
1325
300 MHz, DMSO-d6 11.26(1H, brs), 8.35(1H, s), 8.27(1H, d, J = 9.0 Hz), 8.05(1H, d, J = 8.4 Hz), 7.83-7.78(4H, m), 7.42-7.35(4H, m), 5.57(2H, s), 4.77, 4.73(2H, s), 4.37(1H, m), 3.95(1H, s), 3.70-3.00(4H, m), 2.40-1.00(14H, m)
|
|
Purity
>90% (NMR)
|
MS
641(M + 1)
|
|
[2045]
255
TABLE 254
|
|
|
Example No.
428
1H NMR(δ) ppm
|
|
|
1326
300 MHz, DMSO-d6 8.31(1H, s), 8.26(1H, d, J = 9.0 Hz), 8.04(1H, d, J = 8.7 Hz), 7.79-7.73(4H, m), 7.38-7.31(6H, m), 5.53(2H, s), 4.90(2H, s), 4.37(1H, m), 4.05(2H, s), 2.40-2.18(2H, m), 2.15-1.95(2H, m), 1.90-1.80(2H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
615(M + 1)
|
|
Example No.
429
1H NMR(δ) ppm
|
|
|
1327
300MHz, DMSO-d6 8.88(1H, q, J = 4.5 Hz), 8.33(1H, d, J = 1.5 Hz), 8.18(1H, d, J = 8.7 Hz), 8.01(1H, dd, J = 1.5 Hz, 8.7 Hz), 7.89-7.83(2H, m), 7.50-7.34(3H, m), 7.20(1H, dd, J = 2.1 Hz, 8.4 Hz), 5.61(2H, s), 4.13(1H, m), 2.84(3H, d, J = 4.8 Hz), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
603(M + 1)
|
|
Example No.
430
1H NMR(δ) ppm
|
|
|
1328
400 MHz, DMSO-d6 8.79(1H, t, J = 5.9 Hz), 8.31(1H, s), 8.15(1H, d, J = 8.7 Hz), 7.99(1H, d, J = 8.8 Hz), 7.87(1H, d, J = 8.1 Hz), 7.85(1H, d, J = 8.7 Hz), 7.70(1H, t, J = 8.4 Hz), 7.42-7.33(3H, m), 7.18(1H, d, J = 8.8 Hz), 5.60(2H, s), 4.11(1H, m), 3.62-3.54(4H, m), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
633(M + 1)
|
|
[2046]
256
TABLE 255
|
|
|
Example No.
431
1H NMR(δ) ppm
|
|
|
1329
300MHz, DMSO-d6 8.31(1H, s), 8.16(1H, d, J = 8.8 Hz), 7.99(1H, d, J = 8.7 Hz), 7.74-7.60(4H, m), 7.37(2H, t, J = 8.8 Hz), 7.28(1H, dd, J = 2.2 Hz, 12.2 Hz), 7.14(1H, dd, J = 2.2 Hz, 8.6 Hz), 5.17(2H, s), 4.10(1H, m), 3.15(6H, brs), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.15(3H, m)
|
|
Purity
>90% (NMR)
|
MS
616(M + 1)
|
|
Example No.
432
1H NMR(δ) ppm
|
|
|
1330
300 MHz, DMSO-d6 8.45(1H, d, J = 7.7 Hz), 8.32(1H, s), 8.19(1H, d, J = 8.8 Hz), 8.02-7.99(2H, m), 7.70(1H, t, J = 8.6 Hz), 7.60(2H, dd, J = 5.4 Hz, 8.7 Hz), 7.37(2H, t, J = 8.8 Hz), 7.27(1H, dd, J = 2.3 Hz, 12.2 Hz), 7.14(1H, dd, J = 2.2 Hz, 8.7 Hz), 5.16(2H, s), 4.20-4.00(2H, m), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m), 1.18(6H, d, J = 6.6 Hz)
|
|
Purity
>90% (NMR)
|
MS
630(M + 1)
|
|
Example No.
433
1H NMR(δ) ppm
|
|
|
1331
300 MHz, DMSO-d6 8.31(1H, d, J = 1.4 Hz), 8.15(1H, d, J = 8.8 Hz), 7.98(1H, dd, J = 1.4 Hz, 8.7 Hz), 7.68-7.60(4H, m), 7.36(2H, t, J = 8.8 Hz), 7.28 (1H, dd, J = 2.2 Hz, 12.2 Hz), 7.15(1H, d, J = 2.2 Hz, 8.6 Hz), 5.17(2H, s), 4.10(1H, m), 4.05-3.90(2H, m), 3.85-3.70(1H, m), 3.55-3.25(2H, m), 2.40-2.10(2H, m), 2.00-1.75(6H, m), 1.70-1.55(1H, m), 1.50-1.20(5H, m)
|
|
Purity
>90% (NMR)
|
MS
672(M + 1)
|
|
[2047]
257
TABLE 256
|
|
Example No.
434
1H NMR(δ) ppm
|
|
|
1332
300 Mz, DMSO-d6 8.45(1H, d, J = 1.5 Hz), 8.26(1H, d, J = 8.8 Hz), 8.10(1H, dd, J = 8.8, 1.5 Hz), 7.72(1H, d, J = 1.5 Hz), 7.64(1H, t, J = 8.6 Hz), 7.56-7.48(5H, m), 7.44(1H, d, J = J = 7.7 Hz), 7.18(1H, dd, J = 12.3, 2.4 Hz), 7.04(1H, dd, J = 8.6, 2.4 Hz), 5.15(2H, s), 4.08(1H, brt, 11.7 Hz), 3.02(3H, s), 2.99(3H, s), 2.34-2.17(2H, brm), 1.97-1.81(4H, brm), 1.70-1.60(1H, brm), 1.49-1.21(3H, brm)
|
|
Purity
>90% (NMR)
|
MS
650(M + 1)
|
|
Example No.
435
1H NMR(δ) ppm
|
|
|
1333
300 Mz, DMSO-d6 8.42(1H, d, J = 1.5 Hz), 8.24(1H, d, J = 8.8 Hz), 8.08(1H, dd, J = 8.8, 1.5 Hz), 8.00(2H, d, J = 8.8 Hz), 7.79(1H, d, J = 7.8 Hz), 7.62(1H, t, J = 8.4 Hz), 7.61-7.55(3H, m), 7.44(1H, d, J = 8.1 Hz), 7.16(1H, dd, J = 12.1, 2.6 Hz), 7.02(1H, dd, J = 8.4, 2.6 Hz), 5.12(2H, s), 4.07(1H, brt, J = 12.5 Hz), 2.33(2H, brm), 1.96-1.79(4H, brm), 1.71-1.61(1H, brm), 1.49-1.21(3H, brm)
|
|
Purity
>90% (NMR)
|
MS
623(M + 1)
|
|
Example No.
436
1H NMR(δ) ppm
|
|
|
1334
300 MHz, DMSO-d6 8.41(1H, d, J = 7.7 Hz), 8.30-8.26(2H, m), 8.18(1H, d, J = 1.4 Hz), 7.99(1H, dd, J = 1.7 Hz, 8.0 Hz), 7.89(1H, d, J = 10.1 Hz), 7.67(1H, t, J = 8.8 Hz), 7.55-7.45(5H, m), 7.20(1H, d, J = 12.2 Hz), 7.07(1H, dd, J = 2.1 Hz, 8.7 Hz), 5.14(2H, s), 4.18-4.11(2H, m), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.55(1H, m), 1.50-1.20(3H, m), 1.20(6H, d, J = 6.6 Hz)
|
Purity
>90% (NMR)
|
MS
680(M + 1)
|
|
[2048]
258
TABLE 257
|
|
|
Example No.
437
1H NMR(δ) ppm
|
|
|
1335
|
|
Purity
>90% (NMR)
|
MS
580(M + 1)
|
|
Example No.
438
1H NMR(δ) ppm
|
|
|
1336
|
|
Purity
>90% (NMR)
|
MS
607(M + 1)
|
|
Example No.
437
1H NMR(δ) ppm
|
|
|
1337
300 MHz, CDCl3 8.60(1H, d, J = 1.5 Hz), 8.05(1H, dd, J = 1.6 Hz, 8.7 Hz), 7.70(1H, d, J = 8.7 Hz), 7.62(2H, d, J = 8.2 Hz), 7.49(2H, d, J = 8.2 Hz), 7.13(2H, d, J = 8.8 Hz), 7.27-7.23(2H, m), 7.06(2H, t, J = 8.6 Hz), 6.80(2H, d, J = 8.8 Hz), 5.05(2H, s), 4.38(1H, m), 3.06(6H, s), 2.45-2.20(2H, m), 2.10-1.70(5H, m), 1.50-1.20(3H, m)
|
|
Purity
>90% (NMR)
|
MS
591(M + 1)
|
|
[2049]
259
TABLE 258
|
|
|
Example No.
440
1H NMR(δ) ppm
|
|
1338
300MHz, DMSO-d6 8.20(1H, s), 7.86(2H, m), 7.39(1H, d, J=7.9Hz), 7.34(1H, d, J=7.9Hz), 7.07(2H, dt, J=2.3Hz, 8.6Hz), 6.98-6.88(5H, m), 6.83(1H, d, J=8.3Hz), 5.91(1H, s), 3.96(1H, m), 2.30-1.95(2H, m), 1.90-1.50(4H, m), 1.40-1.10(3H, m)
|
Purity
>90% (NMR)
|
MS
557(M + 1)
|
Example No.
441
1H NMR(δ) ppm
|
|
1339
300MHz, DMSO-d6 8.24(1H, d, J=1.4Hz), 8.01(1H, d, J=8.8Hz), 7.91(1H, dd, J=1.4Hz, 8.7Hz), 7.47(1H, t, J=8.4Hz), 7.43-7.35(2H, m), 7.15-7.01(5H, m), 6.92(2H, d, J=10.4Hz), 6.11(1H, s), 3.90(1H, m), 2.30-1.95(2H, m), 1.90-1.50(4H, m), 1.40-1.10(3H, m)
|
Purity
>90% (NMR)
|
MS
557(M + 1)
|
Example No.
442
1H NMR(δ) ppm
|
|
1340
300Mz, DMSO-d6 8.26(1H, d, J=1.5Hz), 8.11(1H, d, J=8.9Hz), 7.96(1H, dd, J=8.9, 1.5Hz), 7.65-7.57(5H, m), 7.47(1H, t, J=7.7Hz), 7.35(1H, d, J=7.6Hz), 7.30-7.22(3H, m), 7.16(1H, dd, J=8.7, 2.3Hz), 6.88(1H, s), 4.04(1H, brt, J=11.3Hz), 2.98(3H, s) 2.84(3H, s), 2.30-2.10(2H, brm), 1.94-1.75(4H, brm), 1.68-1.57(1H, brm), 1.45-1.14(3H, brm)
|
Purity
>90% (NMR)
|
MS
610(M + 1)
|
|
[2050]
260
TABLE 259
|
|
|
Example No.
443
1H NMR(δ) ppm
|
|
1341
300Mz, DMSO-d6 8.23(1H, s), 7.98 and 7.89(2H, ABq, J=8.8Hz), 7.62-7.06(11H, m), 6.86(1H, s), 4.12-3.77(2H, brm), 3.72(1H, brs), 3.69(1H, brs), 3.18(1H, brs), 3.05(1H, brs), 2.31-2.08(2H, brm), 1.90-1.54(7H, brm), 1.48-1.13(5H, brm)
|
Purity
>90% (NMR)
|
MS
666(M + 1)
|
Example No.
444
1H NMR(δ) ppm
|
|
1342
300MHz, DMSO-d6 8.36(1H, s), 8.00(1H, d, J=8.7Hz), 7.90(1H, d, J=9.3Hz), 7.80-7.70(2H, m), 7.63(2H, d, J=8.4Hz), 7.32(2H, t, J=8.7Hz), 7.22(2H, d, J=8.4Hz), 5.62(1H, d, J=7.5Hz), 5.57(1H, brd, J=4.8Hz), 5.41(2H, s), 5.31(1H, m), 4.29(1H, m), 3.84(1H, d, J=9.0Hz), 3.50-3.20(3H, m), 2.71(3H, s), 2.40-2.20(2H, m), 1.75-1.60(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
718(M + 1)
|
Example No.
445
1H NMR(δ) ppm
|
|
1343
300MHz, DMSO-d6 8.36(1H, s), 8.00(1H, d, J=8.7Hz), 7.92(1H, d, J=9.3Hz), 7.57(1H, t, J=8.4Hz), 7.50-7.35(6H, m), 7.25-7.05(4H, m), 6.82(1H, s), 5.62(1H, d, J=7.2Hz), 5.56(1H, m), 5.28(1H, brs), 3.95(1H, m), 3.82(1H, d, J=8.7Hz), 3.50-3.20(3H, m), 2.30-2.05(2H, m), 1.90-1.55(5H, m), 1.40-1.10(3H, m)
|
Purity
>90% (NMR)
|
MS
733(M + 1)
|
|
[2051]
261
TABLE 260
|
|
|
Example No.
446
1H NMR(δ) ppm
|
|
1344
300MHz, DMSO-d6 8.29(1H, s), 8.13(1H, d, J=9.0Hz), 7.97(1H, d, J=9.0Hz), 7.63(1H, t,
|
# J=8.6Hz), 7.51-7.32(7H, m), 7.15(1H, d, J=12.0Hz), 7.03(1H, d, J=9.0Hz), 5.10(2H, s), 4.09(1H, m), 3.82(2H, t, J=6.3Hz), 3.56(2H, t, J=7.4Hz), 2.45(2H, m), 2.40-2.10(2H, m), 2.00-1.55(5H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
674(M + 1)
|
Example No.
447
1H NMR(δ) ppm
|
|
1345
300MHz, DMSO-d6 8.36(1H, d, J=7.7Hz), 8.14(2H, d, J=12.1Hz), 8.08(1H, d, J=8.5Hz), 7.97(1H, dd,
|
# J=1.7Hz, 8.3Hz), 7.74(1H, dd, J=1.8Hz, 8.4Hz), 7.58-7.45(6H, m), 7.31(2H, s), 7.12(1H, dd, J=2.2Hz, 12.1Hz), 7.00(1H, dd, J=2.4Hz, 8.6Hz), 5.11(2H, s), 4.16(1H, m), 4.02(1H, m), 2.20(2H, m), 1.86(4H, m), 1.62(1H, m), 1.21(9H, m)
|
Purity
>90% (NMR)
|
MS
675(M + 1)
|
Example No.
448
1H NMR(δ) ppm
|
|
1346
300MHz, DMSO-d6 8.29(2H, m), 8.04(1H, d, J=8.5Hz), 7.93(1H, dd, J=1.5Hz, 8.8Hz), 7.60-7.42(8H, m), 7.05(1H, dd, J=2.2Hz, 12.1Hz), 6.95(1H, dd, J=2.4Hz, 8.6Hz), 5.11(2H, s), 4.07-3.90(2H, m), 2.28-2.19(2H, m), 1.88-1.84(4H, m), 1.67-1.62(1H, m), 1.40-1.26(3H, m), 1.04(6H, d, J=6.6Hz)
|
Purity
>90% (NMR)
|
MS
640(M + 1)
|
|
[2052]
262
TABLE 261
|
|
|
Example No.
449
1H NMR(δ) ppm
|
|
1347
300MHz, DMSO-d6 8.31(1H, s), 8.17(1H, d, J=8.7Hz), 8.00(1H,
|
# d, J=8.7Hz), 7.78(1H, d, J=8.1Hz), 7.66(1H, t, J=8.7Hz), 7.55-7.45(4H, m), 7.40(1H, d, J=11.7Hz), 7.19(1H, d, J=12.3Hz),7.05(1H, d, J=8.7Hz), 5.07(2H, s), 4.10(1H, m), 3.85(2H, t, J=6.6Hz), 3.47(2H, t, J=7.5z) 2.60-2.50(2H, m), 2.40-2.10(2H, m), 2.00-1.80(4H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
692(M + 1)
|
Example No.
450
1H NMR(δ) ppm
|
|
1348
300MHz, DMSO-d6 8.37(1H, d, J=7.8Hz), 8.15(1H, s), 7.97(1H, d, J=9.8Hz), 7.64-7.45(8H, m),
|
# 7.12(1H, d, J=12.1Hz), 7.00(1H, d, J=8.6Hz), 5.11(2H, s), 4.21(3H, s), 4.18-4.05(1H, m), 4.04-3.89(1H, m), 2.29-2.08(2H, m), 1.90-1.74(4H, m), 1.68-1.58(1H, m), 1.40-1.17(3H, m), 1.20(6H, d, J=6.6Hz)
|
Purity
>90% (NMR)
|
MS
670(M + 1)
|
Example No.
451
1H NMR(δ) ppm
|
|
1349
300MHz, DMSO-d6 8.29(1H, s), 8.12(1H, d, J=8.8Hz), 7.97(1H, d, J=10.2Hz), 7.65-7.59(2H, m), 7.51(4H, s), 7.46(2H, s), 7.15(1H, d,
|
# J=12.2Hz), 7.01(1H, d, J=8.6Hz), 5.15(2H, s), 4.13-3.98(1H, m), 3.21(3H, s), 2.56-2.42(1H, m), 2.30-2.15(2H, m), 1.95-1.77(4H, m), 1.69-1.59(1H, m), 1.45-1.17(3H, m), 0.96(6H, d, J=6.5Hz)
|
Purity
>90% (NMR)
|
MS
654(M + 1)
|
|
[2053]
263
TABLE 262
|
|
|
Example No.
452
1H NMR(δ) ppm
|
|
1350
300MHz, DMSO-d6 10.1(1H, s), 8.28(1H, s), 8.11(1H, d, J=8.7Hz), 7.96(1H, d, J=11.4Hz), 7.95(1H, s), 7.72(1H, d, J=8.7Hz), 7.62(1H, t, J=9.0Hz), 7.48
|
# and 7.43(4H, ABq, J=8.4Hz), 7.31(1H, d, J=8.4Hz), 7.13(1H, d, J=12.0Hz), 7.02 (1H, d, J=9.0Hz), 5.07(2H, s), 4.14-4.00(1H, m), 2.69-2.59(1H, m), 2.30-2.12(2H, m), 1.95-1.77(4H, m), 1.71-1.57(1H, m), 1.45-1.20(3H, m), 1.12(6H, d, J=6.9Hz)
|
Purity
>90% (NMR)
|
MS
640(M + 1)
|
Example No.
453
1H NMR(δ) ppm
|
|
1351
300MHz, DMSO-d6 11.1(1H, brs), 8.31(1H, d, J=9.4Hz), 8.29(1H, s), 8.07(1H, d, J=10.2Hz), 7.70-7.62(3H, m), 7.31-7.23(3H, m), 4.40-4.23(1H, m), 4.24(2H, s), 2.61(3H, s), 2.34-2.14(2H, m), 1.99-1.72(4H, m), 1.66-1.54(1H, m), 1.46-1.30(1H, m), 1.27-1.08(2H, m)
|
Purity
>90% (NMR)
|
MS
542(M + 1)
|
Example No.
454
1H NMR(δ) ppm
|
|
1352
300MHz, DMSO-d6 8.27(1H, d, J=1.4Hz), 8.05(1H, d, J=8.7Hz), 7.92(1H, d, J=8.7Hz), 7.79(1H, d, J=7.8Hz), 7.59(1H, t, J=8.6Hz), 7.55-7.45(4H, m), 7.37(1H, d, J=11.4Hz), 7.14(1H, d, J=12.1Hz), 7.01(1H, d, J=8.6Hz), 5.04(2H, s), 4.10(1H, m), 3.84(2H, t, J=6.9Hz), 2.55-2.45(2H, m), 2.40-2.10(4H, m), 2.00-1.80(4H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
656(M + 1)
|
|
[2054]
264
TABLE 263
|
|
|
Example No.
455
1H NMR(δ) ppm
|
|
1353
300MHz, DMSO-d6 10.05(1H, brs), 8.32(1H, d, J=1.3Hz), 8.19(1H, d, J=8.8Hz), 8.01(1H, d, J=8.7Hz), 7.67(1H, t, J=8.6Hz), 7.50-7.41(5H, m), 7.38-7.33(2H, m), 7.17(1H, dd, J=2.2Hz, 12.2Hz), 7.05(1H, dd, J=2.2Hz, 8.7Hz), 5.10(2H, s), 4.12(1H, m), 3.07(3H, s), 2.40-2.10(2H, m), 2.00-1.80(4H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
648(M + 1)
|
Example No.
456
1H NMR(δ) ppm
|
|
1354
300MHz, DMSO-d6 8.31(1H, d, J=1.4Hz), 8.17(1H, d, J=8.8Hz), 8.00(1H, dd, J=1.5Hz, 8.7Hz), 7.73(1H,
|
# d, J=2.3Hz), 7.66(1H, t, J=8.6Hz), 7.56(1H, dd, J=2.3Hz, 8.3Hz), 7.50-7.47(4H, m), 7.42(1H, d, J=8.3Hz), 7.19(1H, d, J=12.2Hz), 7.06(1H, dd, J=2.2Hz, 8.6Hz), 5.11(2H, s), 4.10(1H, m), 3.31(3H, s), 3.03(3H, s), 2.40-2.10(2H, m), 2.00-1.80(4H, m), 1.75-1.55(1H,m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
662(M + 1)
|
Example No.
457
1H NMR(δ) ppm
|
|
1355
300MHz, DMSO-d6 8.41(1H, d, J=8.8Hz), 8.28(1H, s), 8.10(1H, d, J=9.2Hz), 7.96(1H, d, J=8.8Hz), 7.87(1H, d, J=8.8Hz), 7.61(1H, dd, J=8.5Hz,
|
# 8.5Hz), 7.56-7.49(4H, m), 7.19(1H, dd, J=2.4Hz, 12.2Hz), 7.05(1H, dd, J=2.4Hz, 8.7Hz), 5.18(2H, s), 4.06-3.97(4H, m), 2.62(2H, t, J=8.1Hz), 2.28-2.15(2H, m), 2.11-2.01(4H, m), 1.91-1.87(4H, m), 1.64(1H, m), 1.43-1.23(3H, m)
|
Purity
>90% (NMR)
|
MS
639(M + 1)
|
|
[2055]
265
TABLE 264
|
|
|
Example No.
458
1H NMR(δ) ppm
|
|
1356
300MHz, DMSO-d6 10.19(1H, s), 8.29(1H, s), 8.14(1H, d, J=8.8Hz), 7.98(1H, dd, J=1.7Hz,
|
# 8.7Hz), 7.90(1H, d, J=2.2Hz), 7.69(1H, dd, J=2.2Hz, 8.4Hz), 7.64(1H, dd, J=8.5Hz, 8.5Hz), 7.50-7.42(4H, m), 7.32(1H, d, J=8.4Hz), 7.14(1H, dd, J=2.5Hz, 12.1Hz), 7.02(1H, dd, J=2.4Hz, 8.6Hz), 5.08(2H, s), 4.17-4.02(1H, m), 2.30-2.18(2H, m), 2.08(3H, s), 1.87-1.79(4H, m), 1.68-1.59(1H, m), 1.35-1.23(3H, m)
|
Purity
>90% (NMR)
|
MS
612(M + 1)
|
Example No.
459
1H NMR(δ) ppm
|
|
1357
300MHz, DMSO-d6 8.29(1H, s), 8.11(1H, d, J=8.8Hz), 7.96(1H, d, J=8.6Hz), 7.64-7.58(2H, m), 7.51(4H, s), 7.44(2H, s), 7.15(1H, d, J=12.2Hz), 7.02(1H, d, J=8.5H), 5.14(2H, s), 4.12-3.95(1H, m), 3.70(2H, q, J=7.1Hz), 2.50(3H, s), 2.31-2.12(2H, m), 1.92-1.82(4H, m), 1.69-1.57(1H, m), 1.43-1.16(3H, m), 1.05(3H, t, J=7.1Hz)
|
Purity
>90% (NMR)
|
MS
640(M + 1)
|
Example No.
460
1H NMR(δ) ppm
|
|
1358
300MHz, DMSO-d6 8.28(1H, s), 8.09(1H, d, J=8.8Hz), 7.95(1H, d, J=10.1Hz), 7.64-7.56(2H, m), 7.51(4H, ws), 7.44(2H, s), 7.14(1H, d, J=12.2Hz), 7.01(1H, d, J=8.6Hz), 5.14(2H, s), 4.12-3.95(1H, m), 3.64(2H, t, J=7.2Hz), 2.50(3H, s), 2.31-2.12(2H, m), 1.93-1.84(4H, m), 1.69-1.59(1H, m), 1.52-1.17(5H, m), 0.84(3H, t, J−7.3Hz)
|
Purity
>90% (NMR)
|
MS
654(M + 1)
|
|
[2056]
266
TABLE 265
|
|
|
Example No.
461
1H NMR(δ) ppm
|
|
1359
400MHz, DMSO-d6 8.30(1H, s), 8.13(1H, d, J=8.8Hz), 7.99(1H, d, J=8.8Hz), 7.69(1H, s), 7.62(1H, t, J=8.4Hz), 7.96-7.50(4H, m), 7.45(1H, d,
|
# J=8.7Hz), 7.17(1H, dd, J=2.3Hz, 12.0Hz), 7.05(1H, dd, J=2.2Hz, 8.7Hz), 5.14(2H, s), 4.07(1H, m), 3.73(2H, q, J=7.2Hz), 3.05(3H, s), 2.40-2.10(2H, m), 2.00-1.80(4H, m), 1.75-1.55(1H, m), 1.50-1.20(3H, m), 1.06(3H, t, J=7.2Hz)
|
Purity
>90% (NMR)
|
MS
676(M + 1)
|
Example No.
462
1H NMR(δ) ppm
|
|
1360
300MHz, DMSO-d6 8.30(1H, s), 8.13(1H, d, J=8.7Hz), 7.98(1H, d, J=8.7Hz), 7.70(1H, d, J=1.8Hz), 7.63(1H, t, J=8.4Hz), 7.55-7.50(5H, m), 7.43(1H,
|
# d, J=8.1Hz), 7.15(1H, d, J=12.0Hz), 7.02(1H, d, J=8.7Hz), 5.13(2H, s), 4.07(1H, m), 3.65(2H, t, J=6.6Hz), 3.03(3H, s), 2.40-2.10(2H, m), 2.00-1.75(4H, m), 1.70-1.60(1H, m), 1.50-1.20(5H, m), 0.87(3H, t, J=7.5Hz)
|
Purity
>90% (NMR)
|
MS
690(M + 1)
|
Example No.
463
1H NMR(δ) ppm
|
|
1361
300MHz, DMSO-d6 8.29(1H, s), 8.11(1H, d, J=8.5Hz), 7.97(1H, d, J=9.9Hz), 7.65(1H, br), 7.61(1H, d, J=8.4Hz), 7.53-7.42(6H, m), 7.16(1H, dd, J=2.2Hz, 12.1Hz), 7.03(1H, dd, J=2.0Hz, 9.0Hz), 5.12(2H, s), 4.04-4.00(1H, m), 3.24(3H, s), 2.20(2H, m), 1.87(7H, m), 1.64(1H, m), 1.41-1.28(3H, m)
|
Purity
>90% (NMR)
|
MS
626(M + 1)
|
|
[2057]
267
TABLE 266
|
|
|
Example No.
464
1H NMR(δ) ppm
|
|
1362
300MHz, DMSO-d6 8.28(1H, s), 8.09(1H, d, J=8.8Hz), 7.95(1H, d, J=8.8Hz), 7.73(1H, d, J=2.2Hz), 7.63-7.39(7H, m), 7.15(1H, dd, J=2.2Hz, 12.1Hz), 7.01(1H, dd, J=2.0Hz, 8.6Hz), 5.10(2H, s), 4.05-3.99(1H, m), 3.34(3H, s), 3.23(2H, q, J=7.2Hz), 2.20(2H, m), 1.87(4H, m), 1.62(1H, m), 1.33(3H, m), 1.24(3H, t, J=7.3Hz)
|
Purity
>90% (NMR)
|
MS
676(M + 1)
|
Example No.
465
1H NMR(δ) ppm
|
|
1363
300MHz, DMSO-d6 8.29(1H, d, J=1.5Hz), 8.11(1H, d, J=8.8Hz), 7.98(1H, dd, J=1.4Hz, 8.4Hz), 7.69(1H, d, J=2.2Hz), 7.62(1H, dd, J=8.6Hz,
|
# 8.6Hz), 7.56-7.47(5H, m), 7.43(1H, d, J=8.1Hz), 7.16(1H, dd, J=2.2Hz, 12.1Hz), 7.02(1H, dd, J=2.4Hz, 8.7Hz), 5.13(2H, s), 4.09-4.02(1H, m), 3.77(2H, q, J=6.8Hz), 3.19(2H, q, J=7.4Hz), 2.25-2.21(2H, m), 1.90-1.87(4H, m), 1.63(1H, m), 1.39-1.33(3H, m), 1.27(3H, t, J=7.4Hz), 1.06(3H, t, J=6.9Hz)
|
Purity
>90% (NMR)
|
MS
690(M + 1)
|
Example No.
466
1H NMR(δ) ppm
|
|
1364
300MHz, DMSO-d6 8.28(1H, s), 8.10(1H, d, J=8.4Hz), 7.96(1H, d, J=8.4Hz), 7.64(1H, s), 7.61(1H, d, J=8.4Hz), 7.50(4H, s), 7.44(2H, s), 7.14(1H, d, J=12.0Hz), 7.02(1H, d, J=8.4Hz), 5.12(2H, s), 4.12-3.95(1H, m), 3.23(3H, s), 2.32-2.06(4H, m), 1.94-1.77(4H, m), 1.70-1.59(1H, m), 1.42-1.18(3H, m), 0.96(3H, t, J=7.2Hz)
|
Purity
>90% (NMR)
|
MS
640(M + 1)
|
|
[2058]
268
TABLE 267
|
|
|
Example No.
467
1H NMR(δ) ppm
|
|
1365
300MHz, DMSO-d6 8.28(1H, s), 8.08(1H, d, J=8.7Hz), 7.95(1H, d, J=8.4Hz), 7.60(1H, t, J=8.4Hz), 7.59(1H, s), 7.51(4H, s), 7.45 and 7.42(2H, ABq,
|
# J=8.1Hz), 7.14(1H, d, J=12.0Hz), 7.00(1H, d, J=8.4Hz), 5.14(2H, s), 4.12-3.95(1H, m), 3.70(2H, q, J=6.9Hz), 2.30-1.98(4H, m), 1.94-1.79(4H, m), 1.69-1.59(1H, m), 1.45-1.17(3H, m), 1.05(3H, t, J=6.9Hz), 0.94(3H, t, J=7.5Hz)
|
Purity
>90% (NMR)
|
MS
654(M + 1)
|
Example No.
468
1H NMR(δ) ppm
|
|
1366
400MHz, DMSO-d6 8.25(1H, s), 7.96(1H, d, J=8.8Hz), 7.90(1H, d, J=8.8Hz), 7.55(1H, t, J=8.4Hz), 7.46(2H, d, J=8.7Hz), 7.41(2H, d, J=8.7Hz),
|
# 7.10-7.00(2H, m), 6.98(1H, dd, J=2.2Hz, 8.7Hz), 5.05(2H, s), 3.98(1H, m), 3.84(3H, s), 2.30-2.10(2H, m), 1.90-1.75(4H, m), 1.70-1.60(1H, m), 1.50-1.20(3H, m)
|
Purity
>90% (NMR)
|
MS
585(M + 1)
|
Example No.
469
1H NMR(δ) ppm
|
|
1367
400MHz, DMSO-d6 8.26(1H, s), 8.02(1H, d, J=8.8Hz), 7.93(1H, d, J=8.8Hz), 7.60-7.50(6H, m), 7.45(1H,
|
# d, J=8.7Hz), 7.08(1H, dd, J=2.3Hz, 12.0Hz), 6.97(1H, dd, J=2.2Hz, 8.7Hz), 5.18(2H, s), 4.85(1H, sept, J=6.6Hz), 3.98(1H, m), 2.40-2.10(2H, m), 2.00-1.80(4H, m), 1.75-1.55(4H, m), 1.50-1.20(3H, m), 1.02(6H, d, J=6.6Hz)
|
Purity
>90% (NMR)
|
MS
654(M + 1)
|
|
[2059]
269
TABLE 268
|
|
|
Example No.
470
1H NMR(δ) ppm
|
|
1368
300MHz, DMSO-d6 8.39(1H, d, J=1.4Hz), 8.04(1H, d, J=8.8Hz), 7.98(1H, d, J=2.2Hz), 7.95(1H, d, J=8.8Hz), 7.78(1H, dd, J=2.3Hz, 8.5Hz), 7.57(1H, t, J=8.6Hz), 7.50(2H, d, J=8.8Hz), 7.45 (2H, d, J=8.8Hz), 7.39(1H, d, J=8.4Hz), 7.10(1H, d, J=12.1Hz), 6.98 (1H, d, J=8.6Hz), 5.65-5.60(2H, m), 5.35(1H, d, J=4.2Hz), 5.08(2H, s), 4.00(1H, m), 3.93-3.84(3H, m),
|
# 3.50-3.30(4H, m), 2.54(2H, t, J=7.8Hz), 2.40-2.00(4H, m), 1.95-1.75(4H, m), 1.70-1.55(1H, m), 1.45-1.15(3H, m)
|
Purity
>90% (NMR)
|
MS
814 (M + 1)
|
|
Example No.
471
1H NMR (δ) ppm
|
|
1369
300MHz, DMSO-d6 12.78(1H, brs), 8.30(1H, dd, J=0.9Hz, 1.5Hz), 8.22(1H, d, J=1.5Hz), 7.95 (1H, d, J=1.8Hz), 7.94(1H, d, J=8.4Hz), 7.85(1H, dd, J=1.2Hz, 8.4Hz), 6.96(1H, dd, J=0.9 Hz, 1.8Hz), 4.46(1H, m), 2.40-2.10(2H, m), 2.00-1.20(8H, m)
|
Purity
>90% (NMR)
|
MS
311 (M + 1)
|
|
[2060]
270
TABLE 269
|
|
|
Example No.
702
1H NMR(δ) ppm
|
|
1370
300MHz, DMSO-d6 8.97(1H, d, J=1.8Hz), 8.52(1H, d, J=2.4Hz), 8.36(1H, d, J=7.8Hz), 8.16(1H, s), 7.96(!H, d, J=8.1Hz), 7.55-7.40(5H, m), 7.14(1H, d, J=12.6Hz), 7.01(1H, dd, J=8.4Hz, 1.8Hz), 5.11(2H, s), 4.20-3.95(2H, m), 2.65-2.45(2H, m), 1.95-1.80(5H, m), 1.20-1.10(3H, m)
|
|
Purity
>90% (NMR)
|
MS
641 (M + 1)
|
|
Example No.
703
1H NMR (δ) ppm
|
|
1371
300MHz, DMSO-d6 8.97(1H, d, J=1.8Hz), 8.52(1H, d, J=1.8Hz), 7.82(1H, s), 7.70-7.35(7H, m), 7.13 (1H, d, J=12.3Hz), 7.00(1H, d, J=11.1Hz), 5.14(2H, s), 3.60-3.35(4H, m), 2.65-2.40(2H, m), 2.00-2.55 (9H, m), 1.40-1.10(3H, m)
|
|
Purity
>90% (NMR)
|
MS
653 (M + 1)
|
|
[2061] Industrial Applicability
[2062] As is evident from the above-mentioned results, the compound of the present invention shows a high inhibitory activity against HCV polymerase.
[2063] Therefore, the compound of the present invention can provide a pharmaceutical agent effective for the prophylaxis or treatment of hepatitis C, based on the anti-HCV effect afforded by the HCV polymerase inhibitory activity. When used concurrently with a different anti-HCV agent, such as interferon, and/or an anti-inflammatory agent and the like, it can provide a pharmaceutical agent more effective for the prophylaxis or treatment of hepatitis C. Its high inhibitory activity specific to HCV polymerase suggests the possibility of the compound being a pharmaceutical agent with slight side effects, which can be used safely for humans.
[2064] This application is based on patent application Nos. 193786/2001 and 351537/2001 filed in Japan, the contents of which are hereby incorporated by reference.
Claims
- 1. A therapeutic agent for hepatitis C, which comprises a fused ring compound of the following formula [I] or a pharmaceutically acceptable salt thereof as an active ingredient:
- 2. The therapeutic agent of claim 1, wherein 1 to 4 of the G1, G2, G3, G4, G5, G6, G7, G8 and G9 is (are) a nitrogen atom.
- 3. The therapeutic agent of claim 2, wherein G2 is C(—R2) and G6 is a carbon atom.
- 4. The therapeutic agent of claim 2 or claim 3, wherein G5 is a nitrogen atom.
- 5. The therapeutic agent of claim 1, wherein, in formula [I], the moiety
- 6. The therapeutic agent of claim 5, wherein, in formula [I], the moiety
- 7. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-1]
- 8. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-2]
- 9. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-3]
- 10. The therapeutic agent of claim 6, which comprises a fused ring compound of the following formula [I-4]
- 11. The therapeutic agent of any of claims 1 to 10, wherein at least one of R1, R2, R3 and R4 is carboxyl, —COORa1, CONRa2Ra3, —SO2Ra7 (wherein Ra1, Ra2, Ra3 and Ra7 are as defined in claim 1),
- 12. The therapeutic agent of claim 11, wherein at least one of R1, Ra2, Ra3 and Ra4 is carboxyl, —COORa1, —CONRa2Ra3 or —SO2Ra7 wherein Ra1, Ra2, Ra3 and Ra7 are as defined in claim 1.
- 13. The therapeutic agent of any of claims 1 to 10, wherein at least one of R1, R2, R3 and R4 is —COORa1 wherein Ra1 is glucuronic acid residue.
- 14. The therapeutic agent of any of claims 1 to 10, wherein at least one of R1, R2, R3 and R4 is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.
- 15. The therapeutic agent of any of claims 1 to 14, wherein the ring Cy is cyclopentyl, cyclohexyl, cycloheptyl, tetrahydrothiopyranyl or piperidino.
- 16. The therapeutic agent of any of claims 1 to 14, wherein the ring Cy is
- 17. The therapeutic agent of any of claims 1 to 16, wherein the ring A is C6-14 aryl.
- 18. The therapeutic agent of any of claims 1 to 17, wherein at least one substituent optionally substituted by group A is a substituent substituted by C1-6 alkoxy C1-6 alkoxy.
- 19. The therapeutic agent of any of claims 1 to 18, wherein the Y is —(CH2)m—CRa15Ra16—(CH2)n— wherein each symbol is as defined in claim 1.
- 20. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by Z is heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the group D.
- 21. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by Z is a heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:
- 22. The therapeutic agent of claim 21, wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D wherein said heterocyclic group is selected from the following groups:
- 23. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by group D is —(CH2)t—CONRa27Ra28 wherein each symbol is as defined in claim 1, and at least one of Ra27 and Ra28 is C1-6 alkoxy.
- 24. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by group D is —(CH2)t—C(═NRa33)NH2 wherein each symbol is as defined in claim 1, and Ra33 is hydroxyl group or C1-6 alkoxy.
- 25. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by group D is —(CH2)t—O—(CH2)p—CORa21, wherein each symbol is as defined in claim 1, and Ra21 is amino.
- 26. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by group D is —(CH2)t—NRa29CO—Ra24 wherein each symbol is as defined in claim 1, and Ra24 is amino or C1-6 alkylamino.
- 27. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by group D is —(CH2)t—NRa22R23 wherein each symbol is as defined in claim 1, and at least one of Ra22 and Ra23 is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group B.
- 28. The therapeutic agent of any of claims 1 to 19, wherein at least one group represented by group D is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom.
- 29. A fused ring compound of the following formula [II]
- 30. The fused ring compound of claim 29, which is represented by the following formula [II-1]
- 31. The fused ring compound of claim 29, which is represented by the following formula [II-2]
- 32. The fused ring compound of claim 29, which is represented by the following formula [II-3]
- 33. The fused ring compound of claim 29, which is represented by the following formula [II-4]
- 34. The fused ring compound of any of claims 29 to 33, wherein at least one of R1, R2, R3 and R4 is carboxyl, —COORa1, CONRa2Ra3, —SO2Ra7 (wherein Ra1, Ra2, Ra3 and Ra7 are as defined in claim 29),
- 35. The fused ring compound of claim 34, wherein at least one of R1, R2, R3 and R4 is carboxyl, —COORa1 or —SO2Ra7 wherein Ra1 and Ra7 are as defined in claim 29, or a pharmaceutically acceptable salt thereof.
- 36. The fused ring compound of claim 35, wherein at least one of R1, R2, R3 and R4 is carboxyl or —COORa1 wherein Ra1 is as defined in claim 29, or a pharmaceutically acceptable salt thereof.
- 37. The fused ring compound of claim 36, wherein R2 is carboxyl and R1, R3 and R4 are hydrogen atoms, or a pharmaceutically acceptable salt thereof.
- 38. The fused ring compound of any of claims 29 to 33, wherein at least one of R1, R2, R3 and R4 is —COORa1 wherein Ra1 is glucuronic acid residue, or a pharmaceutically acceptable salt thereof.
- 39. The fused ring compound of any of claims 29 to 33, wherein at least one of R1, R2, R3 and R4 is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or a pharmaceutically acceptable salt thereof.
- 40. The fused ring compound of any of claims 29 to 39, wherein the ring Cy′ is cyclopentyl, cyclohexyl, cycloheptyl or tetrahydrothiopyranyl, or a pharmaceutically acceptable salt thereof.
- 41. The fused ring compound of claim 40, wherein the ring Cy′ is cyclopentyl, cyclohexyl or cycloheptyl, or a pharmaceutically acceptable salt thereof.
- 42. The fused ring compound of any of claims 29 to 39, wherein the ring Cy′ is
- 43. The fused ring compound of any of claims 29 to 42, wherein the ring A′ is phenyl, pyridyl, pyrazinyl, pyrimidinyl or pyridazinyl, or a pharmaceutically acceptable salt thereof.
- 44. The fused ring compound of claim 43, wherein the ring A′ is phenyl or pyridyl, or a pharmaceutically acceptable salt thereof.
- 45. The fused ring compound of claim 44, wherein the ring A′ is phenyl, or a pharmaceutically acceptable salt thereof.
- 46. The fused ring compound of any of claims 29 to 45, wherein at least one substituent optionally substituted by group A is a substituent substituted by C1-6 alkoxy C1-6 alkoxy, or a pharmaceutically acceptable salt thereof.
- 47. The fused ring compound of any of claims 29 to 46, wherein the Y is —(CH2)m—O(CH2)n—, —NHCO2—, —CONH—CHRa14—, —(CH2)m—NRa12—(CH2)n—, —CONRa13—(CH2)n—, —O—(CH2)m—CRa15Ra16—(CH2)n— or —(CH2)n-NRa12—CHRa15— (wherein each symbol is as defined in claim 29), or a pharmaceutically acceptable salt thereof.
- 48. The fused ring compound of claim 47, wherein the Y is —(CH2)m—O—(CH2)n— or —O—(CH2)m—CRa15Ra16—(CH2)n— (wherein each symbol is as defined in claim 29), or a pharmaceutically acceptable salt thereof.
- 49. The fused ring compound of claim 48, wherein the Y is —(CH2)m—O—(CH2)n— wherein each symbol is as defined in claim 29, or a pharmaceutically acceptable salt thereof.
- 50. The fused ring compound of any of claims 29 to 46, wherein the Y is —(CH2)m—CRa15Ra16—(CH2)n— (wherein each symbol is as defined in claim 29), or a pharmaceutically acceptable salt thereof.
- 51. The fused ring compound of any of claims 29 to 50, wherein the R2 is carboxyl, R1, R3 and R4 are hydrogen atoms, the ring Cy′ is cyclopentyl, cyclohexyl or cycloheptyl, and the ring A′ is phenyl, or a pharmaceutically acceptable salt thereof.
- 52. The fused ring compound of any of claims 29 to 51, wherein at least one group represented by Z is heterocycle C1-6 alkyl optionally substituted by 1 to 5 substituent(s) selected from the group D, or a pharmaceutically acceptable salt thereof.
- 53. The fused ring compound of any of claims 29 to 51, wherein at least one group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:
- 54. The fused ring compound of claim 53, wherein at least one lo group represented by Z is heterocyclic group optionally substituted by 1 to 5 substituent(s) selected from the group D, wherein said heterocyclic group is selected from the following groups:
- 55. The fused ring compound of claim any of claims 29 to 51, wherein at least one group represented by group D is —(CH2)t—CONRa27Ra28 wherein each symbol is as defined in claim 29, and at least one of Ra27 and Ra28 is C1-6 alkoxy, or a pharmaceutically acceptable salt thereof.
- 56. The fused ring compound of any of claims 29 to 51, wherein at least one group represented by group D is —(CH2)t—C(═NRa33)NH2 wherein each symbol is as defined in claim 29, and Ra33 is hydroxyl group or C1-6 alkoxy, or a pharmaceutically acceptable salt thereof.
- 57. The fused ring compound of any of claims 29 to 51, wherein at least one group represented by group D is —(CH2)t—O—(CH2)p—CORa21 wherein each symbol is as defined in claim 29, and Ra21 is amino, or a pharmaceutically acceptable salt thereof.
- 58. The fused ring compound of any of claims 29 to 51, wherein at least one group represented by group D is —(CH2)t—NRa29CO—Ra24 wherein each symbol is as defined in claim 29, and Ra24 is amino or C1-6 alkylamino, or a pharmaceutically acceptable salt thereof.
- 59. The fused ring compound of any of claims 29 to 51, wherein at least one group represented by group D is —(CH2)t—NRa22Ra23 wherein each symbol is as defined in claim 29, and at least one of Ra22 and Ra23 is amino or C1-6 alkylamino, or a pharmaceutically acceptable salt thereof.
- 60. The fused ring compound of any of claims 29 to 51, wherein at least one group represented by group D is heterocyclic group having 1 to 4 heteroatom(s) selected from an oxygen atom, a nitrogen atom and a sulfur atom, or a pharmaceutically acceptable salt thereof.
- 61. The fused ring compound of claim 29 or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of
ethyl 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate, 2-[4-(3-bromophenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, ethyl 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate, ethyl 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, ethyl 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate, ethyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, ethyl 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylate, 1-cyclohexyl-2-{4-[(E)-2-phenylvinyl]phenyl}benzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide, 2-(4-benzyloxyphenyl)-5-cyano-1-cyclopentylbenzimidazole, 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxamide oxime, ethyl 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylate, 1-cyclohexyl-2-{4-[{4-(4-fluorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid, ethyl 2-{4-[bis(3-fluorophenyl)methoxy)-2-fluorophenyl}-1cyclohexylbenzimidazole-5-carboxylate, 2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, ethyl 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylate, 2-(4-benzoylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid, ethyl 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[3-(3-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, ethyl 2-[4-(3-acetoxyphenyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate, ethyl 1-cyclohexyl-2-[4-(3-hydroxyphenyloxy)phenyl]benzimidazole-5-carboxylate, ethyl 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}benzimidazole-5-carboxylate, 1-cyclohexyl-2-{4-[3-(4-pyridylmethoxy)phenyloxy]phenyl}benzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole, ethyl 2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole-5-carboxylate, 2-(4-benzyloxyphenyl)-1-cyclopentyl-N,N-dimethylbenzimidazole-5-carboxamide, 2-(4-benzyloxyphenyl)-1-cyclopentyl-N-methoxy-N-methylbenzimidazole-5-carboxamide, 2-(4-benzyloxyphenyl)-1-cyclopentyl-5-(1-hydroxy-1-methylethyl)benzimidazole, 5-acetyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole, 2-(4-benzyloxyphenyl)-1-cyclopentyl-N-(2-dimethylaminoethyl)-benzimidazole-5-carboxamide dihydrochloride, 2-(4-benzyloxyphenyl)-1-cyclopentyl-5-nitrobenzimidazole, 5-amino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole hydrochloride, 5-acetylamino-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole, 2-(4-benzyloxyphenyl)-1-cyclopentyl-5-methanesulfonyl-aminobenzimidazole, 5-sulfamoyl-2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazole, 2-[4-(4-tert-butylbenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-[4-(4-carboxybenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-[4-(4-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-{4-[(2-chloro-5-thienyl)methoxy]phenyl}-1cyclopentylbenzimidazole-5-carboxylic acid, 1-cyclopentyl-2-[4-(4-trifluoromethylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclopentyl-2-[4-(4-methoxybenzyloxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclopentyl-2-[4-(4-pyridylmethoxy)phenyl]benzimidazole-5-carboxylic acid hydrochloride, 1-cyclopentyl-2-[4-(4-methylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclopentyl-2-{4-[(3,5-dimethyl-4-isoxazolyl)methoxy]phenyl}benzimidazole-5-carboxylic acid, [2-(4-benzyloxyphenyl)-1-cyclopentylbenzimidazol-5-yl]-carbonylaminoacetic acid, 2-[4-(2-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-[4-(3-chlorobenzyloxy)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-3-cyclopentylbenzimidazole-5-carboxylic acid, 2-[4-(benzenesulfonylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 1-cyclopentyl-2-[4-(3,5-dichlorophenylcarbonylamino)phenyl]benzimidazole-5-carboxylic acid, 2-{4-[(4-chlorophenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-{4-[(4-tert-butylphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-{4-[(4-benzyloxyphenyl)carbonylamino]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid, trans-4-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]cyclohexan-1-ol, trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-methoxycyclohexane, 2-(4-benzyloxyphenyl)-5-carboxymethyl-1-cyclopentylbenzimidazole, 2-[(4-cyclohexylphenyl)carbonylamino]-1-cyclopentylbenzimidazole-5-carboxylic acid, 1-cyclopentyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclopentyl-2-[4-(3,4-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclopentyl-2-[4-(phenylcarbamoylamino)phenyl]benzimidazole-5carboxylic acid, 1-cyclopentyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclopentyl-2-(4-phenethyloxyphenyl)benzimidazole-5-carboxylic acid, trans-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-tert-butylcyclohexane, 2-(4-benzyloxyphenyl)-5-carboxymethoxy-1-cyclopentylbenzimidazole, 2-(4-benzylaminophenyl)-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-[4-(N-benzenesulfonyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 2-[4-(N-benzyl-N-methylamino)phenyl]-1-cyclopentylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-(4-phenethylphenyl)benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3,5-dichlorobenzyloxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(diphenylmethoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3,5-di-tert-butylbenzyloxy)phenyl]benzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-(4-methylcyclohexyl)benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(2-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(1-naphthyl)methoxyphenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(dibenzylamino)phenyl]benzimidazole-5-carboxylic acid, 2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-(4-(dibenzylmethoxy)phenyl]benzimidazole-5-carboxylic acid, 2-(4-benzoylmethoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3,3-diphenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid, 2-[4-(3-chloro-6-phenylbenzyloxy)phenyl]-1cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(phenoxy)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-phenylpropyloxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(5-phenylpentyloxy)phenyl]benzimidazole-5-carboxylic acid, 2-(2-benzyloxy-5-pyridyl)-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(3,4,5-trimethoxyphenyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-(4,4-dimethylcyclohexyl)benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(1-naphthyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 2-[4-(2-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(3-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(2-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-hydroxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(2-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-methoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(2-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-propoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(3-methyl-2-butenyloxy)phenoxy]phenyl}-benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(2-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-isopentyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(10,11-dihydro-5H-dibenzo[b,f]azepin-5-yl)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(4-trifluoromethylphenyl)benzyloxy]-phenyl}benzimidazole-5-carboxylic acid, 2-{4-[bis(4-chlorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-(2-(4-methoxyphenyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-(2-(2-methoxyphenyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(3-methoxyphenyl)ethoxy]phenyl}benzimidazole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cycloheptylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(2-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-phenethyloxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(2,2-diphenylethoxy)phenyl]benzimidazole-5-carboxylic acid, cis-1-[2-(4-benzyloxyphenyl)-5-carboxybenzimidazol-1-yl]-4-fluorocyclohexane, 1-cyclohexyl-2-[4-(2-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-phenoxyphenoxy)phenyl]benzimidazole-5-carboxylic acid, 2-{4-[(2R)-2-benzyloxycarbonylamino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{2-fluoro-4-[2-(4-trifluoromethylphenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid, 2-[4-(4-benzyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-4-[bis(4-methylphenyl)methoxy]phenyl-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(4-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-6-methoxy-2-[4-(3-phenylpropoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-6-hydroxy-2-[4-(3-phenylpropoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-6-methyl-2-[4-(3-phenylpropoxy)phenyl]benzimidazole-5-carboxylic acid, 2-{4-[2-(2-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(3-benzyloxyphenyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(2-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(3-carboxymethyloxyphenoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-methylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-methoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{2-methyl-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[2-(4-tert-butylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-(3-chloro-6-phenylbenzyloxy)-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(3,5-dichlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-(4-benzyloxyphenoxy)-2-chlorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-(4-benzyloxyphenoxy)-2-trifluoromethylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(2-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[(2R)-2-amino-2-phenylethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(2-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(3-biphenylyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-{(1-tert-butoxycarbonyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(3,4,5-trimethoxyphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(2-biphenylyl)ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(2-biphenylylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(4-piperidylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride, 1-cyclohexyl-2-{4-[3-(4-piperidylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[(2R)-2-acetylamino-2-phenylethoxy]phenyl}-1-cyclohexybenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(4-methyl-3-pentenyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(3-methyl-3-butenyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-([(2S)-1-benzyl-2-pyrrolidinyl]methoxylphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-chloro-6-(4-methylthiophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-methanesulfonylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(2-thienyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(3-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(4-benzyloxyphenoxy)-3-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(2-bromo-5-chlorobenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-{(1-acetyl-4-piperidyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(2-propynyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(3-pyridylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 2-(4-benzyloxy-2-methoxyphenyl)-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(2-bromo-5-methoxybenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(carboxydiphenylmethoxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-nitrobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-acetylamino-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[{(2S)-1-benzyloxycarbonyl-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole acid, 2-{2-chloro-4-[2-(4-trifluoromethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(2-pyridylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-fluorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-carboxy-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(dimethylcarbamoylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(piperidinocarbonylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[{(2S)-1-benzenesulfonyl-2-pyrrolidinyl}methoxy]phenyl}-1cyclohexylbenzimidazole-5carboxylic acid, 2-{4-[{(2S)-1-benzoyl-2-pyrrolidinyl}ethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carbamoylphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(dimethylcarbamoylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(piperidinocarbonylmethoxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-{(1-methanesulfonyl-4-piperidyl)methoxy}phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[{2-methyl-5-(4-chlorophenyl)-4-oxazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[3-(3-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-(4-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(4-fluorobenzyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-([{(2S)-1-(4-nitrophenyl)-2-pyrrolidinyl}methoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[{(2S)-1-phenyl-2-pyrrolidinyl}methoxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{(2S)-1-(4-acetylaminophenyl)-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[{5-(4-chlorophenyl)-2-methyl-4-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(3-fluorophenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[2-(4-chlorophenyl)-3-nitrobenzyloxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(4-tetrahydropyranyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(4-trifluoromethylbenzyloxy)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-{(1-methyl-4-piperidyl)methoxy}phenoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[3-(4-tert-butylbenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-(2-chlorobenzyloxy)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(3-pyridyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[3-(4-chlorophenyl)phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(4-methoxyphenyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[{4-(4-methanesulfonylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[1-(4-chlorobenzyl)-3-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-{(2-methyl-4-thiazolyl)methoxy}enoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-{(2,4-dimethyl-5-thiazolyl)methoxy}phenoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[3-(3,5-dichlorophenyl)phenoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[1-(4-chlorobenzyl)-4-piperidyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[4-carbamoyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[4-(4-chlorobenzyloxy)piperidino]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-{(2-chloro-4-pyridyl)methoxy}phenoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[{(2S)-1-(4-dimethylcarbamoylphenyl)-2-pyrrolidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-ethoxycarbonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-[4-(3-trifluoromethylphenoxy)phenyl]benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[{4-(4-dimethylcarbamoylphenyl)-2-methyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(3-chlorophenyl)-4-methylamino-1,3,5-triazin-6yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate, 2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[4-(3-chlorophenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride, methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[{4-(4-chlorophenyl)-2-methyl-5-pyrimidinyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-chlorophenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[{3-(4-chlorophenyl)-2-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole5-carboxylic acid, 2-{4-[2-(3-chlorphenyl)-4-methylamino-1,3,5-triazin-6-yloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate, 2-{4-[2-(4-chlorophenyl)-4-(5-tetrazolyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(4-benzyloxy-6-pyrimidinyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[4-(4-pyridylmethoxy)-6-pyrimidinyloxy]phenyl}-benzimidazole-5-carboxylic acid, 2-{4-[4-(3-chlorphenyl)-6-pyrimidinyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[2-(4-chlorphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, ethyl 2-{4-[3-(4-chlorophenyl)pyridin-2-ylmethoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-(2-bromo-5-tert-butoxycarbonylbenzyloxy)phenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-{4-[5-tert-butoxycarbonyl-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-{4-[5-carboxy-2-(4-cholorphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylate hydrochloride, methyl 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[2-(4-chlorphenyl)-5-methylcarbomoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrocholoride, 2-{4-[3-(tert-butylsulfamoyl)-6-(4-chlorphenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorphenyl)-5-sulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid trifluoroacetate, 2-(4-benzyloxycyclohexyl)-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[2-(2-biphenylyloxymethyl)-5-thienyl-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[2-(2-biphenylyloxymethyl)-5-furyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[{4-(4-flurophenyl)-2-hydroxymethyl-5-thiazolyl}methoxy]phenyl}benzimidazole-5-carboxylic acid, 1-cyclohexyl-2-{4-[{4-(4-carboxyphenyl-2-methyl-5-thiazolyl}-methoxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride, 1-cyclohexyl-2-{2-fluoro-4-[4-fluoro-2-(3-fluorobenzoyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-sulfonic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexylbenzimidazole-4-carboxylic acid, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-5-(4-pyridylmethoxy)-phenoxy]phenyl}benzimidazole-5-carboxylic acid dihydrochloride, 1-cyclohexyl-2-{4-[3-carboxy-5-(4-pyridylmethoxy)phenoxy]-phenyl}benzimidazole-5-carboxylic acid dihydrochloride, 2-{4-(2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-4-carboxylic acid, 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-carboxyphenyl)-3-pyridyl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-trifluoromethylphenyl)benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride, 1-cyclohexyl-2-{4-[3-dimethylcarbamoyl-6-(4-methylthiophenyl)-benzyloxy]phenyl}benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-methylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-dimethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-carbamoyl-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(4-methanesulfonylphenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(3-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[3-dimethylcarbamoyl-6-(4-dimethylcarbamoylphenyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]-2-fluorophenyl}-1-(4-tetrahydrothiopyranyl)benzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylsulfamoylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-dimethylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methanesulfonylaminobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-diethylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-isopropylcarbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-piperidinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(1-pyrrolidinyl)carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-hydroxyethyl)carbamoylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidino)-carbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-morpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-thiomorpholinocarbonylbenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-(carboxymethylcarbamoyl)-6-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-{4-(2-carboxyethyl)phenyl}-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-hydroxymethylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[3-chloro-6-(4-methoxymethylphenyl)benzyloxy]phenyl}-1cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(3-carboxyphenyl)-5-chlorobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylthiobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methylsulfinylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-cyanobenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(2-pyridyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(4-dimethylcarbamoylphenyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[bis(2-thienyl)methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate, sodium 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carboxyphenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-carbamoylphenyl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[5-amino-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[-5-(4-chlorophenyl)-2-methoxybenzylsulfinyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(4-chlorophenyl)-2-methoxybenzylsulfonyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzylthio]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[bis(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-(phenyl-3-pyridylmethoxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-(methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylate, 2-{4-[5-chloro-2-(4-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(benzylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(cyclohexylmethylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-pyridylmethylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-benzyl-N-methylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-dimethylaminocarbonyl-2-(4-pyridyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-methylpiperazin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{N-(3-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{N-(2-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(cyclohexylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-pyridin-4-ylethylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[(4-fluorophenyl){4-(dimethylaminocarbonyl)phenyl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[(4-fluorophenyl)(4-carboxyphenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(4-oxopiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-hydroxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(phenylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-methoxypiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(3-hydroxypropyloxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-hydroxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-methylpiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride, 2-{4-[5-acetyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(4-hydroxypiperidin-1-ylcarbonyl)-methoxy}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-methoxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{2-(2-methoxyethoxy)ethoxy}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-methylthiazol-4-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl) -5(3,4-dihydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(3-methyl-1,2,4-oxadiazol-5-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-(piperidinocarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxy-2-methylpropan-2-yl)carbamoyl}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4,4-dimethyl-2-oxazolin-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-4-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-{(2-hydroxyethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-{(4-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-4-(dimethylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(2-aminothiazol-4-yl)-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylsulfonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride, 2-{4-[5-(dimethylcarbamoyl)-2-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(dimethylcarbamoyl)-2-(3-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(5-chlorothiophen-2-yl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-bromo-5-(5-methyloxazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-bromo-5-(5-methylthiazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(5-methyloxazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(5-methylthiazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-tetrazol-5-ylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-chloro-2-(4-cyanophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[4-chloropheny)-5-(methoxycarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{2-(4-hydroxypiperidin-1-yl)ethoxy}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxopiperidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-hydroxyamidino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxo-3H-1,2,3,5-oxathiadiazol-4-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-thiadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(cyclopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(cyclobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(tert-butylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxypropan-2-yl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(methoxycarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-i(2,3-dihydroxypropyl)carbamoyl}-benzyloxy]-2-fluorophenyl-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-ethyl-N-methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-methyl-N-propylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2,6-dimethylpiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(butylcarbamoyl)-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(propylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(ethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(dimethylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(morpholinocarbonyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-ureidobenzyloxy]-2-fluorophenyl}-1cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(ethylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(isopropylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(2,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3,5-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3-chloro-4-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3,4-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-{4-(methylthio)phenyl}-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-{4-(methylthio)phenyl}-5-(isopropylcarbamoyl)benzyloxy]-2fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylaminosulfonyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-2fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-imidazolin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxoimidazolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxazolin-2-ylamino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[{2-[{(dimethylcarbamoyl)methoxy}methyl]-4-(4-fluorophenyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{4-(4-fluorophenyl)-2-(4-hydroxypiperidin-1-ylmethyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[{4-(4-fluorophenyl)-2-[(carbamoylmethoxy)methyl]thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{4-(4-fluorophenyl)-2-(methylcarbamoyl)thiazol-5-yl}methoxy]-2-fluorophenyl-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{4-(4-fluorophenyl)-2-{(2-hydroxyethyl)carbamoyl}thiazol-5-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-fluorophenyl)-5-(dimethylcarbamoyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-fluorophenyl)-5-(isopropylcarbamoyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-fluorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole, 2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzimidazole hydrochloride, 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-5cyano-1-cyclohexylbenzimidazole, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-5-cyano-1-cyclohexylbenzimidazole, 2-{4-[{N-(4-dimethylcarbamoyl)-N-(4-fluorophenyl)amino}-methyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{5-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{3-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[(3-dimethylcarbamoylphenyl)(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{3-(4-hydroxypiperidyl-1-ylcarbonyl)phenyl}(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 1-{[2-{4-([4-(4-fluorophenyl)-2-methylthiazol-5-yl]methoxy)phenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid, {[2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid, 2-{4-[2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 3-{[4-(5-aminosulfonyl-1-cyclohexylbenzimidazol-2-yl)-3-fluorophenoxy]methyl}-4-(4-chlorophenyl)-N-isopropylbenzamide, 2-[4-{2-(4-chlorophenyl)-6-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-4-fluoro-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexyl-4-methoxybenzimidazole-5-carboyxlic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-isopropylcarbonyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(isopropylcarbonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[3-{[4-(4-fluorophenyl)-2-methylthiazol-5-yl]methyl}-4-hydroxyphenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-{2-(4-chlorophenyl)-4-fluoro-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(methylsulfonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-f2-(4-chlorophenyl)-5-[N-methyl-N-(methylsulfonyl)amino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{[3-(4-chlorophenyl)-6-(2-oxopyrrolidin-1-yl)pyridin-2-yl]methyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(acetylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-ethylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-propylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(methylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-(methylsulfonyl)-N-propylamino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylsulfonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylcarbonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylcarbonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-methoxybenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-isopropylamino)-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, {[2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-yl]carbonyl}-β-D-glucuronic acid, methyl 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexylindole-5-carboxylate, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-1-cyclohexyl-1H-indole-5-carboxylic acid, 2-(4-benzyloxyphenyl)-1-cyclopentyl-1H-indole-5-carboxylic acid, ethyl 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylate, 2-(4-benzyloxyphenyl)-3-cyclohexylimidazo[1,2-a]pyridine-7-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-methoxybenzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride, and 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride.
- 62. The fused ring compound of claim 61 or a pharmaceutically acceptable salt thereof, which is selected from the group consisting of
2-{4-[2-(4-chlorophenyl)-5-(4-oxopiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-hydroxybenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(phenylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-methoxypiperidinocarbonyl)-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(3-hydroxypropyloxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-hydroxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, methyl 2-[4-(2-bromo-5-nitrobenzyloxy)-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-{2-(4-chlorophenyl)-5-nitrobenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-{5-amino-2-(4-chlorophenyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, methyl 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylate, 2-[4-{2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-methylpiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-acetyl-2-(4-chlorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(4-hydroxypiperidin-1-ylcarbonyl)-methoxy}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-methoxyethoxy)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{2-(2-methoxyethoxy)ethoxy}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-methylthiazol-4-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(3,4-dihydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(3-methyl-1,2,4-oxadiazol-5-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-(isopropylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-(piperidinocarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxy-2-methylpropan-2-yl)carbamoyl}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4,4-dimethyl-2-oxazolin-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-4-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-{(2-hydroxyethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-4-{(4-pyridylmethyl)carbamoyl}-benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-4-(dimethylcarbamoyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(2-aminothiazol-4-yl)-2-(4-chlorophenyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylsulfonyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(dimethylcarbamoyl)-2-(4-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(dimethylcarbamoyl)-2-(3-fluorophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(5-chlorothiophen-2-yl)-5-(dimethylcarbamoyl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-bromo-5-(5-methyloxazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-bromo-5-(5-methylthiazol-2-yl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(5-methyloxazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(5-methylthiazol-2-yl)benzyloxy]-phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-tetrazol-5-ylbenzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-chloro-2-(4-cyanophenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-chloro-2-(4-tetrazol-5-ylphenyl)benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{2-(4-hydroxypiperidin-1-yl)ethoxy}benzyloxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxopiperidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[3-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-hydroxyamidino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxo-3H-1,2,3,5-oxathiadiazol-4-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2,5-dihydro-5-oxo-4H-1,2,4-thiadiazol-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(cyclopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(cyclobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(tert-butylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isobutylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(1-hydroxypropan-2-yl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(methoxycarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(2,3-dihydroxypropyl)carbamoyl}-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-ethyl-N-methylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-methyl-N-propylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(N-isopropyl-N-methylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2,6-dimethylpiperidin-1-ylcarbonyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[5-(butylcarbamoyl)-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(propylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(ethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(dimethylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(morpholinocarbonyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-ureidobenzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(ethylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-{(isopropylcarbamoyl)amino}benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[2-(2,4-difluorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3,5-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3-chloro-4-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(3,4-dichlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-2-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chloro-3-fluorophenyl)-5-(isopropylcarbamoyl)-benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-{4-(methylthio)phenyl}-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-{4-(methylthio)phenyl-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[4-chloro-2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylaminosulfonyl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)-benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]phenyl}1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)benzyloxy]phenyl}-1-cyclopentylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl}-1-(tetrahydrothiopyran-4-yl) benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4-yl)benzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-(tetrahydrothiopyran-4-ylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-2-fluorophenyl}-1-piperidinobenzimidazole-5-carboxylic acid, 2-{4-[2-(4-chlorophenyl)-5-(2-imidazolin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxooxazolidin-3-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxoimidazolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(2-oxazolin-2-ylamino)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[{2-[{(dimethylcarbamoyl)methoxy}methyl]-4-(4-fluorophenyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{4-(4-fluorophenyl)-2-(4-hydroxypiperidin-1-ylmethyl)thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid dihydrochloride, 2-{4-[{4-(4-fluorophenyl)-2-[(carbamoylmethoxy)methyl]thiazol-5-yl}methoxy]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{4-(4-fluorophenyl)-2-(methylcarbamoyl)thiazol-5-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, {2-{4-[{4-(4-fluorophenyl)-2-{(2-hydroxyethyl)carbamoyl}thiazol-5-yl}methoxy]-2-fluorophenyl-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-fluorophenyl)-5-(dimethylcarbamoyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-fluorophenyl)-5-(isopropylcarbamoyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[{2-(4-fluorophenyl)-5-(4-hydroxypiperidin-1-ylcarbonyl)thiophen-3-yl}methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole, 2-{4-[2-(4-carboxyphenyl)-5-chlorobenzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-tetrazol-5-ylbenzimidazole hydrochloride, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]-2-fluorophenyl}-1-cyclohexyl-5-(2,5-dihydro-5-oxo-4H-1,2,4-oxadiazol-3-yl)benzimidazole hydrochloride, 2-{4-[5-carboxy-2-(4-chlorophenyl)benzyloxy]-2-fluorophenyl}-5-cyano-1-cyclohexylbenzimidazole, 2-{4-[2-(4-chlorophenyl)-5-(dimethylcarbamoyl)benzyloxy]-2-fluorophenyl}-5-cyano-1-cyclohexylbenzimidazole, 2-{4-[{N-(4-dimethylcarbamoyl)-N-(4-fluorophenyl)amino}-methyl]phenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{5-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{3-[bis(3-fluorophenyl)methyl]-2-fluoro-4-hydroxyphenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-{4-[(3-dimethylcarbamoylphenyl)(4-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-[{3-(4-hydroxypiperidyl-1-ylcarbonyl)phenyl}(4-fluorophenyl)methoxy]-2-fluorophenyl-1-cyclohexylbenzimidazole-5carboxylic acid hydrochloride, 1-{[2-{4-([4-(4-fluorophenyl)-2-methylthiazol-5-yl]methoxy)phenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid, {[2-{4-[bis(3-fluorophenyl)methoxy]-2-fluorophenyl}-1-cyclohexylbenzimidazol-5-yl]carbonyl}-β-D-glucuronic acid, 2-{4-[2-(4-chlorophenyl)-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 3-{[4-(5-aminosulfonyl-1-cyclohexylbenzimidazol-2-yl)-3-fluorophenoxy]methyl}-4-(4-chlorophenyl)-N-isopropylbenzamide, 2-[4-{2-(4-chlorophenyl)-6-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-4-fluoro-5-(1,1-dioxoisothiazolidin-2-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(isopropylaminocarbonyl)benzyloxy}-2-fluorophenyl]-1-cyclohexyl-4-methoxybenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-isopropylcarbonyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(isopropylcarbonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[3-{[4-(4-fluorophenyl)-2-methylthiazol-5-yl]methyl}-4-hydroxyphenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-{2-(4-chlorophenyl)-4-fluoro-5-(2-oxopyrrolidin-1-yl)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(methylsulfonylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-methyl-N-(methylsulfonyl)amino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{[3-(4-chlorophenyl)-6-(2-oxopyrrolidin-1-yl)pyridin-2-yl]methyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(acetylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-ethylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-propylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(methylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-(methylsulfonyl)-N-propylamino]benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-methylamino)benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylsulfonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylsulfonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-(ethylcarbonyl)-N-methylamino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-[N-ethyl-N-(ethylcarbonyl)amino]-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, 2-[4-{2-(4-chlorophenyl)-5-methoxybenzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid, 2-[4-{2-(4-chlorophenyl)-5-(N-acetyl-N-isopropylamino)-benzyloxy}-2-fluorophenyl]-1-cyclohexylbenzimidazole-5-carboxylic acid hydrochloride, {[2-{4-[2-(4-chlorophenyl)-5-(2-oxopyrrolidin-1-yl)benzyloxy]-2-fluorophenyl}-1-cyclohexylbenzoimidazol-5-]carbonyl}-β-D-glucuronic acid, 2-{4-[2-(4-chlorophenyl)-5-(isopropylcarbamoyl)benzyloxy]phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride, and 2-{4-[2-(4-chlorophenyl)-5-(pyrrolidin-1-ylcarbonyl)benzyloxy]-phenyl}-3-cyclohexyl-3H-imidazo[4,5-b]pyridine-6-carboxylic acid hydrochloride.
- 63. A pharmaceutical composition comprising a fused ring compound of any of claims 29 to 62, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 64. A hepatitis C virus polymerase inhibitor comprising a fused ring compound of any of claims 1 to 28 and 29 to 62, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 65. An anti-hepatitis C virus agent comprising a fused ring compound of any of claims 1 to 28 and 29 to 62, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 66. A therapeutic agent for hepatitis C comprising a fused ring compound of any of claims 29 to 62, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 67. An anti-hepatitis C virus agent comprising (a) the anti-hepatitis C virus agent of claim 65 and (b) at least one agent selected from the group consisting of a different antiviral agent, an antiinflammatory agent and an immunostimulant.
- 68. An anti-hepatitis C virus agent comprising (a) the anti-hepatitis C virus agent of claim 65 and (b) interferon.
- 69. A therapeutic agent for hepatitis C comprising (a) the hepatitis C virus polymerase inhibitor of claim 64 and (b) at least one agent selected from the group consisting of a different antiviral agent, an antiinflammatory agent and an immunostimulant.
- 70. A therapeutic agent for hepatitis C comprising (a) the hepatitis C virus polymerase inhibitor of claim 64 and (b) interferon.
- 71. A benzimidazole compound of the following formula [III]
- 72. A thiazole compound selected from the group consisting of 4-(4-fluorophenyl)-5-hydroxymethyl-2-methylthiazole and 4-(4-fluorophenyl)-5-chloromethyl-2-methylthiazole, or a pharmaceutically acceptable salt thereof.
- 73. A biphenyl compound selected from the group consisting of 1-(4′-chloro-2-hydroxymethyl-biphenyl-4-yl)-2-pyrrolidinone and 1-(4′-chloro-2-chloromethyl-biphenyl-4-yl)-2-pyrrolidinone, or a pharmaceutically acceptable salt thereof.
- 74. A pharmaceutical composition comprising (a) a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof and (b) at least one agent selected from the group consisting of an antiviral agent other than the compound of claim 1, an antiinflammatory agent and an immunostimulant.
- 75. A pharmaceutical composition comprising (a) a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof and (b) interferon.
- 76. A method for treating hepatitis C, which comprises administering an effective amount of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof.
- 77. The method of claim 76, further comprising administering an effective amount of at least one agent selected from the group consisting of an antiviral agent other than the compound of claim 1, an antiinflammatory agent and an immunostimulant.
- 78. The method of claim 76, further comprising administering an effective amount of interferon.
- 79. A method for inhibiting hepatitis C virus polymerase, which comprises administering an effective amount of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof.
- 80. The method of claim 79, further comprising administering an effective amount of at least one agent selected from the group consisting of an antiviral agent other than the compound of claim 1, an antiinflammatory agent and an immunostimulant.
- 81. The method of claim 79, further comprising administering an effective amount of interferon.
- 82. Use of a fused ring compound of the formula (I) of claim 1 or a pharmaceutically acceptable salt thereof for the production of a pharmaceutical agent for treating hepatitis C.
- 83. Use of a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof for the production of a hepatitis C virus polymerase inhibitor.
- 84. A pharmaceutical composition for the treatment of hepatitis C, which comprises a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 85. A pharmaceutical composition for inhibiting hepatitis C virus polymerase, which comprises a fused ring compound of the formula [I] of claim 1 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
- 86. A commercial package comprising a pharmaceutical composition of claim 84 and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for treating hepatitis C.
- 87. A commercial package comprising a pharmaceutical composition of claim 85 and a written matter associated therewith, the written matter stating that the pharmaceutical composition can or should be used for inhibiting hepatitis C virus polymerase.
Priority Claims (2)
Number |
Date |
Country |
Kind |
2001-193786 |
Jun 2001 |
JP |
|
2001-351537 |
Nov 2001 |
JP |
|
PCT Information
Filing Document |
Filing Date |
Country |
Kind |
PCT/JP02/06405 |
6/26/2002 |
WO |
|