FUSION CAGE WITH IN-LINE SINGLE PIECE FIXATION

Information

  • Patent Application
  • 20120078371
  • Publication Number
    20120078371
  • Date Filed
    September 20, 2011
    13 years ago
  • Date Published
    March 29, 2012
    12 years ago
Abstract
Methods for securing a intervertebral cage to one or more levels of the spine with fixation. The fixation, which is typically a staple, is intended to be driven perpendicular to the proximal face of the cage and in-line with the inserter. After the cage is placed and positioned according to surgeon preference, a single piece fixation clip is then deployed and fixed in a manner that produces a zero-profile device.
Description
BACKGROUND OF THE INVENTION

Spine surgeons have articulated a desire not to insert a plate on the anterior surface of a vertebral body and then place fixation devices such as bone screws through that plate. Often times, the plate may be considered to be too proud and its profile can sometimes cause patient discomfort and may be related to dysphasia.


PCT Published Patent Application WO 02/013732 (Bramlet) discloses an apparatus and method for fusing opposing spinal vertebrae. The implant includes a body assembly and a retention member coupled to the body assembly. The retention member includes a tang where the tang is extendible from the body assembly. The method includes the step of inserting an implant between adjacent vertebrae with a retention member of the implant in a first retracted configuration. The method also includes the step of configuring the retention member in a second extended configuration wherein the retention member is in its second extended configuration, a portion of a tang of the retention member extends from the implant and into at least one of the adjacent vertebrae.


U.S. Pat. No. 6,336,928 (DePuy France) discloses a device for joining at least two vertebral bodies, which comprises at least one plate equipped at each end with anchoring parts which can be introduced substantially vertically into seats previously established in the vertebral bodies to be joined, and then, after introduction, can be folded back at an angle towards one another in order to exert a constant compression of the vertebral bodies and to ensure perfect anchoring, wherein each anchoring part is connected to the ends of the corresponding plate via a central connection zone delimiting two profiled notches in order to permit deformation of the zone, in such a way that each pair of anchoring parts permits a compression, both at the level of the plate and at the level of its ends, and in such a way that the anchoring parts at each end of the plate permit a clamping which prevents any extraction.


U.S. Pat. No. 7,594,931 (LDR I) discloses an intervertebral arthrodesis for insertion in an intervertebral space separating opposite faces of two adjacent vertebrae has a ring shaped intervertebral cage having a bar that extends perpendicular to the axis of the spine. The bar has a height less than the rest of the cage. A surface of the cage contacting the vertebrae has an undulating shape for limiting sliding of the cage in a plane parallel to the vertebrae faces.


PCT Published Patent Application WO2008/149223 (LDR II) discloses an intersomatic cage, an intervertebral prosthesis, an anchoring device and an instrument for implantation of the cage or the prosthesis and the anchoring device, as well as a system and a method for implanting spinal implants and anchoring devices in vertebrae. An intersomatic cage or an intervertebral prosthesis fit closely to the anchoring device, which includes a body of elongated shape on a longitudinal axis, of curved shape describing, along the longitudinal axis, an arc whose dimensions and radius of curvature are designed in such a manner that the anchoring device may be implanted in the vertebral plate of a vertebra by presenting its longitudinal axis substantially along the plane of the intervertebral space, where the anchoring device is inserted, by means of the instrument,; through a slot located in at least one peripheral wall of the cage or on at least one plate of the intervertebral disc prosthesis to penetrate into at least one vertebral plate


PCT Published Patent Application WO2010/028045 (Synthes) discloses an intervertebral implant for insertion into an intervertebral disc space between adjacent vertebral bodies or between two bone portions. The implant includes a spacer portion, a plate portion operatively coupled to the spacer portion and one or more blades for securing the implant to the adjacent vertebral bodies. The blades preferably include superior and inferior cylindrical pins for engaging the adjacent vertebral bodies. The implant may be configured to be inserted via a direct lateral trans-psoas approach. Alternatively, the implant may be configured for insertion via an anterior approach


US Patent Publication No. 2005-0149192 & 2005-0149193 (Zucherman I and II) disclose an intervertebral implant has a fusion body with at least one keel that anchors the implant into cancellous bone of at least one vertebral body. A method for implantation includes lateral implantation of the implant.


US Patent Publication No. 2004-0260286 (Ferree) discloses intradiscal components associated with Total Disc Replacements (TDRs), for example, are maintained in a disc space with keels having attributes that resist extrusion, pull-out, and/or backout. In the preferred embodiment, the keel is curved to resist extrusion, particularly anterior or posterior extrusion. The invention may include a TDR with a pair of endplates, each with a keel extending into a different vertebral body, and wherein the keels are angled or curved in different directions to resist extrusion. In alternative embodiments, the keel may include one or more members that extend outwardly to resist extrusion. Such members may be spring-biased, composed of a shape-memory material, or extend outwardly in response to an applied mechanical force, as might be applied by turning a screw. The keel may further include a bone-ingrowth plug or coating or ‘teeth’ to resist extrusion. Keels according to the invention may also be configured to resist extrusion through the addition of an elongate member that penetrates a vertebral body and the keel. Such a member may be a secondary keel or screw.


US Patent Publication No. 2008-0167666 (Fiere) discloses equipment including at least one U-shaped clip whose lateral branches have sections and widths such that they may be inserted in the vertebral bodies of two vertebrae by impaction on the intermediate branch of the clip, so as to rest along the cortical bones of the vertebral bodies, and whose intermediate branch is deformable in such a way as to allow a reduction of the distance between the lateral branches; the intermediate branch, before implantation, has a length such that one of the lateral branches may be positioned slightly above the cortical bone forming the plate of the subjacent vertebra while the other lateral branch may be positioned slightly below the cortical bone forming the plate of the subjacent vertebra, and has, after deformation, a length such that the two lateral branches may be brought closer to each other.


U.S. Pat. No. 6,773,437 (Ogilvie) discloses a fusionless method of correcting spinal deformities in growing adolescents, utilizing a shape memory alloy staple. Various embodiments of the shape memory alloy staple include features such as barbs on the inner and outer surfaces of the prongs in the shape memory alloy staple as well as the use of notches on the crossbar or cross plate connecting the prongs to the shape memory alloy staple. In some embodiments, the shape memory alloy staple has an aperture defined through the cross plate for receiving a bone screw or other bone anchor which in turn allows the interconnection of a longitudinal member.


US Patent Publication No. US 2010-0004747 (Lin) discloses a trans-vertebral and intra-vertebral plate and a rectangular cage with a slot for the plate of spinal fixation device are for neutralizing intervertebral movement for the spinal interbody fusion. The rectangular cage with a vertical or oblique slot is inserted into the intervertebral space from the lateral or anterior side of the spinal column and then the plate is inserted through the slot of the cage and hammered into and buried inside two adjacent vertebral bodies, to achieve three-dimensional intervertebral fixation.


US2010-0204739 (Bae) discloses a system for spinal surgery including a prosthesis comprising a plurality of bone anchors which engage an intervertebral construct for fusion or motion preservation. The fusion construct comprises a spacer optionally encircled by a jacket. The motion preservation construct may comprise an articulating disc assembly or an elastomeric disc assembly. Any of the constructs may occupy the intervertebral disc space between adjacent vertebrae after removal of an intervertebral disc. The anchors slidingly engage the construct to securely fix the prosthesis to the vertebrae. The anchors and jacket of the fusion construct provide a continuous load path across opposite sides of the prosthesis so as to resist antagonistic motions of the spine.


SUMMARY OF THE INVENTION

The present invention relates to fixing an intervertebral fusion cage to its adjacent vertebral bodies with a single staple, wherein each tyne of the staple traverses the anterior wall of the cage at an angle so that the staple enters both of the vertebral bodies. The staple is designed to be a zero-profile staple.


Generally, the present invention relates to methods for securing the cage to one or more levels of the spine with fixation. The fixation, which is typically a staple, is intended to be driven perpendicular to the proximal face of the cage, and in-line with the inserter. After the cage is placed and positioned according to surgeon preference, a single piece fixation clip is then deployed and fixed in a manner that produces a zero-profile device.


The staple's shape may be designed to provide compression onto the cage once placed in its desired location.


The device of the present invention allows for a smaller incision and access site, and the in-line nature of the staple also frees the surgeon from having to insert the staple at a high angle through sometimes challenging approaches.


Therefore, the present invention is advantageous because it allows for fixation of the cage to each of the vertebral bodies via a single staple. The staple is preferably designed to provide an essentially zero-profile device. This staple may be inserted fully through or partially through a side wall of the cage and into the adjacent vertebral bodies. Further, these staples may be designed to provide compression to the graft held within the cage and thereby promote fusion.


In certain embodiments, the staple is designed to be tapped flush to the vertebral body. The staple may also provide compression onto the graft using a shape memory or spring material. In certain embodiments, the staple may allow for independent cage insertion and staple insertion, with the option to either insert the staple in-line with the cage or to disengage the staple from the cage and place it anywhere about the cage.





DESCRIPTION OF THE FIGURES


FIG. 1
a discloses a perspective view of a zero profile device of the present invention.



FIG. 1
b discloses a staple of the present invention.



FIG. 2 discloses a device of the present invention having a staple having a pair of sharp tips.



FIG. 3 discloses a device of the present invention having a staple having skewed tynes.



FIG. 4
a discloses an inserter of the present invention having a device of the present invention mounted thereon.



FIG. 4
b discloses the inserter of FIG. 4a.



FIG. 5
a discloses a device of the present invention having a staple wherein each tyne has an enlarged head.



FIG. 5
b discloses a device of the present invention having a staple wherein each tyne has a plurality of teeth.



FIG. 6
a discloses an inserter of the present invention having a device of the present invention mounted thereon.



FIG. 6
b discloses a magnified view of the distal end of FIG. 6a.



FIG. 7
a discloses a staple of the present invention having two tynes extending from each end of its crossbar.



FIG. 7
b discloses a staple of the present invention having two tynes extending from a first end of its crossbar, and one tyne extending from the second end of the crossbar.



FIGS. 8
a and 8b disclose a side view of the same device of the present invention in which the staple has a first and a second configuration.



FIG. 9 discloses a device of the present invention having a staple wherein each tyne has a plurality of teeth.



FIG. 10 discloses a device of the present invention in which the tynes of the staple curve back towards to the cage.



FIG. 11 discloses a device of the present invention in which the tynes of the staple curve so that the distal ends thereof run substantially parallel to the cage.



FIGS. 12
a-12d disclose various side and cross-sectional views of an inserter for devices of the present invention.



FIGS. 13
a-d disclose steps in one method of inserting the device of the present invention.



FIG. 14 discloses an implant of the present invention in which the tynes extend through the posterior face of the anterior wall.





DETAILED DESCRIPTION OF THE INVENTION

Now referring to FIGS. 1a and 1b, there is provided (claim 1) a zero-profile intervertebral fusion device comprising:

    • a) an intervertebral fusion cage 1 comprising an anterior wall 3 having an anterior face 5 having a recess 7 therein, a posterior wall 9, a pair of side walls 11 connecting the anterior and posterior walls, an upper surface 13, a lower surface 14, and a through hole 15 extending from the upper surface to the lower surface, the cage having an anterior end 17,
    • b) a staple 21 comprising a first crossbar 23 and first 25 and second 27 tynes extending therefrom,


      wherein at least a portion of the first crossbar of the staple is disposed in the recess in the anterior face of the anterior wall, and


      wherein the first tyne extends above the upper surface of the cage and the second tyne extends below the bottom surface of the cage,


      wherein the anterior face is the anterior end of the cage.


This cage of FIG. 1 differs from that of Bramlet (FIGS. 1 and 2) in that the cage of the present invention is zero profile (whereas the cap of Bramlet projects out from the cage wall).


In some embodiments (as in FIGS. 5b and 9), each tyne of the staple comprises a plurality of teeth 29. These teeth further augment the fixation quality of the staple that secures the cage to the opposing vertebral bodies.


In some embodiments (as in FIGS. 8a and 8b), the staple comprises a shape memory material. This feature allows the staple to reconfigure itself upon warming (or upon removal of stress) to compress the regions directly above, below and through the cage, thereby promoting fusion through the cage.


In some embodiments (as in FIG. 3), the tynes 31 are disposed in a skewed orientation. The skewed nature of the tynes discourages their simultaneous backout from the vertebral bodies. The skewed nature may be produced by materials properties, by cage geometry, by manipulation by an instrument, by adding a component, or by recess geometry.


In some embodiments, at least one tyne extends from the first crossbar at an obtuse angle from the first crossbar. This orientation allows the tyne to extend above the cage and into the adjacent vertebral body.


In some embodiments, the staple comprises at least two crossbars 33, 35. The use of two crossbars allows a passageway to be formed therbetween (as in FIGS. 5a and 5b). A set screw 36 may be inserted into this passageway so as to provide security of the staple.


In some embodiments, (as in FIG. 5a) the two cross bars substantially form an annulus 35. The annular passageway of this embodiment is advantageous to the use of the set screw described above.


In some embodiments (as in FIG. 5a) the set screw 36 passes through the annulus and fully into the recess in the anterior face of the anterior wall. This produces the zero profile characteristic desirable in cervical cages.


In some embodiments (as in FIG. 3), at least one tyne 31 extends from the first crossbar at an obtuse angle from the anterior wall. This quality allows the tyne to penetrate deep into the opposing vertebral bodies.


Still referring to FIG. 1a and FIG. 1b, there is provided (claim 10) a two-piece intervertebral fusion device consisting of:

    • a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,
    • b) an integral staple comprising a first crossbar and first and second tynes extending therefrom,


      wherein at least a portion of the first crossbar of the staple is disposed in the recess in the anterior face of the anterior wall, and


      wherein the first tyne extends above the upper surface of the cage and the second tyne extends below the bottom surface of the cage.


This cage of FIG. 1a further differs from that of Bramlet (FIGS. 1 and 2) in that the cage of the present invention has no compression cap (whereas Bramlet requires a compression cap to secure the staple).


Thus, (as in FIG. 1a) in some embodiments (claim 35), the intervertebral fusion device consists of the cage and the staple.


In some embodiments (as in FIGS. 7a and 7b),at least one tyne 45 has a width and a height, wherein the width of the tyne is at least two times the height. The wide nature of this tyne provides further security to the fixation quality of the staple, thereby enhancing the fixation of the cage to the vertebral bodies.


In some embodiments (claim 24) (as in FIGS. 8a and 8b), the staple comprises a shape memory material and has a martensitic configuration 47 and an austenitic configuration 49, wherein at least one tyne forms a first angle a with the crossbar in the martensitic configuration and a second angle β with the crossbar in the austenitic configuration. This quality allows the staple to reconfigure itself upon warming to compress the regions directly above, below and through the cage, thereby promoting fusion through the cage.


In some shape memory embodiments (as in FIGS. 8a and 8b), the first angle a is greater than the second angle. This promotes the desirable compression of the bone graft discussed above.


In some embodiments, the device further comprises a bone graft material disposed within the throughhole. This bone graft enhances the possibilities of providing bony fusion through the cage.


In some embodiments thereof, the staple provides compression of the bone graft material. Compression of the bone graft enhances the possibilities of providing bony fusion through the cage.


In some embodiments (as in FIG. 10), each tyne has a distal end portion 51 that curves inward. These inwardly curving tynes can provide compression of the bone graft disposed in the cage, thereby enhancing the possibilities of providing bony fusion through the cage.


In some embodiments (as in FIG. 5b), the recess in the anterior wall extends from the upper surface to the lower surface of the cage. The feature allows the staple to be fully seated in the anterior wall, thereby providing a zero profile device. In particular, each tyne thereof is disposed fully posterior to the anterior face of the anterior wall.


In some embodiments (as in FIGS. 5a and 5b), the staple extends through the upper surface of the cage and through the bottom surface of the cage. This allows the staple to enter the vertebral bodies at a high elevation while providing the desirable zero profile quality.


In some embodiments (as in FIG. 14), the anterior wall 58 of the cage has a posterior face 55, and the first 57 and second 59 tynes extend through the posterior face of the anterior wall. This embodiment ensures that the tynes penetrate the opposed vertebral bodies further towards the central region of the vertebral endplates, thereby providing a more balanced fixation of the cages to the vertebral bodies.


In some embodiments (as in FIG. 3), the recess defines an upper hole extending through the anterior wall and a lower hole extending through the anterior wall, and the tynes extend through the upper and lower holes.


In some embodiments (as in FIG. 2), the tynes extend to a sharp distal tip 61. This sharp tip assists in penetrating the opposed vertebral bodies during staple insertion.


In some embodiments (as in FIG. 11), a proximal portion 63 of the first tyne extends in a first direction and a distal portion 65 of the first tyne extends in a second direction, the second direction being more parallel to the upper surface of the cage than the first direction.


In some embodiments (as in FIG. 10), a proximal portion 67 of the first tyne extends away from the cage and a distal portion 51 of the first tyne extends towards the cage.


In some embodiments (as in FIGS. 8a and 8b), the distal ends 71 of the tynes in the first configuration are separated by a first distance D1, and the distal ends 73 of the tynes in the second configuration are separated by a second distance D2, and the second distance D2 is less than the first distance D1.


In some embodiments (as in FIG. 5a), both the set screw and the intermediate portion of the first crossbar of the staple are fully disposed in the recess in the anterior face of the anterior wall.


In some embodiments, (as in FIGS. 7a and 7b), the posterior face 75 of the crossbar forms a sharp blade.


In some embodiments (as in FIGS. 5a, 7a and 7b), the distal portion of each tyne 79 forms an enlarged head 81.


In some embodiments (as in FIG. 1a) the crossbar of the staple comprises an anterior face 83 having a recess 85 therein adapted for coupling to an inserter instrument.


In some embodiments (as in FIG. 1a), the cage has at least one recess, wherein the second configuration is dictated by recess geometry or a cover plate


Now referring to FIGS. 12a-12d, there are provided various side and cross-sectional views of an inserter 200 for devices of the present invention. The inserter includes an outer cannula, an outer grabber having a pair of distal prongs; an inner grabber tip having a single distal head, a proximal knob that actuates the inner grabber tip; an intermediate knob that selectively deploys either the staple or the cage, and a distal knob that actuates the outer grabber tip. The outer grabber tip is adapted to hold and insert the cage of the present invention. The inner grabber tip is adapted to hold and inserter the staple of the present invention.


Other views of assemblies of the present invention in which a cage 101 is mounted on the inserter 103 are shown in FIGS. 4a, 6a and 6b. View of one style of inserter 103 that can be used with the present invention is shown in FIG. 4b.



FIGS. 13
a-d disclose one method of inserting the device of the present invention. In FIG. 13a, a staple 201 is shown mounted on the distal end of the inner grabber tip 203. In FIG. 13b, the staple 201 and inner grabber tip are retracted into the inserter cannula. Next, as shown in FIG. 13c, with the inner grabber tip and mounted staple retracted, a cage 205 of the present invention is mounted onto the outer grabber tip 207. The cage is then inserted into the intervertebral disc space while in this configuration. Lastly, now referring to FIG. 13d, the staple is deployed over the inserted cage as shown and thereby inserted into the opposed vertebral bodies. The staple can be made of conventional structural biomaterials. Typically, it is made of a metallic biomaterials such as titanium alloy, stainless steel, nitinol, or cobalt chrome.


In some embodiments, the anterior wall of the cage is made of a metallic material, such as titanium alloy, stainless steel, or cobalt chrome, while the remainder of the cage is made from a polymeric material or a structural allograft material. Alternatively, the device can be made entirely from any one of these specified materials.


If a metal is chosen as the material of construction, then the metal is preferably selected from the group consisting of nitinol, titanium, titanium alloys (such as Ti-6Al-4V), chrome alloys (such as CrCo or Cr—Co—Mo) and stainless steel.


If a polymer is chosen as a material of construction, then the polymer is preferably selected from the group consisting of polycarbonates, polyesters, (particularly aromatic esters such as polyalkylene terephthalates, polyamides; elastomers; polyalkenes; poly(vinyl fluoride); PTFE; polyarylethyl ketone PAEK; and mixtures thereof.


In embodiments in which a bone graft material is placed within the through hole of the device, the bone graft material can be selected from the group consisting of hydroxyapatite, tricalcium phosphate, allograft, and growth factors such as TGF-beta (and preferably BMPs—more preferably, rhGDF-5).


In some embodiments, a component is made of a stainless steel alloy, preferably BioDur® CCM Plus® Alloy available from Carpenter Specialty Alloys, Carpenter Technology Corporation of Wyomissing, Pa. In some embodiments, the component is made from a composite comprising carbon fiber. Composites comprising carbon fiber are advantageous in that they typically have a strength and stiffness that is superior to neat polymer materials such as a polyarylethyl ketone PAEK. In some embodiments, the component is made from a polymer composite such as a PEKK-carbon fiber composite.


Preferably, the composite comprising carbon fiber further comprises a polymer. Preferably, the polymer is a polyarylethyl ketone (PAEK). More preferably, the PAEK is selected from the group consisting of polyetherether ketone (PEEK), polyether ketone ketone (PEKK) and polyether ketone (PEK). In preferred embodiments, the PAEK is PEEK.


In some embodiments, the carbon fiber comprises between 1 vol % and 60 vol % (more preferably, between 10 vol % and 50 vol %) of the composite. In some embodiments, the polymer and carbon fibers are homogeneously mixed. In others, the material is a laminate. In some embodiments, the carbon fiber is present in a chopped state. Preferably, the chopped carbon fibers have a median length of between 1 mm and 12 mm, more preferably between 4.5 mm and 7.5 mm. In some embodiments, the carbon fiber is present as continuous strands.


In especially preferred embodiments, the composite comprises:

  • a) 40-99% (more preferably, 60-80 vol %) polyarylethyl ketone (PAEK), and
  • b) 1-60% (more preferably, 20-40 vol %) carbon fiber,


    wherein the polyarylethyl ketone (PAEK) is selected from the group consisting of polyetherether ketone (PEEK), polyether ketone ketone (PEKK) and polyether ketone (PEK).


In some embodiments, the composite consists essentially of PAEK and carbon fiber. More preferably, the composite comprises 60-80 wt % PAEK and 20-40 wt % carbon fiber. Still more preferably the composite comprises 65-75 wt % PAEK and 25-35 wt % carbon fiber.

Claims
  • 1. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface, the cage having an anterior end, b) a staple comprising a first crossbar and first and second tynes extending therefrom,
  • 2. The device of claim 1 wherein each tyne comprises a plurality of teeth.
  • 3. The device of claim 1 wherein the staple comprises a shape memory material.
  • 4. The device of claim 1 wherein the tynes are disposed in a skewed orientation.
  • 5. The device of claim 1 wherein at least one tyne extends from the first crossbar at an obtuse angle from the first crossbar.
  • 6. The device of claim 1 wherein the staple comprises at least two crossbars extending between the tynes.
  • 7. The device of claim 6 wherein the two cross bars substantially form an annulus.
  • 8. The device of claim 7 further comprising: c) a set screw passing through the annulus and disposed fully into the recess in the anterior face of the anterior wall.
  • 9. The device of claim 1 wherein at least one tyne extends from the first crossbar at an obtuse angle from the anterior wall.
  • 10. A two piece intervertebral fusion device consisting of: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,b) a staple comprising a first crossbar and first and second tynes extending therefrom,
  • 11. The device of claim 10 wherein at least one tyne has a width and a height, wherein the width of the at least one tyne is at least two times the height.
  • 12. The device of claim 10 wherein the staple comprises a shape memory material and has a martensitic configuration and an austenitic configuration, wherein at least one tyne forms a first angle with the crossbar in the martensitic configuration and a second angle with the crossbar in the austenitic configuration.
  • 13. The device of claim 10 wherein the first angle is greater than the second angle.
  • 14. The device of claim 10 wherein the staple comprises two crossbars.
  • 15. The device of claim 10 wherein the two crossbars substantially form an annulus.
  • 16. The device of claim 10 wherein the staple provides compression of the bone graft material.
  • 17. The device of claim 10 further comprising: c) a bone graft material disposed within the throughhole.
  • 18. The device of claim 10 wherein each tyne has a distal end portion that curves inward.
  • 19. The device of claim 10 wherein the recess in the anterior wall extends from the upper surface to the lower surface of the cage.
  • 20. The device of claim 10 wherein each tyne is disposed fully posterior to the anterior face of the anterior wall.
  • 21. The device of claim 10 wherein the staple extends through the upper surface of the cage and through the bottom surface of the cage.
  • 22. The device of claim 10 wherein the anterior wall has a posterior face, and wherein the first and second tynes extend through the posterior face of the anterior wall.
  • 23. The device of claim 10 wherein the recess defines an upper hole extending through the anterior wall and a lower hole extending through the anterior wall, and wherein the tynes extend through the upper and lower holes.
  • 24. The device of claim 10 wherein at least one tyne extends into the through hole.
  • 25. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,b) a single staple comprising a first crossbar and first and second tynes extending therefrom,
  • 26. The device of claim 24 further comprising: c) a bone graft material disposed within the throughhole,
  • 27. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,b) a single staple comprising a first crossbar and first and second tynes extending therefrom,
  • 28. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,b) a single staple comprising a first crossbar and first and second tynes extending therefrom,
  • 29. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,b) a staple comprising a first crossbar and first and second tynes extending therefrom, each tyne having a distal end,
  • 30. The device of claim 29 wherein the cage has at least one recess, wherein the second configuration is dictated by recess geometry or a cover plate.
  • 31. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,b) a staple comprising a first crossbar and first and second tynes extending therefrom, the cross bar comprising an intermediate portion,c) a set screw passing through the staple,
  • 32. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface,b) a staple comprising a first crossbar and first and second tynes extending therefrom, the first crossbar having a posterior face,
  • 33. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface, the cage having an anterior end,b) a staple comprising a first crossbar and first and second tynes extending therefrom, each tyne having a proximal portion and a distal portion
  • 34. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface, the cage having an anterior end,b) a staple comprising a first crossbar and first and second tynes extending therefrom, each tyne having a proximal portion and a distal portion,
  • 35. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface, the cage having an anterior end,b) a staple comprising a first crossbar and first and second tynes extending therefrom, each tyne having a proximal portion and a distal portion,
  • 36. An intervertebral fusion device comprising: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface, the cage having an anterior end,b) a staple comprising a first crossbar and first and second tynes extending therefrom,
  • 37. An intervertebral fusion device consisting of: a) an intervertebral fusion cage comprising an anterior wall having an anterior face having a recess therein, a posterior wall, a pair of side walls connecting the anterior and posterior walls, an upper surface, a lower surface, and a through hole extending from the upper surface to the lower surface, the cage having an anterior end,b) a staple comprising a first crossbar and first and second tynes extending therefrom,
  • 38. A method of inserting a fusion device into an intervertebral disc space of a patient, comprising the steps of: a) selecting a fusion cage having an anterior wall having an anterior face having a recess therein,b) inserting the cage into the disc space so that the anterior face faces anteriorly,c) placing a staple into the recess in the anterior face to produce a zero profile device.
RELATED APPLICATIONS

This application claims priority from U.S. Ser. No. 61/385,959, filed on Sep. 23, 2010, and entitled “Stand Alone Intervertebral Fusion Device ” (DEP6341USPSP), and is related to non-provisional U.S. Ser. No. ______, filed on even date, entitled “Stand Alone Intervertebral Fusion Device” (DEP6341USNP), the specifications of which are incorporated by reference in their entireties. This application claims priority from U.S. Ser. No. 61/466,309, filed on Mar. 22, 2011, and entitled “Novel Implant Inserter Having a Laterally-Extending Dovetail Engagement Feature” (DEP6392USPSP), and is related to non-provisional U.S. Ser. No ______, filed on even date, entitled “Novel Implant Inserter Having a Laterally-Extending Dovetail Engagement Feature” (DEP6392USNP), the specifications of which are incorporated by reference in their entireties. This application claims priority from U.S. Ser. No. 61/466,321, filed on Mar. 22, 2011, and entitled “Fusion Cage with In-Line Single Piece Fixation” (DEP6394USPSP), the specification of which is incorporated by reference in its entirety.

Provisional Applications (3)
Number Date Country
61385959 Sep 2010 US
61466309 Mar 2011 US
61466321 Mar 2011 US