Fusible link unit

Information

  • Patent Grant
  • 6824430
  • Patent Number
    6,824,430
  • Date Filed
    Wednesday, October 1, 2003
    21 years ago
  • Date Issued
    Tuesday, November 30, 2004
    19 years ago
Abstract
A fusible link unit having a fuse circuit structure containing a plurality of female terminal parts linked through fusible members to a linking plate and screw fixing terminal parts, which are connected to the fuse circuit structure in a chain manner, and a housing into which the fuse circuit structure is assembled, is disclosed. In the fusible link unit, the fuse circuit structure is formed by laminating a plurality of part plates, and the part plates include linking portions corresponding to the linking plates, and the female terminal parts with the fusible members connected thereto and the screw fixing terminal parts, which are shared by the part plates.
Description




The present application is based on Japanese Patent Application No. 2002-289614, the entire contents of which are incorporated herein by reference.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to a chained type large current fusible link unit with fuse circuit structures each containing terminal parts with fusible members connected thereto, which are linked in a chain manner through the fusible members.




2. Related Art




JP-A-2000-133114 discloses conventional fusible link unit for example. One of fusible link units of this type as shown in

FIGS. 14 through 16

is known. The fusible link unit designated by reference numeral


100


, as shown in

FIG. 14

, is generally composed of first and second fuse circuit structures


101


and


102


and a housing


103


into which those fuse circuit structures


101


and


102


are assembled.




The first fuse circuit structure


101


, as illustrated in

FIG. 15

, is made up of a linking plate


104


, a plurality of terminal parts


106




a


and


106




b


, which are coupled through fusible members


105


to the linking plate


104


, a battery terminal


107


extended from one end of the linking plate


104


, and a common terminal part


108


coupled through a fusible member


105




a


to the other end of the linking plate


104


. The first fuse circuit structure


101


is formed by pressing a conductive flat plate member (not shown).




The second fuse circuit structure


102


, as shown in

FIG. 16

, is made up of a linking plate


109


, a plurality of terminal parts


111




a


and


111




b


, which are coupled through fusible members


110


to the linking plate


109


, and a common terminal part


112


extended from the other end of the linking plate


109


. The first fuse circuit structure


101


is formed by pressing a conductive flat plate member (not shown).




As shown in

FIG. 14

, the housing


103


is shaped like a rectangular parallelepiped, and contains a circuit-structure accommodating chamber


114


with an opening


113


open to the upper. The housing further includes a plurality of connector housing portions


115


and a plurality of terminal supports


116


, which are located under the circuit-structure accommodating chamber


114


.




As shown in

FIG. 14

, the first and second fuse circuit structures


101


and


102


are each inserted into the circuit-structure accommodating chamber


114


, through the opening


113


of the housing


103


. In this case, an extending direction of the flat surface of each fuse circuit structure is an insertion direction, and the terminal parts (


106




a


,


106




b


,


111




a


,


111




b


) of the fuse circuit structure are first inserted as an insertion tip part.




When the first and second fuse circuit structures


101


and


102


are completely inserted into the circuit-structure accommodating chamber, the linking plates


104


and


109


of those fuse circuit structures


101


and


102


are located within the circuit-structure accommodating chamber


114


. The terminal parts


106




a


,


106




b


,


111




a


, and


111




b


are set at predetermined positions of the connector housing portions


115


and the terminal supports


116


.




Next, the common terminal parts


108


and


112


of the first and second fuse circuit structures


101


and


102


are fastened together to the housing


103


by means of a bolt


117


. The first and second fuse circuit structures


101


and


102


are electrically connected to each other to thereby form a desired fuse circuit.




The battery terminal


107


is also fastened to the housing


103


by means of a bolt


117




b


. A terminal of a battery cable (not shown) is connected to the battery terminal


107


. Connected to the terminal parts


106




a


and


111




a


in the connector housing portions


115


are the terminals of the counter connectors


118


. LA terminals


119


are connected to the terminal parts


106




b


and


111




b


of the terminal supports


116


by means of screws. The connectors of the counter connector


118


and the LA terminals


119


are connected to loads by way of cables


120


. Power source is distributed from a battery to those loads, through a fuse circuit. When shortcircuiting occurs in any of the loads and overcurrent flows into the related fusible member


105


(


110


), the fuse member burns out by heating to thereby prevent trouble by overcurrent.




In the fusible link unit


100


thus constructed, the first and second fuse circuit structures


101


and


102


, shaped like flat plates, are assembled into the housing


103


to thereby form a unit. Therefore, a fuse circuit containing a number of fusible members (fuses)


105


and


110


may be made considerably compact. In particular, as shown in

FIG. 14

, the first and second fuse circuit structures


101


and


102


may be disposed in a state that those structures are merely spaced a narrow distance W apart from each other. Accordingly, to the fuse circuit extension, what a designer has to do is to slightly increase the housing


103


in the width direction Y, not in the longitudinal direction L.




In the conventional fusible link unit, the first and second fuse circuit structures


101


and


102


are each formed with one flat plate member. Accordingly, current flows always through the linking plates


104


and


109


even if it is fed from any of the terminal parts


106




a


,


111




a


,


106




b


, and


111




b


. Accordingly, a problem arises that temperature of the linking plates


104


and


109


rises by the current flowing therethrough.




To lessen the temperature rise, all one has to do is to increase the areas of the linking plates


104


and


109


. However, to make the housing


103


compact, it is desirable to minimize the external dimensions of the first and second fuse circuit structures


101


and


102


. Accordingly, it is preferable to avoid increasing the external dimensions of the first and second fuse circuit structures


101


and


102


.




SUMMARY OF THE INVENTION




Accordingly, an object of the present invention is to provide a fusible link unit which can reliably suppress the temperature rise of the fuse circuit structures with little increasing of the external dimensions of the fuse circuit structures.




According to the present invention, there is provided a fusible link unit comprising:




a fuse circuit structure including a plurality of terminal parts linked through fusible members to a linking plate, and




a housing into which the fuse circuit structure is assembled,




wherein the fuse circuit structure is formed by laminating a plurality of part plates,




a first part plate includes a first linking portion constituting the linking plate by being laminted by a second linking portion of a second part plate, and




a respective part of the plurality of terminal parts which are connected to the linking plate with a respecitve part of the fusible members are provided with the first part plate.




In the fusible link unit thus constructed, current flowing through the linking plate of the fuse circuit structure branches into plural current paths to thereby suppress heat generation by the current flow.




In a preferred embodiment of the invention, the terminal parts with the fusible members connected thereto and the terminal parts, which are shared by the part plates, are substantially equal in number.




In the embodiment having the advantage mentioned above, current branches into the linking portions of the part plates at almost equal ratios.




In another embodiment, two part plates are used.




The fusible link unit of the embodiment has advantages comparable with those mentioned above.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view showing a fusible link unit, which is an embodiment of the invention.





FIG. 2

is an exploded, perspective view showing the fusible link unit.





FIG. 3

is a plan view showing the fusible link unit.





FIG. 4

is a front view showing the fusible link unit.





FIG. 5

is a cross sectional view taken on line A—A in FIG.


3


.





FIG. 6

is a cross sectional view taken on line B—B in FIG.


3


.





FIG. 7

is a cross sectional view taken on line D—D in FIG.


3


.





FIG. 8

is a front view showing a first fuse circuit structure of the fusible link unit.




FIGS.


9


(


a


) and


9


(


b


) are front views showing part plates forming the first fuse circuit structure of the fusible link unit.





FIG. 10

is a front view showing a second fuse circuit structure of the fusible link unit.




FIGS.


11


(


a


) and


11


(


b


) are front views showing part plates forming the second fuse circuit structure of the fusible link unit.





FIG. 12

is a cross sectional view taken on line F—F in FIG.


10


.





FIG. 13

is a circuit diagram showing a fuse circuit formed by the first and second fuse circuit structures.





FIG. 14

is an exploded, perspective view showing a conventional fusible link unit.





FIG. 15

is a front view showing a first fuse circuit structure of the conventional fusible link unit.





FIG. 16

is a front view showing a second fuse circuit structure of the conventional fusible link unit.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




The preferred embodiment of the present invention will be described with reference to the accompanying drawings.





FIGS. 1 through 14

show the embodiment of the invention. Of those figures,

FIG. 1

is a perspective view showing a chained type large current fusible link unit.

FIG. 2

is an exploded, perspective view showing the fusible link unit.

FIG. 3

is a plan view showing the fusible link unit.

FIG. 4

is a front view showing the fusible link unit.

FIG. 5

is a cross sectional view taken on line A—A in FIG.


3


.

FIG. 6

is a cross sectional view taken on line B—B in FIG.


3


.

FIG. 7

is a cross sectional view taken on line D—D in FIG.


3


.

FIG. 8

is a front view showing a first fuse circuit structure of the fusible link unit. FIGS.


9


(


a


) and


9


(


b


) are front views showing part plates forming the first fuse circuit structure of the fusible link unit.

FIG. 10

is a front view showing a second fuse circuit structure of the fusible link unit. FIGS.


11


(


a


) and


11


(


b


) are front views showing part plates forming the second fuse circuit structure of the fusible link unit.

FIG. 12

is a cross sectional view taken on line F—F in FIG.


10


.

FIG. 13

is a circuit diagram showing a fuse circuit formed by the first and second fuse circuit structures.




As shown in

FIGS. 1 through 8

, a fusible link unit


1


is generally made up of a first fuse circuit structure


2


as a bus bar, a second fuse circuit structure


3


also as a bus bar, and a housing


4


which is made of synthetic resin, and into which the first and second fuse circuit structures


2


and


3


are assembled and disposed while being spaced from each other by a predetermined distance.




The first fuse circuit structure


2


, as shown in detail in

FIG. 8

, is made up of a narrow, cuboid linking plate


5


, a plurality of female terminal parts


7


chain-coupled through fusible members


6


to the linking plate


5


in a short side direction of the linking plate


5


, a plurality of screw fixing terminal parts


8


chain-coupled through fusible members


6


to the linking plate


5


in a width side direction of the linking plate


5


, a battery terminal (screw fixing terminal part)


9


coupled to the linking plate


5


directly or not through the fusible member in the width direction of the linking plate


5


, and an insert lock part


11


coupled to the linking plate


5


through a fusible member


10


in the longitudinal direction of the linking plate


5


. The first fuse circuit structure


101


is formed by pressing a conductive plane plate (not shown).




Each fusible member


6


is narrow and shaped like a crank, and a low melting point metal is fastened to a mid part of the crank-shaped fusible member by caulking. When current of a predetermined value or larger flows into the fusible member, the fusible member burns out. The fusible member


10


is long, and straight in shape or takes a shape of S or V. The fusible members


6


which are located between the linking plate


5


and the screw fixing terminal parts


8


are arranged on a plane, not inclined with respect to the palne direction of the linking plate


5


.




A plurality of female terminal parts


7


are grouped and the female terminal parts of each group are arranged side by side in a chained manner. A plurality of screw fixing terminal parts


8


are also grouped and arranged in a similar manner. A part of the insert lock part


11


is bent in the vertical direction to form a common terminal part


12


.




The second fuse circuit structure


3


, as shown in

FIG. 10

, is made up of a narrow, rectangular linking plate


13


, a plurality of female terminal parts


15


chain-coupled through fusible members


14


to the linking plate


13


in a width direction of the linking plate


13


, a plurality of screw fixing terminal parts


16


chain-coupled through fusible members


14


to the linking plate


13


in a width direction of the linking plate


13


, and an insert lock part


17


extending in a longitudinal direction of the linking plate


13


. The second fuse circuit structure


3


is formed by pressing a conductive plane plate (not shown).




Each fusible member


14


, like fusible member


6


of the first fuse circuit structure


2


, is narrow and shaped like a crank, and a low melting point metal is fastened to a mid part of the crank-shaped fusible member by caulking. When current of a predetermined value or larger flows into the fusible member, the fusible member burns out. As shown in

FIGS. 7 and 12

, the fusible members


14


which are located between the linking plate


13


and the screw fixing terminal parts


16


, like those of the first fuse circuit structure


2


, are arranged on a plane, not inclined with respect to the plane direction Z of the linking plate


5


,




A plurality of female terminal parts


15


, like those of the first fuse circuit structure


2


, are grouped and the female terminal parts of each group are arranged side by side in a chained manner. A plurality of screw fixing terminal parts


16


are also grouped and arranged in a similar manner. A part of the insert lock part


17


is bent in the vertical direction to form a common terminal part


18


, as in the case of the first fuse circuit structure


2


. The common terminal parts


12


and


18


of the first and second fuse circuit structures


2


and


3


, when mounted on the housing


4


, are made coherent to each other, together with a bolt


19


. Both the common terminal parts


12


and


18


form an alternator terminal.




The first fuse circuit structure


2


is formed by joining together a first part plate


2




a


(FIG.


9


(


a


)) and a second part plate


2




b


(FIG.


9


(


b


). The second fuse circuit structure


3


is likewise formed by joining together a first part plate


3




a


(FIG.


11


(


a


)) and a second part plate


3




b


(FIG.


11


(


b


). The first part plate


2




a


(


3




a


) is formed with a linking portion


21




a


(


22




a


) forming the linking plate


5


, the fusible members


6


,


10


(


14


), and the terminal parts


7


,


8


(


15


,


16


) and the like, which are located in the right area of the linking plate


5


. The second part plate


2




b


(


3




b


) is formed with a linking portion


21




b


(


22




b


) forming the linking plate


13


, the fusible members


6


, (


14


), and the terminal parts


7


,


8


(


15


,


16


) and the like, which are located in the left area of the linking plate


13


. Specifically, the linking plate


5


(


13


) of the first fuse circuit structure


2


(


3


) is formed by laminating the two part plates


2




a


and


2




b


(


3




a


,


3




b


). The remaining parts are each formed with a single part plate, which is one of those part plates


2




a


,


3




b


,


3




a


and


3




b.






As shown in

FIGS. 1

to


8


, the housing


4


is shaped like a rectangular parallelepiped, and contains a circuit-structure accommodating chamber


26


with an opening


25


open to the upper. The housing further includes a plurality of connector housing portions


27


and a plurality of terminal supports


28


, which are located under the circuit-structure accommodating chamber


26


. A transparent cover is attached to the top of the housing


4


to thereby close the opening


25


.




Next, an assembling process of the fusible link unit


1


will be briefly described below. As shown in

FIG. 2

, the first and second fuse circuit structures


2


and


3


are each inserted into the circuit-structure accommodating chamber


26


, through the opening


25


of the housing


4


. In this case, an extending direction Z of the flat surface of each of the first and second fuse circuit structures


2


and


3


is an insertion direction, and the female terminal parts


7


,


15


and the like of the fuse circuit structure are first inserted as an insertion tip part.




When the first and second fuse circuit structures


2


and


3


are completely inserted into the circuit-structure accommodating chamber


26


through the opening


25


of the housing


4


, while being spaced a predetermined distance apart from each other, the linking plates


5


and


13


of those fuse circuit structures


2


and


3


are located within the circuit-structure accommodating chamber


26


, as shown in

FIGS. 5

to


8


. The terminal parts


6


,


7


,


15


and


16


are set at predetermined positions in the connector housing portions


27


and of the terminal supports


28


.




The common terminal parts


12


and


18


of the first and second fuse circuit structures


2


and


3


, together with a bolt


19


, are made coherent to one another. Both the common terminal parts


12


and


18


form an alternator terminal. The first and second fuse circuit structures


2


and


3


are electrically connected through the common terminal parts


12


and


18


, whereby a fuse circuit shown in

FIG. 13

is formed.




Next, the terminal (not shown) for the battery cable is connected to the battery terminal


9


, and LA terminals (none of them are shown) for the alternator cable are connected to the alternator terminal


20


by means of the bolt


19


and a nut. Connected to the female terminal parts


7


and


15


in the connector housing portions


27


are male terminals (not shown) of the counter connector. The LA (circular) terminals


30


are connected to the screw fixing terminal parts


8


and


16


of the terminal supports


28


by means of nut members


29


and screws. The male terminals and the LA terminals


30


of the counter connector are connected to related loads by way of a cable


31


.




Power source that is supplied from a battery or an alternator is distributed to the loads by way of the fuse circuit of the fusible link unit


1


. When the output electric power of the battery decreases to a predetermined level of electric power, the alternator supplies electric power source to the battery to thereby charge the battery.




When shortcircuiting, for example, occurs in any of the loads and overcurrent flows into the related fusible member


6


(


10


,


14


), which in turn burns out by heating, to thereby prevent the trouble by overcurrent. In the maintenance and inspection of the fusible link unit


1


, the service man looks into the housing


4


through the opening


25


to check the status of the fusible members


6


,


10


,


14


(if a fusible member or members having burnt out are present).




In distributing electric power to the loads through the first and second fuse circuit structures


2


and


3


, current flowing through the linking plates


5


and


13


of the first and second fuse circuit structures


2


and


3


flows through the linking portions


21




a


,


22




a


,


21




b


,


22




b


of the different part plates


2




a


,


3




a


,


2




b


,


3




b


by the female terminal parts


7


and


15


, and the screw fixing terminal parts


8


and


16


, as shown in FIGS.


9


(


a


),


9


(


b


),


11


(


a


), and


11


(


b


). Accordingly, the current flowing through the linking plates


5


and


13


of the first and second fuse circuit structures


2


and


3


branches off into plural current flows, thereby lessening heat generation. Accordingly, the fusible link unit which can reliably suppress the temperature rise of the fuse circuit structures with little increasing of the external dimensions of the first and second fuse circuit structures


2


and


3


.




The female terminal parts


7


(


15


) with the fusible members


6


(


14


) connected thereto and the screw fixing terminal parts


8


(


16


), which are shared by the part plates


2




a


,


3




a


,


2




b


and


3




b


, are substantially equal in number. Accordingly, current branches into the linking portions


21




a


,


22




a


,


21




b


,


22




b


of the part plates


2




a


,


3




a


,


2




b


,


3




b


at almost equal ratios. As a result, the part plates


2




a


,


3




a


,


2




b


and


3




b


effectively suppress the temperature rise.




In the embodiment, the first and second fuse circuit structures


2


and


3


are each formed by laminating two part plates


2




a


,


3




a


,


2




b


,


3




b


. If required, three or more part plates may be laminated for the formation of the fuse circuit structure.




In the embodiment mentioned above, the fuse circuit is constructed with two fuse circuit structures, i.e., the first and second fuse circuit structures


2


and


3


. It is readily understood that the invention may be applied to a fusible link unit where the fuse circuit is constructed with a single fuse circuit structure or three or more fuse circuit structures.




As seen from the foregoing description, in the invention, a plurality of part plates include linking portions corresponding to the linking plates and the terminal parts with the fusible members connected thereto, which are shared by the part plates. Current flowing through the linking plate of the fuse circuit structure branches into plural current paths to thereby suppress heat generation by the current flow. Accordingly, the fusible link unit can reliably suppress the temperature rise of the fuse circuit structures with little increasing of the external dimensions of the fuse circuit structures.




In a preferred embodiment, current branches into the linking portions of the part plates at almost equal ratios. Therefore, the embodiment effectively suppresses the temperature rise.




Another embodiment of the invention uses two part plates, and hence has advantages comparable with those mentioned above.



Claims
  • 1. A fusible link unit comprising:a fuse circuit structure including a plurality of terminal parts linked through fusible members to a linking plate, and a housing into which the fuse circuit structure is assembled, wherein the fuse circuit structure is formed by laminating a plurality of part plates, a first part plate includes a first linking portion constituting the linking plate by being laminated by a second linking portion of a second part plate, and a respective part of the plurality of terminal parts which are connected to the linking plate with a respective part of the fusible members are provided with the first part plate.
  • 2. A fusible link unit according to claim 1, wherein the first part plate and the second part plate have substantially identical number of the terminal parts to each other.
  • 3. A fusible link unit according to claim 1, wherein the number of the part plates is two.
Priority Claims (1)
Number Date Country Kind
P2002-289614 Oct 2002 JP
US Referenced Citations (18)
Number Name Date Kind
2934627 Bristol et al. Apr 1960 A
4842534 Mobley et al. Jun 1989 A
5088940 Saito Feb 1992 A
5438310 Ikari Aug 1995 A
5474475 Yamaguchi Dec 1995 A
5476395 Raffles et al. Dec 1995 A
5643693 Hill et al. Jul 1997 A
5795193 Yang Aug 1998 A
5977859 Kawamura et al. Nov 1999 A
6007350 Isshiki Dec 1999 A
6178106 Umemoto et al. Jan 2001 B1
6294978 Endo et al. Sep 2001 B1
6322376 Jetton Nov 2001 B1
6402569 Spadoni et al. Jun 2002 B1
6494722 Sakamoto et al. Dec 2002 B1
6506060 Sumida et al. Jan 2003 B2
6558198 Kobayashi et al. May 2003 B2
20020167390 Matsumura et al. Nov 2002 A1
Foreign Referenced Citations (2)
Number Date Country
10-199395 Jul 1998 JP
2000133114 May 2000 JP