Various examples of the disclosure relate to an image forming apparatus in which a structure of a fusing device is improved.
An image forming apparatus is a device for forming an image on a printing medium according to input signals, and examples thereof include printers, copiers, facsimiles, and all-in-one devices implemented by a combination thereof.
One type of an image forming apparatus, an electrophotographic image forming apparatus, includes a photosensitive unit having a photoreceptor therein, a charging unit which is disposed near the photosensitive unit and charges the photoreceptor to a predetermined potential level, a developing unit having a developing roller, and a light scanning unit. The light scanning unit applies light onto the photoreceptor charged to the predetermined potential level by the charging unit to form an electrostatic latent image on a surface of the photoreceptor, and the developing unit supplies developers onto the photoreceptor on which the electrostatic latent image is formed to form a visible image.
The visible image formed on the photoreceptor is directly transferred to the printing medium, or passes through an intermediate transfer material and then is transferred to the printing medium, and the visible image transferred on the printing medium is fused on the printing medium while passing through a fusing device.
Generally, a fusing device which is widely used includes a heat source, a heating member having a fusing belt disposed along the circumference thereof, and pressing members pressed against the fusing belt and to form a fusing nip. When a printing medium to which a toner image is transferred is moved between the fusing members and pressing members, the toner image is fused on the printing medium by heat transmitted from the fusing members and pressure applied by the fusing nip.
At this point, a position of a contact point between the heat source and a connector provided for supplying electricity to the heat source is changed because the heat source is deformed by heat at high temperature, and thus the position of the contact point between the heat source and the connector cannot be maintained constantly.
An aspect of the disclosure includes providing a fusing device capable of fixing a position of a heat source deformed by heat at high temperature in a heating member and an image forming apparatus having the same.
An aspect of the disclosure includes providing a fusing device capable of maintaining a contact point between a heat source and a connector by fixing a position of a heat source and an image forming apparatus having the same.
An aspect of the disclosure includes providing a fusing device capable of preventing damage on a heat source deformed by heat at high temperature and an image forming apparatus having the same.
An aspect of the disclosure includes providing a fusing device capable of reducing temperature ramp-up time for a heating member by reducing heat loss of a heat source and an image forming apparatus having the same.
Reference will now be made to examples of the disclosure which are illustrated in the accompanying drawings.
Also, like reference numerals or symbols provided in each of the drawings indicate components or elements performing the same functions.
Also, the terms used herein are merely to describe an example, and do not limit the disclosure. Further, unless the context clearly indicates otherwise, singular expressions should be interpreted to include plural expressions. It should be understood that the terms “comprises,” “comprising,” “includes” or “has” are intended to indicate the presence of features, numerals, steps, operations, elements and components described in the specification or the presence of combinations of these, and do not preclude the presence other features, numerals, steps, operations, elements and components, the presence of combinations of these, or additional possibilities.
Also, the terms including ordinal numbers such as “first,” “second,” etc. can be used to describe various components, but the components are not limited by those terms. The terms are used merely for the purpose of distinguishing one component from another. For example, a first component may be referred to a second component, and similarly, a second component may be referred to a first component without departing from the scope of rights of the disclosure. The term “and/or” encompasses combinations of a plurality of items or any one of the plurality of items.
The terms “front-end,” “back-end,” “upper portion,” “lower portion,” “upper end,” “lower end,” and the like used in the below descriptions are defined based on the drawings, and shape and position of each component are not limited to the terms.
As illustrated in
The main body 10 may form an exterior of the image forming apparatus 1 and may also support various components installed therein. The main body 10 may include a cover (not shown) provided to open and close a part thereof and a main body frame (not shown) to support or fix various components in the main body 10.
The printing medium feeding device 20 delivers a printing medium S to the printing device 30. The printing medium feeding device 20 includes a tray 22 to load the printing medium S and a pick-up roller 24 to pick up the printing medium loaded on the tray 22 one sheet at a time. The printing medium S picked up by the pick-up roller 24 is delivered to the printing device 30 by a feeding roller 26.
The printing device 30 may include a light scanning device 40, a developing device 50, and a transferring device 60.
The light scanning device 40 includes an optical system (not shown) and projects beams corresponding to image information in colors of yellow Y, magenta M, cyan C, and black K to the developing device 50 in response to a printing signal.
The developing device 50 forms a toner image in response to image information input from an external device such as a computer, etc. The image forming apparatus 1 according to an example is a color image forming apparatus, and the developing device 50 may include four developing devices 50Y, 50M, 50C, and 50K to respectively accommodate toners having different colors, e.g., toners having colors of yellow Y, magenta M, cyan C and black K.
Each of the developing devices 50Y, 50M, 50C, and 50K may include a photoreceptor 52 to form an electrostatic latent image on a surface thereof using the light scanning device 40, a charging roller 54 to charge the photoreceptor 52, a developing roller 56 to deliver a toner image to the electrostatic latent image formed on the photoreceptor 52, and a feeding roller 58 to deliver toner to the developing roller 56.
The transferring device 60 transfers the toner image formed on the photoreceptor 52 to the printing medium S. The transferring device 60 may include a transfer belt 62 to forwardly move while being in contact with each photoreceptor 52, a transfer belt driving roller 64 to drive the transfer belt 62, a tension roller 66 to maintain tension in the transfer belt 62, and four transfer rollers 68 to transfer the toner image developed on the photoreceptor 52 to the printing medium S.
The printing medium S is attached to the transfer belt 62 and delivered at the same speed as the movement of the transfer belt 62. At this point, a voltage having polarity opposite that of toner attached to the photoreceptor 52 is applied to each transfer roller 68, and thus the toner image on the photoreceptor 52 is transferred to the printing medium.
The fusing device 100 fixes the toner image, which is transferred to the printing medium S by the transferring device 60, to the printing medium S. A detailed description of the fusing device 100 will be described below.
The printing medium ejecting device 70 discharges the printing medium S to the outside of the main body 10. The printing medium ejecting device may include an ejecting roller 72 and a pinch roller 74 installed to face the ejecting roller 72.
Hereinafter, all of a width direction X of a printing medium S, a width direction X of a pressing member 110, a width direction X of a heating member 120 are defined as the same direction.
The fusing device 100 includes the pressing member 110 and the heating member 120.
A printing medium S to which a toner image is transferred passes between the pressing member 110 and the heating member 120, and at this point, the toner image is fixed to the printing medium S by heat and pressure.
The pressing member 110 may be disposed in contact with an outer circumferential surface of the heating member 120, and a fusing nip N may be formed between pressing member 110 and the heating member 120.
The pressing member 110 may be disposed to face the heating member 120, and the pressing member 110 together with an outer surface of the heating member 120 may form the fusing nip N. The pressing member 110 may include a shaft 111 formed of a metallic material, such as aluminum or steel, and an elastic layer 112 to form the fusing nip N between the pressing member 110 and the heating member 120 by being elastically deformed.
The elastic layer 112 is generally formed of silicone rubber. Hardness of the elastic layer 112 may be in a range of 50 to 80 based on a hardness reference of ASKER-C so that a high fusing pressure is applied to a printing medium S in the fusing nip N, and a thickness thereof may be in a range of 3 mm to 6 mm. The elastic layer 112 may be formed of a heat resistance material. A hetero layer (not shown) may be provided on a surface of the elastic layer 112 to prevent the printing medium S from being attached to the pressing member 110. The hetero layer may include a heat resistance resin film or a heat resistance rubber film.
The heating member 120 may include a fusing belt 121, a nip forming member 123, and a heat source 125.
The fusing belt 121 may be interconnected and rotated with the pressing member 110, the fusing belt 121 and the pressing member 110 form a fusing nip N, and the fusing belt 121 is heated by the heat source 125 to transmit heat to a printing medium S passing through the fusing nip N. A rotational center of the fusing belt 121 may be provided to be parallel to a rotational center of the pressing member 110. The fusing belt 121 may be an endless belt formed in a cylindrical shape. The fusing belt 121 may be with a single layer including a metal, a heat resistance polymer, etc. or formed by adding an elastic layer (not shown), which contains silicone rubber, fluorine rubber, or the like having high heat resistance, and a protection layer (not shown) onto a base layer (not shown) formed of a metal, such as aluminum, etc., or a heat resistance polymer. A hetero layer including perfluoroalkoxy (PFA), polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP) containing tetrafluoroethylene and hexafluoroethylene, or the like may be formed on an outer surface of the fusing belt 121. A thickness of the hetero layer may be in a range of 10 μm to 30 μm.
A base layer of the fusing belt 121 may be a heat resistance resin, such as polyimide, polyamide, polyimide-amide, etc., or a metal such as stainless (SUS), nickel, or copper, and a thickness thereof may be in a range of about 30 μm to 200 μm and, for example, in a range of 50 μm to 100 μm.
An inner surface of the fusing belt 121 may be painted black or treated with a black coating for expediting heat absorption.
The nip forming member 123 presses an inner circumferential surface of the fusing belt 121 to form a fusing nip N between the fusing belt 121 and the pressing member 110. The nip forming member 123 may be formed of a material having excellent strength, such as SUS, carbon steel, etc.
The nip forming member 123 includes a guide member 130 in contact with the inner surface of the fusing belt 121 for guiding the fusing belt 121 and a pressing unit 140 disposed above the guide member 130 for pressing and supporting the guide member 130.
When strength of the pressing unit 140 is low, the pressing unit 140 may not uniformly press the fusing nip N because bending deformation occurs significantly. Accordingly, a cross section of the pressing unit 140 may be provided in an arcuate shape to reduce the bending deformation.
The guide member 130 may be provided inside the fusing belt 121 to guide rotation of the fusing belt 121. The guide member 130 may be provided in contact with the inner surface of the fusing belt 121 to guide the rotation of the fusing belt 121. The guide member 130 may be in contact with the inner surface of the fusing belt 121 to form a fusing nip N and guides the fusing belt 121 so that the fusing belt 121 smoothly moves near the fusing nip N.
The heat source 125 may be disposed under the guide member 130. The guide member 130 may include a member body 131 disposed inside the fusing belt 121 in a width direction X and a heat source seat 132.
The heat source seat 132 may be concavely formed so that the heat source 125 is disposed under the guide member 130. The heat source seat 132 may be concavely formed in the member body 131 in the width direction X. The heat source seat 132 may have a rectangular shape extending in the width direction X of the heating member 120.
A size of the heat source seat 132 may be increased to a preset size greater than a size of the heat source 125 in the width direction X of the heating member 120 to have a surplus space even when the heat source 125 is mounted thereon. Since the heat source 125 is heated and expands and/or is deformed, the heat source seat 132 having the increased size is needed for preventing damage to the heat source 125 in the heat source seat 132. Furthermore, since the heat source seat 132 may be manufactured to be larger than the heat source 125, the heat source 125 may be easily assembled with the heat source seat 132, and thus productivity of products can be improved.
The guide member 130 may include belt guides 133. The belt guides 133 may be provided to guide rotation of the fusing belt 121. The belt guides 133 may be formed to be in contact with the inner surface of the fusing belt 121 and may be provided as a plurality of belt guides. The plurality of belt guides 133 may be formed extending from the member body 131 and disposed separately from each other.
The guide member 130 may further include a pressing support member 150 provided at the heat source seat 132.
The pressing support member 150 may be provided at one side of the heat source seat 132 and press the heat source 125 toward the other side opposite the one side of the heat source seat 132. The pressing support member 150 may include an elastic body 151 provided to generate a force by which the heat source 125 is pressurized.
As illustrated in
The pressing support member 150 may further include a hinge 152 and a supporting member 153. One end of the supporting member 153 may be connected to the elastic body 151, and the other end may be connected to the hinge 152. The hinge 152 may be fixed to the guide member 130.
According to the above configuration, the supporting member 153 may rotate about the hinge 152. When the heat source 125 is not disposed on the heat source seat 132 as illustrated in
Referring to
The temperature sensor 137 may include a thermistor. The temperature sensor 137 measures a temperature of the heat source 125 and the measured temperature is transmitted to a controller (not shown) so that the controller may control driving state of the image forming apparatus 1. For example, when a temperature of the heat source 125 is higher than a reference temperature, the temperature sensor 137 measures the temperature of the heat source 125 and transmits the measured temperature to the controller, and the controller may control the image forming apparatus 1 so that idling of the fusing device 100 may be performed for cooling.
The temperature controller 138 may be a thermostat. When the temperature of the heat source 125 is increased to a predetermined temperature or higher, the temperature controller 138 stops supply of electricity to the heat source 125 so that the heat source 125 does not generate heat any more. The temperature controller 138 may include a bimetal.
The heat source 125 may be disposed to directly radiate heat onto at least a part of the inner surface of the fusing belt 121. The heat source 125 may be inserted into the heat source seat 132, which will be described below, and disposed to face the fusing belt 121. Since the heat source 125 may be disposed to directly transmit heat from a lower portion of the member body 131 to the fusing belt 121, heat loss can be reduced, and thus heat transfer efficiency can be improved.
The heat source 125 may include a heating layer (not shown) and insulating layers (not shown). A pair of the insulating layers may be disposed on and under the heating layer. A ceramic material including Al203, AlN, or the like or a metal material including Ag—Pd alloy or the like may be applied to the heating layer. The heating layer may include an electrode 126 to which a connector 129 is connected for supplying electricity and a heater 127 to generate heat using the electricity received through the electrode 126.
The electrode 126 may be provided at one side of the heat source 125 separated from the pressing support member 150. When the heat source 125 is mounted on the guide member 130 and connected to the connector 129, the electrode 126 may receive electricity through the connector 129.
The heater 127 generates heat using electricity received through the electrode 126. The heater 127 may be formed extending in the width direction X of the heating member 120. The heater 127 may be manufactured as a pattern by screen-printing Ag—Pd particle material on the heat source body 127a formed of a ceramic material and sintering the resultant heat source body 127a. Although not shown, the above-described insulating layer may be provided on the pattern of the heater 127. The heater 127 may be formed as two lines extending in the width direction X of the heating member 120 as illustrated in
As illustrated in
According to the above configuration, in the image forming apparatus 1 according to an example of the disclosure, in the fusing device 100, a connecting position where the electrode 126 is connected to the connector 129 may be fixed even when the heat source 125 is heated and thus expends and/or is deformed. Because the connecting position where the electrode 126 is connected to the connector 129 is fixed, damage on the electrode 126 can be prevented, and lifetime of the fusing device 100 may extend. Furthermore, a fire risk caused by connecting failures can be removed.
The fusing device 200 according to an example of the disclosure is described with reference to
A pressing support member 250 of the fusing device 200 may include leaf springs 251. Two leaf springs 251 may be provided as illustrated in
The leaf spring 251 may be provided at one side of a body 231 of the guide member 230 and may apply a force to the other side opposite the one side of the body 231. According to an example configuration, when the heat source 225 is mounted on the heat source seat 232, the leaf spring 251 presses the heat source 225 toward the other side opposite the one side, where the leaf spring 251 of the heat source seat 232 is provided, so as to fix a position of the heat source 225 at the other side. By fixing the position of the heat source 225, an electrode 226 of the heat source 225 may maintain a connecting position where the electrode 226 is connected to the connector 129. Accordingly, a heater 227 provided on a heat source body 227a may generate heat.
Similar to the example illustrated in
The leaf spring 251 may include a fixing portion 251a formed to be bent at one end thereof to face the pressing member 110. When the heat source 225 is mounted on the heat source seat 232, the fixing portion 251a may support the heat source 225 in an inward direction of the heat source seat 232. When a pressing pressure of the pressing member 110 is released, the fixing portion 251a prevents the heat source 225 from drooping in a direction of gravity, and thus, when a paper sheet is discharged, damage to the fusing belt 121 due to drooping of the heat source 225 may be prevented.
As illustrated in
The fusing device 300 according to the example illustrated in
In the fusing device 300 according to the example illustrated in
The fusing device 400 according to an example of the disclosure is described with reference to
The fusing device 400 may include a plurality of elastic members 455 provided at both sides (a Y direction) of a heat source 425, similar to the elastic members 355 in the example illustrated in
Accordingly, when the heat source 425 is mounted on the heat source seat 432, the plurality of elastic members 451 and 455 press and fix the heat source 425 in three directions so that a state in which the one side where the electrode 426 is provided is in contact with the inner surface of the heat source seat 432 is maintained.
In the fusing device 400 according to the example illustrated in
The fusing device 500 according to an example of the disclosure will be described with reference to
A heat source seat 532 of the fusing device 500 may include an opening 534 formed so that a corner portion of one side surface thereof is open.
When the heat source 525 expands and/or is deformed in the heat source seat 532, a corner portion of the heat source 525 collides with the corner portion of the heat source seat 532, and thus, the corner portion of the heat source 525 is damaged.
In the fusing device 500 according to the example illustrated in
In the fusing device 500 according to the example illustrated in
The fusing device 600 according to an example of the disclosure will be described with reference to
A heat source seat 632 of the fusing device 600 may include an opening 634 formed so that both side surface of a corner portion thereof are open. When both side surfaces of the corner portion of the heat source seat 632 are open for the opening 634, a collision possibility of the corner portion of the heat source 625 with the heat source seat 632 is more decreased than in the case in which only one side surface is open for the opening 534 as shown in
In the fusing device 600 according to the example illustrated in
The fusing device 700 according to an example of the disclosure will be described with reference to
Protrusions 732a may be provided on a surface of a heat source seat 732 of the fusing device 700 toward the pressing member 110. The protrusions 732a may be formed protruding a preset length from the surface on which a heat source 725 of the heat source seat 732 is mounted.
The heat source 725 may be in contact with the protrusions 732a and mounted on the heat source seat 732. Since the heat source 725 has to transmit heat to the fusing belt 121 disposed on one side opposite the other side in contact with the protrusions 732a, it indicates that heat loss occurs when heat is transmitted to the side surface where the protrusions 732a are provided.
In the fusing device 700 illustrated in
In the fusing device 700 according to the example illustrated in
As described above, the image forming apparatus 1 according to examples of the disclosure can maintain contact points between the heat sources, for example, heat sources 125, 225, 325, 425, 525, 625, and 725 and the connectors, for example, connectors 129 and 729, and thus damage to the heat sources, for example, heat sources 125, 225, 325, 425, 525, 625, and 725 can be prevented.
It is an aspect of the disclosure to provide a fusing device capable of fixing a position of a heat source deformed by heat at high temperature in a heating member and an image forming apparatus having the same.
It is an aspect of the disclosure to provide a fusing device capable of maintaining a contact point between a heat source and a connector by fixing position of a heat source and an image forming apparatus having the same.
It is an aspect of the disclosure to provide a fusing device capable of preventing damage to a heat source deformed by heat at high temperature and an image forming apparatus having the same.
It is an aspect of the disclosure to provide a fusing device capable of reducing a temperature ramp-up time of a heating member by reducing heat loss of a heat source and an image forming apparatus having the same.
Although various examples have been shown and described, changes may be made to these examples without departing from the principles and spirit of the disclosure, the scope of which is defined in the claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2015-0150909 | Oct 2015 | KR | national |
This application is a continuation of U.S. patent application Ser. No. 15/334,748, filed Oct. 26, 2016, which is currently pending, and claims the priority benefit of Korean Application No. 10-2015-0150909, filed Oct. 29, 2015, in the Korean Intellectual Property Office, the disclosures of each of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 15334748 | Oct 2016 | US |
Child | 15921256 | US |