This invention relates generally to fuses, and, more particularly, to fused disconnect switches.
Fuses are widely used as overcurrent protection devices to prevent costly damage to electrical circuits. Fuse terminals typically form an electrical connection between an electrical power source and an electrical component or a combination of components arranged in an electrical circuit. One or more fusible links or elements, or a fuse element assembly, is connected between the fuse terminals, so that when electrical current through the fuse exceeds a predetermined limit, the fusible elements melt and opens one or more circuits through the fuse to prevent electrical component damage.
In some applications, fuses are employed not only to provide fused electrical connections but also for connection and disconnection, or switching, purposes to complete or break an electrical connection or connections. As such, an electrical circuit is completed or broken through conductive portions of the fuse, thereby energizing or de-energizing the associated circuitry. Typically, the fuse is housed in a fuse holder having terminals that are electrically coupled to desired circuitry. When conductive portions of the fuse, such as fuse blades, terminals, or ferrules, are engaged to the fuse holder terminals, an electrical circuit is completed through the fuse, and when conductive portions of the fuse are disengaged from the fuse holder terminals, the electrical circuit through the fuse is broken. Therefore, by inserting and removing the fuse to and from the fuse holder terminals, a fused disconnect switch is realized.
Known fused disconnects are subject to a number of problems in use. For example, any attempt to remove the fuse while the fuses are energized and under load may result in hazardous conditions because dangerous arcing may occur between the fuses and the fuse holder terminals. Some fuseholders designed to accommodate, for example, UL (Underwriters Laboratories) Class CC fuses and IEC (International Electrotechnical Commission) 10×38 fuses that are commonly used in industrial control devices include permanently mounted auxiliary contacts and associated rotary cams and switches to provide early-break and late-make voltage and current connections through the fuses when the fuses are pulled from fuse clips in a protective housing. One or more fuses may be pulled from the fuse clips, for example, by removing a drawer from the protective housing. Early-break and late-make connections are commonly employed, for example, in motor control applications. While early-break and late-make connections may increase the safety of such devices to users when installing and removing fuses, such features increase costs, complicate assembly of the fuseholder, and are undesirable for switching purposes.
Structurally, the early-break and late-make connections can be intricate and may not withstand repeated use for switching purposes. In addition, when opening and closing the drawer to disconnect or reconnect circuitry, the drawer may be inadvertently left in a partly opened or partly closed position. In either case, the fuses in the drawer may not be completely engaged to the fuse terminals, thereby compromising the electrical connection and rendering the fuseholder susceptible to unintended opening and closing of the circuit. Especially in environments subject to vibration, the fuses may be jarred loose from the clips. Still further, a partially opened drawer protruding from the fuseholder may interfere with workspace around the fuseholder. Workers may unintentionally bump into the opened drawers, and perhaps unintentionally close the drawer and re-energize the circuit.
Additionally, in certain systems, such as industrial control devices, electrical equipment has become standardized in size and shape, and because known fused disconnect switches tend to vary in size and shape from the standard norms, they are not necessarily compatible with power distribution panels utilized with such equipment. For at least the above reasons, use of fused disconnect switches have not completely met the needs of certain end applications.
In the illustrative embodiment of
The housing 104 may be fabricated from an insulative or nonconductive material, such as plastic, according to known methods and techniques, including but not limited to injection molding techniques. In an exemplary embodiment, the housing 104 is formed into a generally rectangular size and shape which is complementary to and compatible with DIN and IEC standards applicable to standardized electrical equipment. In particular, for example, each housing 104 has lower edge 112, opposite side edges 114, side panels 116 extending between the side edges 114, and an upper surface 118 extending between the side edges 114 and the side panels 116. The lower edge 112 has a length L and the side edges 114 have a thickness T, such as 17.5 mm in one embodiment, and the length L and thickness T define an area or footprint on the lower edge 112 of the housing 104. The footprint allows the lower edge 112 to be inserted into a standardized opening having a complementary shape and dimension. Additionally, the side edges 114 of the housing 104 have a height H in accordance with known standards, and the side edges 114 include slots 120 extending therethrough for ventilating the housing 104. The upper surface 118 of the housing 104 may be contoured to include a raised central portion 122 and recessed end portions 124 extending to the side edges 114 of the housing 104.
The fuse 106 of each module 102 may be loaded vertically in the housing 104 through an opening in the upper surface 118 of the housing 104, and the fuse 106 may extend partly through the raised central portion 122 of the upper surface 118. The fuse cover 108 extends over the exposed portion of the fuse 106 extending from the housing 104, and the cover 108 secures the fuse 106 to the housing 104 in each module 102. In an exemplary embodiment, the cover 108 may be fabricated from a non-conductive material, such as plastic, and may be formed with a generally flat or planar end section 126 and elongated fingers 128 extending between the upper surface 118 of the raised central portion 122 of the housing 104 and the end of the fuse 106. Openings are provided in between adjacent fingers 128 to ventilate the end of the fuse 106.
In an exemplary embodiment, the cover 108 further includes rim sections 130 joining the fingers 128 opposite the end section 126 of the cover 108, and the rim sections 130 secure the cover 108 to the housing 104. In an exemplary embodiment, the rim sections 130 cooperate with grooves in the housing 104 such that the cover 108 may rotate a predetermined amount, such as 25 degrees, between a locked position and a release position. That is, once the fuse 106 is inserted into the housing 104, the fuse cover 108 may be installed over the end of the fuse 106 into the groove of the housing 104, and the cover 108 may be rotated 25 degrees to the locked position wherein the cover 108 will frustrate removal of the fuse 106 from the housing 104. The groove may also be ramped or inclined such that the cover 108 applies a slight downward force on the fuse 106 as the cover 108 is installed. To remove the fuse 106, the cover 108 may be rotated from the locked position to the open position wherein both the cover 108 and the fuse 106 may be removed from the housing 104.
The switch actuator 110 may be located in an aperture 132 of the raised upper surface 122 of the housing 104, and the switch actuator 110 may partly extend through the raised upper surface 122 of the housing 104. The switch actuator 110 may be rotatably mounted to the housing 104 on a shaft or axle 134 within the housing 104, and the switch actuator 110 may include a lever, handles or bar 136 extending radially from the switch actuator 110. By moving the lever 136 from a first edge 138 to a second edge 140 of the aperture 132, the shaft 134 rotates to an open or switch position and electrically disconnects the fuse 106 in each module 102 as explained below. When the lever 136 is moved from the second edge 140 to the first edge 138, the shaft 134 rotates back to the closed position illustrated in
A line side terminal element may 142 extend from the lower edge 112 of the housing 104 in each module 102 for establishing line and load connections to circuitry. As shown in
A lower conductive fuse terminal 156 may be located in a bottom portion of the fuse compartment 150 and may be U-shaped in one embodiment. One of the end caps 154 of the fuse 106 rests upon an upper leg 158 of the lower fuse terminal 156, and the other end cap 154 of the fuse 106 is coupled to an upper terminal 160 located in the housing 104 adjacent the fuse compartment 150. The upper terminal 160 is, in turn, connected to a load side terminal 162 to accept a load side connection to the disconnect module 102 in a known manner. The load side terminal 162 in one embodiment is a known saddle screw terminal, although it is appreciated that other types of terminals could be employed for load side connections to the module 102. Additionally, the lower fuse terminal 156 may include fuse rejection features in a further embodiment which prevent installation of incorrect fuse types into the module 102.
The switch actuator 110 may be located in an actuator compartment 164 within the housing 104 and may include the shaft 134, a rounded body 166 extending generally radially from the shaft 134, the lever 136 extending from the body 166, and an actuator link 168 coupled to the actuator body 166. The actuator link 168 may be connected to a spring loaded contact assembly 170 including first and second movable or switchable contacts 172 and 174 coupled to a sliding bar 176. In the closed position illustrated in
While in an exemplary embodiment the stationary contact 178 is mounted to a terminal 142 having a bus bar clip, another terminal element, such as a known box lug or clamp terminal could be provided in a compartment 182 in the housing 104 in lieu of the bus bar clip. Thus, the module 102 may be used with a hard-wired connection to line-side circuitry instead of a line input bus. Thus, the module 102 is readily convertible to different mounting options in the field.
When the switch actuator 110 is rotated about the shaft 134 in the direction of arrow A, the siding bar 176 may be moved linearly upward in the direction of arrow B to disengage the switchable contacts 172 and 174 from the stationary contacts 178 and 180. The lower fuse terminal 156 is then disconnected from the line-side terminal element while the fuse 106 remains electrically connected to the lower fuse terminal 156 and to the load side terminal 162. An arc chute compartment 184 may be formed in the housing 104 beneath the switchable contacts 172 and 174, and the arc chute may provide a space to contain and dissipate arcing energy as the switchable contacts 172 and 174 are disconnected. Arcing is broken at two locations at each of the contacts 172 and 174, thus reducing arc intensity, and arcing is contained within the lower portions of the housing 104 and away from the upper surface 118 and the hands of a user when manipulating the switch actuator 110 to disconnect the fuse 106 from the line side terminal 142.
The housing 104 additionally may include a locking ring 186 which may be used cooperatively with a retention aperture 188 in the switch actuator body 166 to secure the switch actuator 110 in one of the closed position shown in
A bias element 200 may be provided beneath the sliding bar 176 and may force the sliding bar 176 upward in the direction of arrow B to a fully opened position separating the contacts 172, 174 and 178, 180 from one another. Thus, as the actuator body 166 is rotated in the direction of arrow A, the actuator link 168 is moved past a point of equilibrium and the bias element 200 assists in opening of the contacts 172, 174 and 178, 180. The bias element 200 therefore prevents partial opening of the contacts 172, 174 and 178, 180 and ensures a full separation of the contacts to securely break the circuit through the module 102.
Additionally, when the actuator lever 136 is pulled back in the direction of arrow C to the closed position shown in
In one exemplary embodiment, and as illustrated in
The lever 136, when moved between the opened and closed positions of the switch actuator, does not interfere with workspace around the disconnect module 102, and the lever 136 is unlikely to be inadvertently returned to the closed position from the open position. In the closed position shown in
When the modules 102 are ganged together to form a multi-pole device, such as the device 100, one lever 136 may be extended through and connect to multiple switch actuators 110 for different modules. Thus, all the connected modules 102 may be disconnected and reconnected by manipulating a single lever 136. That is, multiple poles in the device 100 may be switched simultaneously. Alternatively, the switch actuators 110 of each module 102 in the device 100 may be actuated independently with separate levers 136 for each module.
Like the module 102, the module 220 may include the fuse 106, the fuse cover 108 and the switch actuator 110. Switching of the module is accomplished with switchable contacts as described above in relation to the module 102.
Unlike the modules 102 and 220, the module 250 may include a housing 252 configured or adapted to receive a rectangular fuse module 254 instead of a cartridge fuse 106. The fuse module 254 is a known assembly including a rectangular housing 256, and terminal blades 258 extending from the housing 256. A fuse element or fuse assembly may be located within the housing 256 and is electrically connected between the terminal blades 258. Such fuse modules 254 are known and in one embodiment are CubeFuse modules commercially available from Cooper/Bussmann of St. Louis, Mo.
A line side fuse clip 260 may be situated within the housing 252 and may receive one of the terminal blades 258 of the fuse module 254. A load side fuse clip 262 may also be situated within the housing 252 and may receive the other of the fuse terminal blades 258. The line side fuse clip 260 may be electrically connected to the stationary contact 180. The load side fuse clip 262 may be electrically connected to the load side terminal 162. The line side terminal 142 may include the stationary contact 178, and switching may be accomplished by rotating the switch actuator 110 to engage and disengage the switchable contacts 172 and 174 with the respective stationary contacts 178 and 180 as described above. While the line terminal 142 is illustrated as a bus bar clip, it is recognized that other line terminals may be utilized in other embodiments, and the load side terminal 162 may likewise be another type of terminal in lieu of the illustrated saddle screw terminal in another embodiment.
The fuse module 254 may be plugged into the fuse clips 260, 262 or extracted therefrom to install or remove the fuse module 254 from the housing 252. For switching purposes, however, the circuit is connected and disconnected at the contacts 172, 174, 178 and 180 rather than at the fuse clips 260 and 262. Arcing between the disconnected contacts may therefore contained in an arc chute or compartment 270 at the lower portion of the compartment and away from the fuse clips 260 and 262. By opening the disconnect module 250 with the switch actuator 110 before installing or removing the fuse module 254, any risk posed by electrical arcing or energized metal at the fuse and housing interface is eliminated. The disconnect module 250 is therefore believed to be safer to use than many known fused disconnect switches.
A plurality of modules 250 may be ganged or otherwise connected together to form a multi-pole device. The poles of the device could be actuated with a single lever 136 or independently operable with different levers.
The housing 302 may also include connection openings 306 and access openings 308 in each side edge 310 which may receive a wire connection and a tool, respectively, to establish line and load connections to the fuses 106. A single switch actuator 110 may be rotated to connect and disconnect the circuit through the fuses between line and load terminals of the disconnect device 300.
Retention bars 328 may also be provided on the shaft 134 which extend to the fuses 106 and engage the fuses in an interlocking manner to prevent the fuses 106 from being removed from the device 300 except when the switch actuator 110 is in the open position. In the open position, the retention bars 328 may be angled away from the fuses 106 and the fuses may be freely removed. In the closed position, as shown in
A DIN rail mounting slot 418 may be formed in a lower edge 420 of the housing 412, and the DIN rail mounting slot 418 may be dimensioned, for example, for snap-fit engagement and disengagement with a 35 mm DIN rail by hand and without a need of tools. The housing 412 may also include openings 422 that may be used to gang the module 410 to other disconnect modules as explained below. Side edges 424 of the housing 412 may be open ended to provide access to wire lug terminals 426 to establish line and load-side electrical connections external circuitry. Terminal access openings 428 may be provided in recessed upper surfaces 430 of the housing 412. A stripped wire, for example, may be extended through the sides of the wire lug terminals 426 and a screwdriver may be inserted through the access openings 428 to tighten a terminal screw to clamp the wires to the terminals 426 and connect line and load circuitry to the module 410. While wire lug terminals 426 are included in one embodiment, it is recognized that a variety of alternative terminal configurations or types may be utilized in other embodiments to establish line and load side electrical connections to the module 410 via wires, cables, bus bars etc.
Like the foregoing embodiments, the housing 412 is sized and dimensioned complementary to and compatible with DIN and IEC standards, and the housing 412 defines an area or footprint on the lower edge 420 for use with standardized openings having a complementary shape and dimension. By way of example only, the housing 412 of the single pole module 410 may have a thickness T of about 17.5 mm for a breaking capacity of up to 32 A; 26 mm for a breaking capacity of up 50 A; 34 mm for a breaking capacity of up to 125 A; and 40 mm for a breaking capacity of up to 150 A per DIN Standard 43 880. Likewise, it is understood that the module 410 could be fabricated as a multiple pole device such as a three pole device having a dimension T of about 45mm for a breaking capacity of up to 32 A; 55 mm for a breaking capacity of up to 50 A; and 75 mm for a breaking capacity of up to 125 A. While exemplary dimensions are provided, it is understood that other dimensions of greater or lesser values may likewise be employed in alternative embodiments of the invention.
Additionally, and as illustrated in
Additionally, the housing 412 may also include horizontally extending ribs or shelves 434 spaced from one another and interconnecting the innermost flanges 432 in a lower portion of the housing side edges 424. The ribs or shelves 434 increase a surface area path length between the terminals 426 in a vertical plane of the housing 412 to meet external requirements for spacing between the terminals 426. The flanges 432 and ribs 434 result in serpentine-shaped surface areas in horizontal and vertical planes of the housing 412 that permit greater voltage ratings of the device without increasing the footprint of the module 410 in comparison, for example, to the previously described embodiments of
The cover 416, unlike the above-described embodiments, may include a substantially flat cover portion 436, and an upstanding finger grip portion 438 projecting upwardly and outwardly from one end of the flat cover portion 436 and facing the switch actuator 414. The cover may be fabricated from a nonconductive material or insulative material such as plastic according to known techniques, and the flat cover portion 436 may be hinged at an end thereof opposite the finger grip portion 438 so that the cover portion 436 is pivotal about the hinge. By virtue of the hinge, the finger grip portion 438 is movable away from the switch actuator along an arcuate path as further explained below. As illustrated in
A cover lockout tab 444 extends radially outwardly from a cylindrical body 446 of the switch actuator 414, and when the switch actuator 414 is in the closed position illustrated in
A conductive path through the housing 412 and fuse 442 is established as follows. A rigid terminal member 458 is extended from the load side terminal 426 closest to the fuse 442 on one side of the housing 412. A flexible contact member 460, such as a wire may be connected to the terminal member 458 at one end and attached to an inner surface of the cover 416 at the opposite end. When the cover 416 is closed, the contact member 460 is brought into mechanical and electrical engagement with an upper ferrule or end cap 462 of the fuse 442. A movable lower fuse terminal 464 is mechanically and electrically connected to the lower fuse ferrule or end cap 466, and a flexible contact member 468 interconnects the movable lower fuse terminal 464 to a stationary terminal 470 that carries one of the stationary contacts 452. The switchable contacts 450 interconnect the stationary contacts 452 when the switch actuator 414 is closed as shown in
The fuse 442 in different exemplary embodiments may be a commercially available 10×38 Midget fuse of Cooper/Bussmann of St. Louis, Mo.; an IEC 10×38 fuse; a class CC fuse; or a D/DO European style fuse. Additionally, and as desired, optional fuse rejection features may be formed in the lower fuse terminal 464 or elsewhere in the module, and cooperate with fuse rejection features of the fuses so that only certain types of fuses may be properly installed in the module 410. While certain examples of fuses are herein described, it is understood that other types and configurations of fuses may also be employed in alternative embodiments, including but not limited to various types of cylindrical or cartridge fuses and rectangular fuse modules.
A biasing element 474 may be provided between the movable lower fuse terminal 464 and the stationary terminal 470. The bias element 474 may be for example, a helical coil spring that is compressed to provide an upward biasing force in the direction of arrow G to ensure mechanical and electrical engagement of the movable lower fuse terminal 464 to the lower fuse ferrule 466 and mechanical and electrical engagement between the upper fuse ferrule 462 and the flexible contact member 460. When the cover 416 is opened in the direction of arrow E to the open position, the bias element 474 forces the fuse upward along its axis 441 in the direction of arrow G as shown in
The bias element 474 deflects when the cover 416 is opened after the actuator 414 is moved to the open position, and the bias element 474 lifts the fuse 442 from the housing 412 so that the upper fuse ferrule 462 is extended above the top surface 415 of the housing. In such a position, the fuse 442 may be easily grasped and pulled out of or extracted from the module 410 along the axis 441. Fuses may therefore be easily removed from the module 410 for replacement.
Also when the actuator 414 is moved to the open position, an actuator lockout tab 476 extends radially outwardly from the switch actuator body 446 and may accept for example, a padlock to prevent inadvertent closure of the actuator 414 in the direction of arrow H that would otherwise cause the slider bar 456 to move downward in the direction of arrow I along the axis 475 and engage the switchable contacts 450 to the stationary contacts 452, again completing the electrical connection to the fuse 442 and presenting a safety hazard to operators. When desired, the cover 416 may be rotated back about the hinge 448 to the closed position shown in Figures 12 and 13, and the switch actuator 414 may be rotated in the direction of arrow H to move the cover lockout tab 444 into engagement with the actuator interlock 443 of the cover 416 to maintain each of the cover 416 and the actuator 414 in static equilibrium in a closed and locked position. Closure of the cover 416 requires some force to overcome the resistance of the bias spring 474 in the fuse receptacle 437, and movement of the actuator to the closed position requires some force to overcome the resistance of a bias element 478 associated with the sliding bar 456, making inadvertent closure of the contacts and completion of the circuit through the module 410 much less likely.
While single pole modules 410 ganged to one another to form multiple pole devices has been described, it is understood that a multiple pole device having the features of the module 410 could be constructed in a single housing with appropriate modification of the embodiment shown in
Similar to the module 410, the module 500 may include a DIN rail mounting slot 512 formed in a lower edge 514 of the housing 502 for mounting of the housing 502 without a need of tools. The housing 502 may also include an actuator opening 515 providing access to the body of the switch actuator 504 so that the actuator 504 may be rotated between the open and closed positions in an automated manner and facilitate remote control of the module 500. Openings 516 are also provided that may be used to gang the module 500 to other disconnect modules. A curved or arcuate tripping guide slot 517 is also formed in a front panel of the housing 502. A slidable tripping mechanism, described below, is selectively positionable within the slot 517 to trip the module 500 and disconnect the current path therethrough upon an occurrence of predetermined circuit conditions. The slot 517 also provides access to the tripping mechanism for manual tripping of the mechanism with a tool, or to facilitate remote tripping capability.
Side edges 518 of the housing 502 may be open ended to provide access to line and load side wire lug terminals 520 to establish line and load-side electrical connections to the module 500, although it is understood that other types of terminals may be used. Terminal access openings 522 may be provided in recessed upper surfaces 524 of the housing 502 to receive a stripped wire or other conductor extended through the sides of the wire lug terminals 520, and a screwdriver may be inserted through the access openings 522 to connect line and load circuitry to the module 500. Like the foregoing embodiments, the housing 502 is sized and dimensioned complementary to and compatible with DIN and IEC standards, and the housing 502 defines an area or footprint on the lower surface 514 of the housing for use with standardized openings having a complementary shape and dimension.
Like the module 410 described above, the side edges 518 of the housing 502 may include opposed pairs of vertically oriented flanges or wings 526 spaced from one another and projecting away from the wire lug terminals 520 adjacent the housing upper surface 524 and the sides of the wire lug terminals 520. The housing 502 may also include horizontally extending ribs or shelves 528 spaced from one another and interconnecting the innermost flanges 526 in a lower portion of the housing side edges 518. The flanges 526 and ribs 528 result in serpentine-shaped surface areas in horizontal and vertical planes of the housing 502 that permit greater voltage ratings of the device without increasing the footprint of the module 500 as explained above.
The cover 508, unlike the above-described embodiments, may include a contoured outer surface defining a peak 530 and a concave section 532 sloping downwardly from the peak 530 and facing the switch actuator 504. The peak 530 and the concave section 532 form a finger cradle area on the surface of the cover 508 and is suitable for example, to serve as a thumb rest for an operator to open or close the cover 508. The cover 508 may be hinged at an end thereof closest to the peak 530 so that the cover 508 is pivotal about the hinge and the cover 508 is movable away from the switch actuator 504 along an arcuate path. As illustrated in
The wire lug terminals 520 and terminal screws 440 are positioned adjacent the side edges 518 of the housing 502. The fuse 442 is vertically loaded into the housing 502 beneath the cover 508, and the fuse 442 is situated in the non-movable fuse receptacle 437 formed in the housing 502. The cover 508 may be formed with a conductive contact member that may be, for example, cup-shaped to receive the upper fuse ferrule 462 when the cover 508 is closed.
A conductive circuit path is established from the line side terminal 520 and the terminal member 472, through the switch contacts 450 and 452 to the terminal member 470. From the terminal member 470, current flows through the contact member 468 to the lower fuse terminal 464 and through the fuse 442. After flowing through the fuse 442, current flows from the conductive contact member 542 of the cover 508 to the contact member 460 connected to the conductive contact member 542, and from the contact member 460 to the terminal member 458 and to the line side terminal 520.
A biasing element 474 may be provided between the movable lower fuse terminal 464 and the stationary terminal 470 as described above to ensure mechanical and electrical connection between the cover contact member 542 and the upper fuse ferrule 462 and between the lower fuse terminal 464 and the lower fuse ferrule 466. Also, the bias element 474 automatically ejects the fuse 442 from the housing 502 as described above when the cover 508 is rotated about the hinge 448 in the direction of arrow E after the switch actuator 504 is rotated in the direction of arrow F.
Unlike the module 410, the module 500 may further include a tripping mechanism 544 in the form of a slidably mounted trip bar 545 and a solenoid 546 connected in parallel across the fuse 442. The trip bar 545 is slidably mounted to the tripping guide slot 517 formed in the housing 502, and in an exemplary embodiment the trip bar 545 may include a solenoid arm 547, a cover interlock arm 548 extending substantially perpendicular to the solenoid arm 547, and a support arm 550 extending obliquely to each of the solenoid arm 547 and cover interlock arm 548. The support arm 550 may include a latch tab 552 on a distal end thereof. The body 446 of the switch actuator 504 may be formed with a ledge 554 that cooperates with the latch tab 552 to maintain the trip bar 545 and the switch actuator 504 in static equilibrium with the solenoid arm 547 resting on an upper surface of the solenoid 546.
A torsion spring 555 is connected to the housing 502 one end and the actuator body 446 on the other end, and the torsion spring 555 biases the switch actuator 504 in the direction of arrow F to the open position. That is, the torsion spring 555 is resistant to movement of the actuator 504 in the direction of arrow H and tends to force the actuator body 446 to rotate in the direction of arrow F to the open position. Thus, the actuator 504 is failsafe by virtue of the torsion spring 555. If the switch actuator 504 is not completely closed, the torsion spring 555 will force it to the open position and prevent inadvertent closure of the actuator switchable contacts 450, together with safety and reliability issues associated with incomplete closure of the switchable contacts 450 relative to the stationary contacts 452.
In normal operating conditions when the actuator 504 is in the closed position, the tendency of the torsion spring 555 to move the actuator to the open position is counteracted by the support arm 550 of the trip bar 545 as shown in
An actuator interlock 556 is formed with the cover 508 and extends downwardly into the housing 502 adjacent the fuse receptacle 437. The cover interlock arm 548 of the trip bar 545 is received in the actuator interlock 556 of the cover 508 and prevents the cover 508 from being opened unless the switch actuator 504 is rotated in the direction of arrow F as explained below to move the trip bar 545 and release the cover interlock arm 548 of the trip bar 545 from the actuator interlock 556 of the cover 508. Deliberate rotation of the actuator 504 in the direction of arrow F causes the latch tab 552 of the support arm 550 of the trip bar 545 to be pivoted away from the actuator and causes the solenoid arm 547 to become inclined or angled relative to the solenoid 546. Inclination of the trip bar 545 results in an unstable position and the torsion spring 555 forces the actuator 504 to rotate and further pivot the trip bar 545 to the point of release.
Absent deliberate movement of the actuator to the open position in the direction of arrow F, the trip bar 545, via the interlock arm 548, directly opposes movement of the cover 508 and resists any attempt by a user to rotate the cover 508 about the cover hinge 448 in the direction of arrow E to open the cover 508 while the switch actuator 504 is closed and the switchable contacts 450 are engaged to the stationary contacts 452 to complete a circuit path through the fuse 442. Inadvertent contact with energized portions of the fuse 442 is therefore prevented, as the fuse can only be accessed when the circuit through the fuse is broken via the switchable contacts 450, thereby providing a degree of safety to human operators of the module 500.
Upper and lower solenoid contact members 557, 558 are provided and establish electrical contact with the respective upper and lower ferrules 462, 466 of the fuse 442 when the cover 508 is closed over the fuse 442. The contact members 557, 558 establish, in turn, electrical contact to a circuit board 560. Resistors 562 are connected to the circuit board 560 and define a high resistance parallel circuit path across the ferrules 462, 466 of the fuse 442, and the solenoid 546 is connected to this parallel circuit path on the circuit board 560. In an exemplary embodiment, the resistance is selected so that, in normal operation, substantially all of the current flow passes through the fuse 442 between the fuse ferrules 462, 466 instead of through the upper and lower solenoid contact members 557, 558 and the circuit board 560. The coil of the solenoid 546 is calibrated so that when the solenoid 546 experiences a predetermined voltage, the solenoid generates an upward force in the direction of arrow G that causes the trip bar 545 to be displaced in the tripping guide slot 517 along an arcuate path defined by the slot 517.
As those in the art may appreciate, the coil of the solenoid 546 may be calibrated to be responsive to a predetermined undervoltage condition or a predetermined overvoltage condition as desired. Additionally, the circuit board 560 may include circuitry to actively control operation of the solenoid 546 in response to circuit conditions. Contacts may further be provided on the circuit board 560 to facilitate remote control tripping of the solenoid 546. Thus, in response to abnormal circuit conditions that are predetermined by the calibration of the solenoid coil or control circuitry on the board 560, the solenoid 546 activates to displace the trip bar 545. Depending on the configuration of the solenoid 546 and/or the board 560, opening of the fuse 442 may or may not trigger an abnormal circuit condition causing the solenoid 546 to activate and displace the trip bar 545.
As the trip bar 545 traverses the arcuate path in the guide slot 517 when the solenoid 546 operates, the solenoid arm 547 is pivoted and becomes inclined or angled relative to the solenoid 546. Inclination of the solenoid arm 547 causes the trip bar 545 to become unstable and susceptible to force of the torsion spring 555 acting on the trip arm latch tab 552 via the ledge 554 in the actuator body 446. As the torsion spring 555 begins to rotate the actuator 504, the trip bar 545 is further pivoted due to engagement of the trip arm latch tab 552 and the actuator ledge 554 and becomes even more unstable and subject to the force of the torsion spring. The trip bar 545 is further moved and pivoted by the combined action of the guide slot 517 and the actuator 504 until the trip arm latch tab 552 is released from the actuator ledge 554, and the interlock arm 548 of the trip bar 545 is released from the actuator interlock 556. At this point, each of the actuator 504 and the cover 508 are freely rotatable.
As
The auxiliary contact module 602 may include a housing 603 generally complementary in shape to the housing 502 of the module 500, and may include an actuator 604 similar to the actuator 504 of the module 500. An actuator link 606 may interconnect the actuator 604 and a sliding bar 608. The sliding bar 608 may carry, for example, two pairs of switchable contacts 610 spaced from another. One of the pairs of switchable contacts 610 connects and disconnects a circuit path between a first set of auxiliary terminals 612 and rigid terminal members 614 extending from the respective terminals 612 and each carrying a respective stationary contact for engagement and disengagement with the first set of switchable contacts 610. The other pair of switchable contacts 610 connects and disconnects a circuit path between a second set of auxiliary terminals 616 and rigid terminal members 618 extending from the respective terminals 616 and each carrying a respective stationary contact for engagement and disengagement with the second set of switchable contacts 610.
By joining or tying the actuator lever 620 of the auxiliary contact module 602 to the actuator lever 510 of the disconnect module 500 with a pin or a shim, for example, the actuator 604 of the auxiliary contact module 602 may be moved or tripped simultaneously with the actuator 504 of the disconnect module 500. Thus, auxiliary connections may be connected and disconnected together with a primary connection established through the disconnect module 500. For example, when the primary connection established through the module 500 powers an electric motor, an auxiliary connection to a cooling fan may be made to the auxiliary contact module via one of the sets of terminals 612 and 616 so that the fan and motor will be powered on and off simultaneously by the device 600. As another example, one of the auxiliary connections through the terminals 612 and 616 of the auxiliary contact module 602 may be used for remote indication purposes to signal a remote device of the status of the device as being opened or closed to connect or disconnect circuits through the device 600.
While the auxiliary contact features have been described in the context of an add-on module 602, it is understood that the components of the module 602 could be integrated into the module 500 if desired. Single pole or multiple pole versions of such a device could likewise be provided.
The monitoring module 652 may include a housing 654 generally complementary in shape to the housing 502 of the module 500. A sensor board is located in the housing 654, and flexible contact members 658, 660 are respectively connected to each of the ferrules 462, 466 (
Optionally, an input signal port 678 may be included in the monitoring module 652. The input signal port 678 may be interconnected with an output signal port 672 of another monitoring module, such that signals from multiple monitoring modules may be daisy chained together to a single communications device 674 for transmission to the remote system 676. Interface plugs (not shown) may be used to interconnect one monitoring module to another in an electrical system.
In one embodiment, the sensor 662 is a voltage sensing latch circuit having first and second portions optically isolated from one another. When the primary fuse element 680 of the fuse 442 opens to interrupt the current path through the fuse, the sensor 662 detects the voltage drop across the terminal elements T1 and T2 (the solenoid contact members 557 and 558) associated with the fuse 442. The voltage drop causes one of the circuit portions, for example, to latch high and provide an input signal to the input/output element 664. Acceptable sensing technology for the sensor 662 is available from, for example, SymCom, Inc. of Rapid City, S. Dak.
While in the exemplary embodiment, the sensor 662 is a voltage sensor, it is understood that other types of sensing could be used in alternative embodiments to monitor and sense an operating state of the fuse 442, including but not limited to current sensors and temperature sensors that could be used to determine whether the primary fuse element 680 has been interrupted in an overcurrent condition to isolate or disconnect a portion of the associated electrical system.
In a further embodiment, one or more additional sensors or transducers 682 may be provided, internal or external to the monitoring module 652, to collect data of interest with respect to the electrical system and the load connected to the fuse 442. For example, sensors or transducers 682 may be adapted to monitor and sense vibration and displacement conditions, mechanical stress and strain conditions, acoustical emissions and noise conditions, thermal imagery and thermalography states, electrical resistance, pressure conditions, and humidity conditions in the vicinity of the fuse 442 and connected loads. The sensors or transducers 682 may be coupled to the input/output device 664 as signal inputs. Video imaging and surveillance devices (not shown) may also be provided to supply video data and inputs to the input/output element 664.
In an exemplary embodiment, the input/output element 664 may be a microcontroller having a microprocessor or equivalent electronic package that receives the input signal from the sensor 662 when the fuse 442 has operated to interrupt the current path through the fuse 442. The input/output element 664, in response to the input signal from the sensor 662, generates a data packet in a predetermined message protocol and outputs the data packet to the signal port 672 or the communications device 674. The data packet may be formatted in any desirable protocol, but in an exemplary embodiment includes at least a fuse identification code, a fault code, and a location or address code in the data packet so that the operated fuse may be readily identified and its status confirmed, together with its location in the electrical system by the remote system 676. Of course, the data packet could contain other information and codes of interest, including but not limited to system test codes, data collection codes, security codes and the like that is desirable or advantageous in the communications protocol.
Additionally, signal inputs from the sensor or transducer 682 may be input the input/output element 664, and the input/output element 664 may generate a data packet in a predetermined message protocol and output the data packet to the signal port 672 or the communications device 674. The data packet may include, for example, codes relating to vibration and displacement conditions, mechanical stress and strain conditions, acoustical emissions and noise conditions, thermal imagery and thermalography states, electrical resistance, pressure conditions, and humidity conditions in the vicinity of the fuse 442 and connected loads. Video and imaging data, supplied by the imaging and surveillance devices 682 may also be provided in the data packet. Such data may be utilized for troubleshooting, diagnostic, and event history logging for detailed analysis to optimize the larger electrical system.
The transmitted data packet from the communications device 674, in addition to the data packet codes described above, also includes a unique transmitter identifier code so that the overview and response dispatch system 676 may identify the particular monitoring module 652 that is sending a data packet in a larger electrical system having a large number of monitoring modules 652 associated with a number of fuses. As such, the precise location of the affected disconnect module 500 in an electrical system may be identified by the overview and response dispatch system 676 and communicated to responding personnel, together with other information and instruction to quickly reset affected circuitry when one or more of the modules 500 operates to disconnect a portion of the electrical system.
In one embodiment, the communications device 674 is a low power radio frequency (RF) signal transmitter that digitally transmits the data packet in a wireless manner. Point-to-point wiring in the electrical system for fuse monitoring purposes is therefore avoided, although it is understood that point-to-point wiring could be utilized in some embodiments of the invention. Additionally, while a low power digital radio frequency transmitter has been specifically described, it is understood that other known communication schemes and equivalents could alternatively be used if desired.
Status indicators and the like such as light emitting diodes (LED's) may be provided in the monitoring module 652 to locally indicate an operated fuse 442 or a tripped disconnect condition. Thus, when maintenance personnel arrives at the location of the disconnect module 500 containing the fuse 442, the status indicators may provide local state identification of the fuses associated with the module 500.
Further details of such monitoring technology, communication with the remote system 676, and response and operation of the system 676 are disclosed in commonly owned U.S. patent application Ser. No. 11/223,385 filed Sep. 9, 2005 and entitled Circuit Protector Monitoring Assembly, Kit and Method.
While the monitoring features have been described in the context of an add-on module 652, it is understood that the components of the module 652 could be integrated into the module 500 if desired. Single pole or multiple pole versions of such a device could likewise be provided. Additionally, the monitoring module 652 and the auxiliary contact module could each be used with a single disconnect module 500 if desired, or alternative could be combined in an integrated device with single pole or multiple pole capability.
In use, the resistance alloy strip is joined to the contact members 557 and 558 and defines a high resistance parallel connection across the ferrules 462 and 466 of the fuse 442. The resistance alloy is heated by current flowing through the resistance alloy and the resistance alloy, in turn heats the bimetal strip. When a predetermined current condition is approached, the differing rates of coefficients of thermal expansion in the bimetal strip causes the overload element 702 to bend and displace the trip bar 545 to the point of release where the spring loaded actuator 504 and sliding bar 456 move to the opened positions to disconnect the circuit through the fuse 442.
The module 700 may be used in combination with other modules 500 or 700, auxiliary contact modules 602, and monitoring modules 652. Single pole and multiple pole versions of the module 700 may also be provided.
The module 720 may be used in combination with other modules 500 or 700, auxiliary contact modules 602, and monitoring modules 652. Single pole and multiple pole versions of the module 700 may also be provided.
The monitoring module 800 may include a housing 802 generally complementary in shape to the housings described above for the various disconnect devices and modules, and in an exemplary embodiment the housing 802 has a thickness dimension T of about one half the thickness dimensions of the modules described above, or about 8.75 mm in one example. Like some of the housings described above, the housing 802 includes mounting openings or apertures 803 that may receive connectors or shims, such as the connectors pins 480 and shims 484 (
The housing 802 contains sensing and indication components and circuitry described below to detect opening of fuses in the associated disconnect device and disconnect modules. The module 800 also includes an actuator 804 that may be tied to the actuator of a disconnect device with a connector pin 806 in the manner described above. Signal input ports 808 are provided on either side of the housing 802, and wire leads or conductors 810a, 810b, and 810c internally connect to the sensing components and circuitry in the housing 802 and extend through the signal ports 808 for external connection to terminal elements of a disconnect device or disconnect modules the define the line and load connections to the fuses.
In the illustrated embodiment, each wire lead 810a, 810b and 810c terminates outside the signal ports 808 with fork terminal connectors 812a, 812b and 812c. The terminal connectors 812a, 812b and 812c may be extended into corresponding ports in the disconnect device and any associated disconnect modules, therefore establishing line and load connections to the terminal elements therein. When so connected, the wire leads 810a and terminal connectors 810b provide electrical connection to a first fuse to be monitored with the module 800, the wire leads 810b and terminal connectors 812b provide electrical connection to a second fuse to be monitored with the module 800, and the wire leads 810c and terminal connectors 812c provide electrical connection to a third fuse to be monitored by the module 800. While forked terminal connectors 812a, 812b and 812c are illustrated in
The three pairs of wire leads 810a, 810b and 810c are particularly beneficial for a three phase disconnect device supplying AC electrical power to a motor or industrial machine, for example. While three wires 810a, 810b and 810c are illustrated, it is understood that in an alternative embodiment greater or fewer lead wires 810 may be provided to monitor greater or fewer numbers of fuses. Additionally, to the extent the module 800 is desired for use with a disconnect device having less than three poles, the unused terminal connectors 812 of the module 800 may be capped or otherwise covered.
Light emitting diodes (LEDs) 814 and 816 may be provided and connected to circuitry in the housing 802 and may be visible from an exterior of the housing 802. In an exemplary embodiment, the LED 814 may provide an indication of electrical power supplied to the module 800, and the LED 816 may provide indication of an opened fuse in the associate disconnect device or module. For example, in one embodiment, the LED 814 may be illuminated to indicate that power to the module 802 is being received, sometimes referred to as an “on” condition, and is not illuminated when power to the module 802 is absent, sometimes referred to as an off condition. In another embodiment, this indication of on or off conditions may be effectively reversed such that the LED 814 is lit when power is lost and the LED 814 is not lit when the power is on. In any event, by virtue of the power LED 814, a user may quickly ascertain whether the module 800 is receiving electrical power.
Likewise, the fuse indication LED 816, may not be illuminated when the fuses are in an unopened or operative, current carrying state for normal operation, and the LED 816 may be illuminated when at least one of the monitored fuses opens to interrupt or break the current path and the electrical connection through the fuse. In an alternative embodiment, this indication may be reversed such that the LED 816 is lit when the fuses are unopened and is not lit when the fuses are opened. In any event, by virtue of the LED 816, the user may quickly ascertain whether or not any of the fuses have opened and need replacement. Local fuse state indication in the vicinity of the module 800 is therefore provided by the LED 816.
For remote fuse state indication, output ports and terminal connectors 818, 820 and 822 are provided in the module 800. The connectors 818, 820 and 822 provide for connection to a controller, such as a programmable logic controller, that is in turn connected to remote devices and equipment. The connector 818, for example, may correspond to a ground connection. The connector 820 may correspond to a power connection to the module 800, such as a 24V DC connection to a power supply of the controller. The connector 822 may correspond to a signal connection, such as 0V or 24V DC signal to the controller. In one embodiment, the connectors 818, 820 and 822 are known 16 AWG 0.110 quick connect terminal connectors, although it is contemplated that other connectors and terminals could be utilized in an alternative embodiment if desired.
The printed circuit board assembly 830 may also include the LEDs 814 and 816 and terminals 836, 838 and 840 for the connectors 818, 820 and 822 in
A bypass/reset switch 842 is also provided in the circuit board assembly 830. The switch 842 is actuated by a cam surface 844 of the actuator 804. The switch 842 and cam surface 844 are constructed so that when the actuator 804 is tied to actuator of the disconnect device or module, movement of the actuator 804 in the direction of arrow J causes the cam surface 844 to operate the switch 842 as the switch contacts in the disconnect device or module are opened. Operation of the switch 842 bypasses signal portions of the circuitry in the module 800 and also causes the fuse indicating LED 816 to be reset. Bypassing of the signal portions of the circuitry prevents an open fuse signal from occurring when the disconnect device or module is opened. That is, operation of the circuitry is unaffected by the position of the switch contacts in the disconnect device or whether the disconnect device is opened or closed to connect or disconnect the current path through the fuses.
Open fuse events are detected by the optical isolators 834a, 834b, 834c in the sensing portion 850 of the circuit, which in turn causes the signal portion 852 to provide a low signal to the controller. More specifically, the optical isolators 834a, 834b, 834c sense a voltage drop across the line and load terminals of the fuse via the line and load terminals of the disconnect device or modules. Each of the fuses Fuse 1, Fuse 2, and Fuse 3 may correspond to a respective phase of AC electrical power feeding, for example, a motor or industrial machine. When any of the fuses Fuse 1, Fuse 2, and Fuse 3 opens, the voltage placed across the associated optical isolator 834a, 834b or 834c causes the sensing portion 850 of the circuit to latch and illuminate the fuse indicating LED 816 to indicate an open fuse event.
The latching of the circuit and lighting of the LED 816, in turn, causes the signal portion 852 to set low and input the low signal to the controller. When the controller receives the low signal at a remote location, an opened fuse event is detected. The controller may be programmed, for example, to open a contactor or other device to prevent the motor or machine, for example, from running on less than three phases of current. Additionally, the controller may be programmed to set an alarm condition for prompt action by an operator, provide notification to certain persons of an opened fuse, or execute other instructions provided in the controller programming as desired.
Once the signal portion 852 is set low it remains low until the reset switch 842 is activated using the module actuator 804 to reset the signal portion 852 to high. The low signal may be maintained even if the voltage is removed across the opened fuse, such as by opening one of the switch contacts in the associated disconnect device. By maintaining the low signal in such a manner, the opened fuse indication will continue even after the associated disconnect device is opened.
Activation of the switch 842 with the actuator 804 also resets the signal portion 852 and the LED 816 after an open fuse detection event.
While in the illustrative embodiment open fuse events are detected with optical isolators, it is understood that other detecting elements and components could be utilized with similar effect, and such detecting elements may monitor and respond to sensed or detected current, voltage, temperature and other operating conditions to detect open fuses. Numerous sensing and detecting elements are known that would be suitable for the indication module as described, including but not limited to current transformers, Rogowski coils, inductors, and the like as those in the art will appreciate.
Likewise, while visual indicators in the form of LEDs are provided in an exemplary embodiment so that open fuses may be efficiently located, it is contemplated that other types of visual indicators may alternatively be provided to identify open fuse events with a change in external appearance of the indication module. A variety of visual indicators are known in the art and may alternatively be utilized, including, for example, mechanical indicators having flags or pins that are extended in response to open fuses, electrical indicators having one or more light emitting elements, and indicators exhibiting color changes in response to open fuse events, including but not limited to combustible indicators and indicators having temperature responsive materials and chemically activated color changes.
Fuse covers 865 are provided on each of the modules 862 of the disconnect device 860, and the covers 865 are positionable to provide access to the fuse compartments for insertion and removal of the fuses. The disconnect device 860 includes an actuator 866 for opening of the switch contacts via the sliding bar as described above, and the actuator 804 of the indicating module 800 is linked to the actuator 866 of the disconnect device 860. The connectors 818, 820 and 822 are accessible on the module 800 for connection to the controller for power, ground and signal connections via connecting plugs and wires or cables.
Having now described the system and its operation functionally, it is believed that programming of the controller is within the purview of those in the art without further explanation.
Like the foregoing embodiments of modules, the disconnect module 862 includes an insulative housing 920, a fuse 922 loaded into the housing 920, a fuse cover or cap 865, a rotatably mounted switch actuator 924, and a sliding bar 926 carrying first and second movable switch contacts 928 and 930. The switch contact 928 is positionable by the sliding bar 926 relative to a stationary contact 932 affixed to a line side terminal 934. The switch contact 930 is movable by the sliding bar 926 relative to a stationary contact 936 of a lower fuse terminal 938 that is electrically connected to a lower terminal end cap 940 of the fuse 922. Meanwhile, an upper terminal end cap 942 of the fuse engages an upper fuse terminal 944 of a load side terminal 946. The switch actuator 924 is movable to position the sliding bar 926 and to open or close the switch contacts 928 and 930 relative to the stationary contacts 932 and 936 substantially as described above in relation to the foregoing embodiments of modules. A conductive path through the fuse 922 may therefore be made or broken via the switch contacts 928 and 930.
Further, and as explained above, movement of the switch actuator 924 and/or the sliding bar 926 may be enhanced by one or more elements to ensure complete separation of the switch contacts 928 and 930 from the stationary contacts 932 and 936, minimize contact bounce, to prevent inadvertent closure of the switch contacts 928 and 930, and to bias the switch mechanism toward an opened or closed position. Lockout features for the switch actuator 924, fuse rejection features built into the fuse terminals 938 and 944, and fuse ejection features and bias elements, also described above, may also be utilized in the module 862.
The module 862 is illustrated as a single pole module in
The housing 920 may be fabricated from an insulative or nonconductive material, such as plastic, according to known methods and techniques, including but not limited to injection molding techniques. In an exemplary embodiment the housing 920 may be formed into a generally rectangular size and shape, explained in detail above, which is complementary to and compatible with DIN and IEC standards applicable to standardized electrical equipment. The housing 920 is generally sized and shaped in a complementary manner to the other modules described above.
Unlike the previous modules, the housing 920 of the module 862 includes opposing side panels 950 and 952 each having a first access port or opening 864 and a second access port or opening 954. The access ports 864 are sometimes referred to as auxiliary ports and the access ports 954 are sometimes referred to as line side and load side ports. The access ports 864 and 954 are spaced from and are distinct from one another on the respective side panels 950 and 952, and each port 864 and 964 provides access to the respective line side terminal 934 and the load side terminal 946 at different relative locations in the terminals 934 and 946.
Accordingly, each of the line side terminal 934 and the load side terminal 946 includes a first portion 956 and a second portion 958. The first portion 956 of the respective terminals 934 and 946 may be located proximate to the access ports 864 and the second portion 958 of the respective terminals 934 and 946 may be located proximate the access ports 954. The wire leads 810 having fork terminal connectors 812, for example, may be inserted through the respective access ports 864 and may be received in the first portion 956 of the line and load terminals 934 and 946, while insulated connecting wires 960 having ends 962 stripped of the insulation to expose the bare conductors in the wire may be inserted through the respective access ports 954 and may be received in the second portion 958 of the line and load terminals 934 and 946.
A terminal screw 964 may be provided in each of the line and load terminals 934 and 946, and the screw 964 may be advanced to simultaneously clamp or release both the fork terminal connectors 812 and the stripped ends 962 of the wires 810 and 960 at each of the line and load terminals 934 and 946. As shown in
While in the exemplary embodiment the terminals 934 and 946 are configured for connection to a stripped wire and a wire provided with a forked terminal, in another embodiment the wires 810 and 960 may be provided with other connectors or terminal structure and the terminals 934 and 946 may be appropriately modified to receive the terminal structure of the wires 810 and 960. Additionally, it is contemplated that terminal structure other than that specifically illustrated in
Also, in an alternative embodiment utilizing other termination structure and methods that do not involve a terminal screw, for example, the wires 810 and 960 may be engaged and fastened to each of the line and load terminals in sequence rather than simultaneously, while still providing concurrent or co-existing connection to the wires after they are engaged.
In one embodiment, the wires 960 that extend through the access ports 954 and connect to the second portion 958 of the line and load terminals 934 and 946 establish electrical connection to line side circuitry 966 and load side circuitry 968. Thus, when the switch contacts 928 and 930 are closed and the fuse 922 is present with the fuse cover 865 closed, an electrical connection through the fuse 922 is completed. When specified electrical current conditions are experienced, the fuse 922 will operate to open the conductive path through the module 862 and isolate the load side circuitry 968 from potentially damaging current flow. Likewise, the switch actuator 924 may be manipulated, manually or remotely, to disconnect the load circuitry 968 from the line circuitry 966 via the switch contacts 928, 930 at any time to disconnect the load side circuitry 968 from the line side circuitry 966.
The wires 810, as previously described, may connect the line side and load side terminals 934 and 946 to the fuse status indicator module 800. As such, the wires 810 establish a parallel connection across the fuse 922 so that voltage changes, for example, may be sensed, monitored and detected to indicate an open fuse condition or another electrical problem. In another embodiment, the wires 810 may be connected to another auxiliary device or auxiliary module.
The wires 810 and 960 may be different grades or gauges of wire, and by providing separate access ports 864 and 954 to connect the wires 810 and 960 to the module 862, the wires 810 and 960 may be conveniently connected without having to crowd more than one wire, and possibly wires of different sizes or gauges, into a single access port. Difficulties associated with having to fasten different wires to a terminal that was originally designed for attachment to a single wire of a certain gauge at a single location, that would otherwise occur, are also avoided by the separate access ports 864 and 954 and the construction of the line and load terminals 934 and 936 having designated portions for connection to different wires.
The module 862 may also be provided with a fuse amperage indication scheme using color-coded elements to visually indicate the amperage rating of the fuse 922 while the fuse is enclosed in the housing 920 with the fuse cover 865 closed. Such a color coding scheme permits a user to ascertain the rating of the fuse 922 via visual inspection of the exterior of the module 862 without having to open the fuse cover 865 and inspect the fuse 922 to determine its rating.
In one embodiment of a color-coding scheme for the module 862, the fuse 922 may be provided with a label 970 on an insulative body of the fuse 922 between the terminal end caps 940 and 942. The label 970, for example, may be a separately provided sticker or tag that is attached to the body of the fuse 922, or may be another type of indicia or identifier provided directly on the body of the fuse 922 via a stamping, molding, or printing process. The label 970 may be provided in whole or in part with a predetermined color that corresponds to a fuse class and amperage rating of the fuse 922. Likewise, a portion of the module 862 may be provided on its exterior surface with the same color as the color on the fuse label 970. In one embodiment, the fuse cover 865 is provided with a color that matches the fuse label 970. although the color of the fuse label could be provided elsewhere on the exterior of the module 862 if desired with equal effect.
An exemplary color scheme for exemplary fuse classes and ratings is set forth below in Table 1.
While exemplary colors, fuse classes and ratings are disclosed, it is appreciated that other colors, fuse classes and ratings, may be utilized with like effect. Also, greater or lesser numbers of colors may be utilized in different embodiments.
Using a color-coded or color coordinated indication scheme as described, a blue fuse cover would indicate that a blue fuse is to be used with the module or is contained in the module, a yellow cover would indicate that a yellow fuse is to be used with the module or is contained in the module, etc. Matching of proper fuses for the modules is therefore intuitive and straightforward.
Additionally, fuse rejection features may be built into the module 862 that would accept fuses of the proper rating and reject fuses having the proper ratings. For example, considering the color scheme of table 1, a blue rated module may be configured to reject orange, green and yellow fuses that have higher current ratings than the blue fuse. As another example, a yellow rated module may be configured so that it only accept a yellow fuse and reject all others. The color-coding of the modules and the fuses, together with appropriate rejection features substantially avoids problems associated with fuses of mismatched ratings from being inadvertently placed in modules that were not designed for such ratings.
Embodiments of fusible disconnect devices are therefore described herein that may be conveniently switched on and off in a convenient and safe manner without interfering with workspace around the device. The disconnect devices may be reliably switch a circuit on and off in a cost effective manner and may be used with standardized equipment in, for example, industrial control applications. Further, the disconnect modules and devices may be provided with various mounting and connection options for versatility in the field, together with remote monitoring and control capability. Convenient connection of auxiliary wires may be provided with separate access ports from the line and load connections, and color-coding schemes allow for time savings in having to remove and inspect fuses to determine their classes and amperage ratings, as well as to avoid mistakes in replacing a fuse with the wrong type or rating.
An embodiment of a fusible switch disconnect device is disclosed herein that comprises: a disconnect housing adapted to receive at least one fuse therein, the fuse being separately provided from the housing and being removably insertable in the housing; line side and load side terminals connecting to the fuse when the fuse is inserted into the housing, at least one of the line side and load side terminals comprising a first portion configured to receive and engage a first wire, and a second portion configured to receive and engage a second wire; wherein the first portion and second portion are distinct from one another; and wherein the first and second wires may each be concurrently connected to the first portion and the second portion, respectively.
Optionally, the first wire may comprise an insulated wire having a stripped end. The second wire may comprise a wire provided with a fork terminal connector. At least one of the line side and load side terminals may be configured to simultaneously engage and release the first and second wires. The housing may comprise a first access port for receiving the first wire, and a second access port spaced from the first access port for receiving the second wire. The fuse may comprise a label, with the fuse label and a portion of the device being color coded to indicate an amperage rating of the fuse via visual inspection of the device when the fuse is contained therein. The device may further comprise a fuse cover, and the fuse label and the fuse cover may be color coded to indicate the amperage the amperage rating of the fuse. The first wire may connect the at least one terminal to a fuse status indicator module, and the second wire may connect the device to one of a line side circuit and a load side circuit. Each of the line side and load side terminals may include a first portion configured to receive and engage a first wire, and a second portion configured to receive and engage a second wire, wherein the first portion and second portion are distinct from one another.
Also optionally, the device may further comprise at least one movable switch contact completing and breaking an electrical connection through the fuse. At least one of the line and load-side terminals may comprise a first stationary switch contact provided between the respective line side terminal and load side terminal and the fuse. A fuse terminal may be adapted to engage a conductive element of the fuse when inserted into the disconnect housing, and the fuse terminal may be coupled to a stationary switch contact. A sliding bar may be provided within the disconnect housing, and the sliding bar may be provided with first and second movable contacts. A rotatably mounted switch actuator may be adapted to position the sliding bar and the first and second movable contacts between an open position and a closed position to connect or disconnect an electrical connection through the fuse.
Another embodiment of a fusible switch disconnect device is also disclosed. The device comprises: a disconnect housing adapted to receive at least one fuse therein, the fuse being separately provided from the housing and being removably insertable in the housing, the housing comprising a line side access port, a load side access port, a first auxiliary access port, and a second auxiliary access port, wherein the first and second auxiliary ports are spaced apart from the line-side and load side access ports; switch contacts in the disconnect housing for completing and breaking an electrical connection through the fuse; line side and load side terminals connecting to the fuse when the fuse is inserted into the housing; a first wire establishing an electrical connection to the line side terminal via the line-side access port; a second wire establishing an electrical connection to the load side terminal via the load-side access port; a third wire establishing an electrical connection to the line side terminal via the first auxiliary access port; and a fourth wire establishing an electrical connection to the load side terminal via the second auxiliary access port.
Optionally, at least one of the first and second wires comprises an insulated wire with an end stripped of the insulation. At least one of the third and fourth wires may be provided with a fork terminal connector. The line-side terminal may comprise a first portion configured to accept the first wire and a second portion, different from the first portion, configured to engage the third wire. The load-side terminal may comprise a first portion configured to accept the second wire and a second portion, different from the first portion, configured to engage the fourth wire. The fuse may comprise a label, with the fuse label and a portion of the device being color coded to indicate an amperage rating of the fuse via visual inspection of the device when the fuse is contained therein. The device may further comprise a fuse cover, and the fuse label and the fuse cover may be color coded to indicate the amperage the amperage rating of the fuse. A sliding bar may carry the switch contacts. A rotatably mounted switch actuator may selectively position the sliding bar along a linear axis within the disconnect housing.
An embodiment of a fusible switch disconnect device is also disclosed. The devices comprises: a disconnect housing adapted to receive at least one fuse therein, the disconnect housing including a line side terminal and a load side terminal to complete an electrical connection through the fuse, the fuse being separately provided from the housing and being removably insertable in the housing, the disconnect housing further comprising switch contacts for connecting and disconnecting the electrical connection through the fuse; and a fuse amperage indicator visible from an exterior of the disconnect housing.
Optionally, the amperage indicator comprises one of a plurality of colors that match a color of the fuse. The fuse amperage indicator may comprise a fuse cover selectively positionable relative to the housing to permit or deny access to the fuse, wherein the cover is color-coded to indicate an amperage rating of the fuse while the cover is closed and the fuse is inside the disconnect housing. At least one of the line-side terminal and the load-side terminal may be configured to connect to a first wire at a first location, and a second wire at a second location, thereby providing a primary connection and an auxiliary connection.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
This application is a continuation application of U.S. patent application Ser. No. 11/674,880 filed Feb. 14, 2007 and entitled Fusible Switching Disconnect Modules and Devices, which is a continuation-in-part application of U.S. application Ser. No. 11/603,454 filed Nov. 22, 2006 and entitled Fusible Switching Disconnect Modules and Devices, which is a continuation-in-part application of U.S. application Ser. No. 11/274,003 entitled Fusible Switching Disconnect Modules and Devices and filed Nov. 15, 2005, which is a continuation-in-part application of U.S. application Ser. No. 11/222,628 entitled Fusible Switching Disconnect Modules and Devices and filed Sep. 9, 2005, which claims the benefit of U.S. Provisional Application Ser. No. 60/609,431 filed Sep. 13, 2004, the disclosures of which are hereby incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60609431 | Sep 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11674880 | Feb 2007 | US |
Child | 12499504 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11603454 | Nov 2006 | US |
Child | 11674880 | US | |
Parent | 11274003 | Nov 2005 | US |
Child | 11603454 | US | |
Parent | 11222628 | Sep 2005 | US |
Child | 11274003 | US |