Fusion formable alkali-free intermediate thermal expansion coefficient glass

Information

  • Patent Grant
  • 8975199
  • Patent Number
    8,975,199
  • Date Filed
    Wednesday, August 8, 2012
    12 years ago
  • Date Issued
    Tuesday, March 10, 2015
    9 years ago
Abstract
A compositional range of high strain point and/or intermediate expansion coefficient alkali metal free aluminosilicate and boroaluminosilicate glasses are described herein. The glasses can be used as substrates or superstrates for photovoltaic devices, for example, thin film photovoltaic devices such as CdTe or CIGS photovoltaic devices or crystalline silicon wafer devices. These glasses can be characterized as having strain points≧600° C., thermal expansion coefficient of from 35 to 50×10−7/° C.
Description
BACKGROUND

1. Field


Embodiments relate generally to alkali-free glasses and more particularly to alkali-free, high strain point and/or intermediate expansion coefficient, fusion formable aluminosilicate, and/or boroaluminosilicate glasses which may be useful in photovoltaic applications, for example, thin film photovoltaic devices.


2. Technical Background


Substrate glasses for copper indium gallium diselenide (CIGS) photovoltaic modules typically contain Na2O, as diffusion of Na from the glass into the CIGS layer has been shown to result in significant improvement in module efficiency. However, due to the difficulty in controlling the amount of diffusing Na during the CIGS deposition/crystallization process, some manufacturers of these devices prefer to deposit a layer of a suitable Na compound, e.g. NaF, prior to CIGS deposition, in which case any alkali present in the substrate glass needs to be contained through the use of a barrier layer. Moreover, in the case of cadmium telluride (CdTe) photovoltaic modules, any Na contamination of the CdTe layer is deleterious to module efficiency and, therefore, typical Na-containing substrate glasses, e.g. soda-lime glass, require the presence of a barrier layer. Consequently, use of an alkali-free substrate glass for either CIGS, silicon, wafered crystalline silicon, or CdTe modules can obviate the need for a barrier layer.


SUMMARY

The intermediate thermal expansion coefficient and/or the alkali-free glasses disclosed herein are especially compatible with CdTe photovoltaic devices and may increase the efficiency of the cell.


One embodiment is a glass comprising, in mole percent:

    • 55 to 75 percent SiO2;
    • 5 to 20 percent Al2O3;
    • 0 to 15 percent B2O3;
    • 0 to 10 percent MgO;
    • 0 to 15 percent SrO;
    • 0 to 16 percent CaO; and
    • 0 to 9 percent BaO.
    • wherein MgO+CaO+BaO+SrO is 13 to 20 percent, wherein the glass is substantially free of alkali metal, and wherein the glass has a liquidus viscosity of 100,000 poise or greater.


These glasses are advantageous materials to be used in copper indium gallium diselenide (CIGS) photovoltaic modules where the sodium required to optimize cell efficiency is not to be derived from the substrate glass but instead from a separate deposited layer consisting of a sodium containing material such as NaF. Current CIGS module substrates are typically made from soda-lime glass sheet that has been manufactured by the float process. However, use of higher strain point glass substrates can enable higher temperature CIGS processing, which is expected to translate into desirable improvements in cell efficiency.


Accordingly, the alkali-free glasses described herein can be characterized by strain points≧600° C. and thermal expansion coefficients in the range of from 35 to 50×10−7/° C., in order to minimize thermal expansion mismatch between the substrate and CIGS layer or to better match the thermal expansion of CdTe.


Finally, the preferred compositions of this disclosure have strain point well in excess of 650° C., thereby enabling CIGS or CdTe deposition/crystallization to be carried out at the highest possible processing temperature, resulting in additional efficiency gain.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the invention as described in the written description and claims hereof.


It is to be understood that both the foregoing general description and the following detailed description are merely exemplary of the invention, and are intended to provide an overview or framework for understanding the nature and character of the invention as it is claimed.


The accompanying drawing is included to provide a further understanding of the invention, and is incorporated in and constitutes a part of this specification. The drawing illustrates one or more embodiment(s) of the invention and together with the description serve to explain the principles and operation of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention can be understood from the following detailed description either alone or together with the accompanying drawing FIGURE.



FIG. 1 is a schematic of features of a photovoltaic device according to some embodiments.





DETAILED DESCRIPTION

Reference will now be made in detail to various embodiments of the invention.


As used herein, the term “substrate” can be used to describe either a substrate or a superstrate depending on the configuration of the photovoltaic cell. For example, the substrate is a superstrate, if when assembled into a photovoltaic cell, it is on the light incident side of a photovoltaic cell. The superstrate can provide protection for the photovoltaic materials from impact and environmental degradation while allowing transmission of the appropriate wavelengths of the solar spectrum. Further, multiple photovoltaic cells can be arranged into a photovoltaic module. Photovoltaic device can describe either a cell, a module, or both.


As used herein, the term “adjacent” can be defined as being in close proximity. Adjacent structures may or may not be in physical contact with each other. Adjacent structures can have other layers and/or structures disposed between them.


Moreover, where a range of numerical values is recited herein, comprising upper and lower values, unless otherwise stated in specific circumstances, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range. Further, when an amount, concentration, or other value or parameter is given as a range, one or more preferred ranges or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether such pairs are separately disclosed. Finally, when the term “about” is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to.


As used herein, the term “about” means that amounts, sizes, formulations, parameters, and other quantities and characteristics are not and need not be exact, but may be approximate and/or larger or smaller, as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art. In general, an amount, size, formulation, parameter or other quantity or characteristic is “about” or “approximate” whether or not expressly stated to be such.


The term “or”, as used herein, is inclusive; more specifically, the phrase “A or B” means “A, B, or both A and B”. Exclusive “or” is designated herein by terms such as “either A or B” and “one of A or B”, for example.


The indefinite articles “a” and “an” are employed to describe elements and components of the invention. The use of these articles means that one or at least one of these elements or components is present. Although these articles are conventionally employed to signify that the modified noun is a singular noun, as used herein the articles “a” and “an” also include the plural, unless otherwise stated in specific instances. Similarly, the definite article “the”, as used herein, also signifies that the modified noun may be singular or plural, again unless otherwise stated in specific instances.


It is noted that one or more of the claims may utilize the term “wherein” as a transitional phrase. For the purposes of defining the present invention, it is noted that this term is introduced in the claims as an open-ended transitional phrase that is used to introduce a recitation of a series of characteristics of the structure and should be interpreted in like manner as the more commonly used open-ended preamble term “comprising.”


As used herein, a glass composition having 0 wt % of a compound is defined as meaning that the compound, molecule, or element was not purposefully added to the composition, but the composition may still comprise the compound, typically in tramp or trace amounts. Similarly, “substantially free of alkali metal”, “substantially free of sodium”, “substantially free of potassium”, “sodium-free,” “alkali-free,” “potassium-free” or the like are defined to mean that the compound, molecule, or element was not purposefully added to the composition, but the composition may still comprise sodium, alkali, or potassium, but in approximately tramp or trace amounts. These tramp amounts are not intentionally included in the batch but may be present in minor amounts as impurities in the raw materials used to provide the major components of the glass.


One embodiment is a glass comprising, in mole percent:

    • 55 to 75 percent SiO2;
    • 5 to 20 percent Al2O3;
    • 0 to 15 percent B2O3;
    • 0 to 10 percent MgO;
    • 0 to 15 percent SrO;
    • 0 to 16 percent CaO; and
    • 0 to 9 percent BaO.
    • wherein MgO+CaO+BaO+SrO is 13 to 20 percent, wherein the glass is substantially free of alkali metal, and wherein the glass has a liquidus viscosity of 100,000 poise or greater.


In one embodiment, the glass, comprises, in mole percent:

    • 55 to 75 percent SiO2;
    • 5 to 13 percent Al2O2;
    • 0 to 15 percent B2O3;
    • 0 to 10 percent MgO;
    • 0 to 15 percent SrO;
    • 0 to 16 percent CaO; and
    • 0 to 9 percent BaO.


In one embodiment, the glass, comprises, in mole percent:

    • 55 to 75 percent SiO2;
    • 0 to 20 percent Al2O2;
    • 6 to 12 percent B2O3;
    • 0 to 10 percent MgO;
    • 0 to 15 percent SrO;
    • 0 to 16 percent CaO; and
    • 0 to 9 percent BaO.


In one embodiment, the glass, comprises, in mole percent:

    • 55 to 75 percent SiO2;
    • 5 to 13 percent Al2O2;
    • 6 to 12 percent B2O3;
    • 0 to 10 percent MgO;
    • 0 to 15 percent SrO;
    • 0 to 16 percent CaO; and
    • 0 to 9 percent BaO.


In one embodiment, the glass, comprises, in mole percent:

    • 55 to 75 percent SiO2;
    • 8 to 13 percent Al2O3;
    • 6 to 12 percent B2O3;
    • 0 to 7 percent MgO;
    • 0 to 12 percent SrO;
    • 0 to 16 percent CaO; and
    • 0 to 9 percent BaO.


In one embodiment, the glass, comprises, in mole percent:

    • 58 to 69 percent SiO2;
    • 8 to 13 percent Al2O3;
    • 6 to 12 percent B2O3;
    • 0 to 7 percent MgO;
    • 0 to 12 percent SrO;
    • 0 to 16 percent CaO; and
    • 0 to 9 percent BaO.


In one embodiment, the glass, comprises, in mole percent:

    • 73 to 75 percent SiO2;
    • 6 to 9 percent Al2O3;
    • 0 percent B2O3;
    • 1 to 3 percent MgO;
    • 0 percent SrO;
    • 13 to 16 percent CaO; and
    • 1 to 3 percent BaO.


In one embodiment, the glass, comprises, in mole percent:

    • 60 to 67 percent SiO2;
    • 8 to 12 percent Al2O3;
    • 6 to 12 percent B2O3;
    • 0.05 to 7 percent MgO;
    • 0 to 12 percent SrO;
    • 0.5 to 9 percent CaO; and
    • 0.5 to 8 percent BaO.


The glass is substantially free of alkali metal, for example, the content of alkali can be 0.05 mole percent or less, for example, zero mole percent. The glass, according to some embodiments, is free of intentionally added alkali metal.


The glass is substantially free of sodium, for example, the content of sodium can be 0.05 mole percent or less, for example, zero mole percent. The glass, according to some embodiments, is free of intentionally added sodium.


The glass is substantially free of potassium, for example, the content of sodium can be 0.05 mole percent or less, for example, zero mole percent. The glass, according to some embodiments, is free of intentionally added potassium.


The glass is substantially free of sodium and potassium, for example, the content of sodium can be 0.05 mole percent or less, for example, zero mole percent. The glass, according to some embodiments, is free of intentionally added sodium and potassium.


In some embodiments, the glass comprises 55 to 75 percent SiO2, for example, 58 to 69 percent SiO2, or, for example, 60 to 67 percent SiO2, or, for example, 73 to 75 percent SiO2.


As mentioned above, the glasses, according some embodiments, comprise 0 to 15 percent B2O3, for example, 6 to 12 percent. B2O3 is added to the glass to reduce melting temperature, to decrease liquidus temperature, to increase liquidus viscosity, and to improve mechanical durability relative to a glass containing no B2O3.


The glass, according to some embodiments, comprises MgO+CaO+BaO+SrO in an amount from 13 to 20 mole percent. MgO can be added to the glass to reduce melting temperature and to increase strain point. It can disadvantageously lower CTE relative to other alkaline earths (e.g., CaO, SrO, BaO), and so other adjustments may be made to keep the CTE within the desired range. Examples of suitable adjustments include increase SrO at the expense of CaO.


The glasses can comprise, in some embodiments, 0 to 15 mole percent SrO, for example, greater than zero to 15 mole percent, for example, 1 to 12 mole percent SrO. In certain embodiments, the glass contains no deliberately batched SrO, though it may of course be present as a contaminant in other batch materials. SrO contributes to higher coefficient of thermal expansion, and the relative proportion of SrO and CaO can be manipulated to improve liquidus temperature, and thus liquidus viscosity. SrO is not as effective as CaO or MgO for improving strain point, and replacing either of these with SrO tends to cause the melting temperature to increase. BaO has a similar effect coefficient of thermal expansion as SrO, if not a greater effect. BaO tends to lower melting temperature and lower liquidus temperature


The glasses, in some embodiments, comprise 0 to 16 mole percent CaO, for example, greater than 0 to 15 or, for example, 0 to 12 mole percent CaO, for example, 0.5 to 9 mole percent CaO. CaO contributes to higher strain point, lower density, and lower melting temperature.


The glass, according to one embodiment, further comprises 0 to 0.5 mole percent of a fining agent. The fining agent can be SnO2.


The glass, according to one embodiment, further comprising 0 to 2 mole percent of TiO2, MnO, ZnO, Nb2O5, Ta2O5, ZrO2, La2O3, Y2O2, P2O5, or a combination thereof. These optional components can be used to further tailor glass properties.


In some embodiments, the glass is substantially free of Sb2O2, As2O2, or combinations thereof, for example, the glass comprises 0.05 mole percent or less of Sb2O2 or As2O2 or a combination thereof. For example, the glass can comprise zero mole percent of Sb2O2 or As2O2 or a combination thereof.


Accordingly, in one embodiment, the glass has a strain point of 600° C. or greater, for example, 610° C. or greater, for example, 620° C. or greater, for example, 630° C. or greater, for example, 640° C. or greater, for example, 650° C. or greater. In some embodiments, the glass has a coefficient of thermal expansion of from 35×10−7/° C. to 50×10−7/° C., for example, 39×10−7/° C. to 50×10−7/° C. In one embodiment, the glass has a coefficient of thermal expansion of from 35×10−7/° C. to 50×10−7/° C. and a strain point of 600° C. or greater.


The glass can be fusion formed as known in the art of fusion forming glass. The fusion draw process uses an isopipe that has a channel for accepting molten glass raw material. The channel has weirs that are open at the top along the length of the channel on both sides of the channel. When the channel fills with molten material, the molten glass overflows the weirs. Due to gravity, the molten glass flows down the outside surfaces of the isopipe. These outside surfaces extend down and inwardly so that they join at an edge below the drawing tank. The two flowing glass surfaces join at this edge to fuse and form a single flowing sheet. The fusion draw method offers the advantage that, since the two glass films flowing over the channel fuse together, neither outside surface of the resulting glass sheet comes in contact with any part of the apparatus. Thus, the surface properties are not affected by such contact.


Glasses having a liquidus viscosity of greater than or equal to 100 kP, 100,000 poise, are usually fusion formable. Glass having a liquidus viscosity in the range of from 10 kP to less than 100 kP are usually float formable but not fusion formable. Some embodiments are alkali-free glasses with Tstr>630° C., α in the range of 4-5 ppm/° C., as well as liquidus viscosity (ηliq) in excess of 100,000 poise. As such, they are ideally suited for being formed into sheet by the fusion process. Moreover, many of these glasses also have a 200 poise temperature (T200) that is well below 1550° C., making them ideal candidates for lower-cost versions of the fusion process.


In one embodiment, the glass is in the form of a sheet. The glass in the form of a sheet can be strengthened, for example, thermally tempered.


The glass, according to one embodiment, is optically transparent.


In one embodiment, as shown in FIG. 1, a photovoltaic device 100 comprises the glass in the form of a sheet 10. The photovoltaic device can comprise more than one of the glass sheets, for example, as a substrate and/or as a superstrate. In one embodiment, the photovoltaic device 100 comprises the glass sheet as a substrate or superstrate 10 or 18, a conductive material 12 adjacent to the substrate, and an active photovoltaic medium 16 adjacent to the conductive material. In one embodiment, the device comprises two glass sheets, one as the superstrate and one as the substrate, having the compositions described herein. The functional layer can comprise copper indium gallium diselenide, amorphous silicon, crystalline silicon, one or more crystalline silicon wafers, cadmium telluride, or combinations thereof adjacent to the substrate or superstrate. In one embodiment, the active photovoltaic medium comprises a CIGS layer. In one embodiment, the active photovoltaic medium comprises a cadmium telluride (CdTe) layer. In one embodiment, the photovoltaic device comprises a functional layer comprising copper indium gallium diselenide or cadmium telluride. In one embodiment, the photovoltaic device the functional layer is copper indium gallium diselenide. In one embodiment, the functional layer is cadmium telluride.


The photovoltaic device 100, according to one embodiment, further comprises one or more intermediate layer(s) 14 such as a sodium containing layer, for example, a layer comprising NaF or a barrier layer disposed between or adjacent to the superstrate or substrate and the functional layer. In one embodiment, the photovoltaic device further comprises a barrier layer disposed between or adjacent to the superstrate or substrate and a transparent conductive oxide (TCO) layer, wherein the TCO layer is disposed between or adjacent to the functional layer and the barrier layer. A TCO may be present in a photovoltaic device comprising a CdTe functional layer. In one embodiment, the barrier layer is disposed directly on the glass. In one embodiment, the device comprises multiple intermediate layers such as a sodium containing layer, for example, a layer comprising NaF, and an adjacent sodium metering layer located between the superstrate and the substrate.


In one embodiment, the glass sheet is optically transparent. In one embodiment, the glass sheet as the substrate and/or superstrate is optically transparent.


According to some embodiments, the glass sheet has a thickness of 4.0 mm or less, for example, 3.5 mm or less, for example, 3.2 mm or less, for example, 3.0 mm or less, for example, 2.5 mm or less, for example, 2.0 mm or less, for example, 1.9 mm or less, for example, 1.8 mm or less, for example, 1.5 mm or less, for example, 1.1 mm or less, for example, 0.5 mm to 2.0 mm, for example, 0.5 mm to 1.1 mm, for example, 0.7 mm to 1.1 mm. Although these are exemplary thicknesses, the glass sheet can have a thickness of any numerical value including decimal places in the range of from 0.1 mm up to and including 4.0 mm.


Alkali-free glasses are becoming increasingly attractive candidates for the superstrate, substrate of CdTe, CIGS modules, respectively. In the former case, alkali contamination of the CdTe and conductive oxide layers of the film stack is avoided. Moreover, process simplification arises from the elimination of the barrier layer (needed, e.g., in the case of conventional soda-lime glass). In the latter case, CIGS module manufacturers are better able to control the amount of Na needed to optimize absorber performance by depositing a separate Na-containing layer that, by virtue of its specified composition and thickness, results in more reproducible Na delivery to the CIGS layer.


EXAMPLES

Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, and Table 7 show exemplary glasses, according to embodiments of the invention. Properties data for some exemplary glasses are also shown in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, and Table 7. In the Tables Tstr(° C.) is the strain point which is the temperature when the viscosity is equal to 1014.7 P as measured by beam bending or fiber elongation. α(10−7/° C.) in the Tables is the coefficient of thermal expansion (CTE) which is the amount of dimensional change from either 0 to 300° C. or 25 to 300° C. depending on the measurement. CTE is typically measured by dilatometry. ρ (g/cc) is the density which is measured with the Archimedes method (ASTM C693). T200 (° C.) is the two-hundred Poise (P) temperature. This is the temperature when the viscosity of the melt is 200 P as measured by HTV (high temperature viscosity) measurement which uses concentric cylinder viscometry. Tliq(° C.) is the liquidus temperature. This is the temperature where the first crystal is observed in a standard gradient boat liquidus measurement (ASTM C829-81). ηliq is the liquidus viscosity expressed in kilopoise; thus 100 kP=100,000 P. This is the viscosity of the melt corresponding to the liquidus temperature.











TABLE 1









Example

















Mole %
1
2
3
4
5
6
7
8
9
10




















MgO
6.4
6.9
6.9
4.6
4.8
6.4
4.4
4.4
2.7
2.6


CaO
8.5
6.9
9.1
5.4
5.6
5.2
7.2
5.2
2.9
2.0


SrO
0
0
0
3.6
3.8
3.5
3.5
5.5
11.8
9.6


BaO
2.4
3.4
2.6
2.4
2.5
2.3
2.3
2.3
0.7
3.6


RO
17.2
17.2
18.6
16.0
16.7
17.4
17.4
17.4
18.0
17.7


B2O3
10.0
10.0
10.8
10.7
11.2
10.3
10.3
10.3
9.0
7.5


Al2O3
11.1
11.1
12.0
11.1
11.6
10.7
10.7
10.7
9.6
9.3


SiO2
61.5
61.5
58.5
62.0
60.5
61.5
61.5
61.5
63.3
65.4


SnO2
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10


Tstr
645
642
641
643
641
642
641
642
645
649


α
41.8
40.6
41.5
40.7
41.2
40.0
41.0
41.9
46.2
46.5


ρ
2.53
2.56
2.56
2.57
2.59
2.58
2.58
2.62
2.70
2.75


T200
1473


1490
1515


Tliq
1060
1065
1050
1015
1020
1070
1040
1035
1130
1110


ηliq (kP)
205


777
459


















TABLE 2









Example

















Mole %
11
12
13
14
15
16
17
18
19
20




















MgO
4.1
5.4
1.8
0
2.0
4.4
6.4
5.4
5.4
6.4


CaO
9.9
6.4
11.0
10.0
9.0
8.5
6.5
7.5
7.5
7.5


SrO
3.3
4.3
2.9
9.0
8.0
2.0
2.0
1.0
1.0
0


BaO
2.2
2.8
3.3
0
0
2.4
2.4
3.4
3.4
3.4


RO
19.4
19.0
19.0
19.0
19.0
17.3
17.3
17.3
17.3
17.3


B2O3
9.7
10.7
10.7
8.0
8.0
10.0
10.0
10.0
9.0
9.0


Al2O3
10.0
11.1
8.5
9.0
9.0
11.1
11.1
11.1
12.1
12.1


SiO2
60.8
59.0
62.3
64.0
64.0
61.5
61.5
61.5
61.5
61.5


SnO2
0.10
0.10
0.07
0.10
0.10
0.10
0.10
0.10
0.10
0.10


Tstr
639
636
631
648
649
650
645
650
659
661


α
46.5
43.9
46.0
48.4
45.8
40.4
41.4
39.5
40.3
39.8


ρ
2.70
2.64

2.67
2.63
2.57
2.60
2.56
2.60
2.58


T200

1423


Tliq
1045
1030
1075
1150
1145
1080
1080
1095
1080
1090


ηliq (kP)

192


















TABLE 3









Example

















Mole %
21
22
23
24
25
26
27
28
29
30




















MgO
0.1
2.0
0
0
1.98
1.97
0.07
0.07
0.06
0.06


CaO
4.3
2.0
4.3
3.3
1.3
0.8
4.6
4.6
4.5
4.6


SrO
9.7
12.0
10.0
10.5
11.9
11.5
9.7
9.6
10.2
9.5


BaO
0.1
0.1
0.1
0.1
2.0
4.0
0.1
0.1
0.1
0.1


RO
14.1
16.1
14.4
13.9
17.2
18.3
14.4
14.4
14.8
14.2


B2O3
8.4
6.6
8.5
8.5
6.4
6.4
9.9
11.4
9.9
11.5


Al2O3
9.3
9.3
10.0
10.5
8.7
8.6
9.3
9.3
10.0
10.0


SiO2
68.1
67.8
67.0
67.0
67.6
66.5
66.2
64.8
65.2
64.1


SnO2
0.16
0.18
0.18
0.18
0.17
0.17
0.17
0.17
0.17
0.17


Tstr
668
674
668
673
667
665
658
649
659
656


α
40.9
42.8
41.7
41.8
45.9
46.6
42.1
42.5
42.3
42.4


ρ
2.59
2.65
2.59
2.59
2.72
2.77
2.58
2.58
2.59
2.59


T200
1595
1595
1594
1610
1563
1545
1569
1540
1555
1528


Tliq
1125
1125
1135
1150
1100
1075
1075
1070
1080
1080


ηliq (kP)
142
162
119
121
124
235
274
202
253
163


















TABLE 4









Example















Mole %
31
32
33
34
35
36
37
38


















MgO
4.7
2.5
3.5
4.5
3.8
3.9
4.2
4.4


CaO
5.6
7.0
5.5
4.5
6.0
5.7
5.6
5.5


SrO
3.7
1.5
2.0
2.0
2.2
2.5
2.9
3.3


BaO
2.5
7.0
7.0
7.0
7.6
6.2
4.9
3.7


RO
16.5
18.0
18.0
18.0
19.5
18.3
17.6
16.8


B2O3
11.0
9.0
9.0
9.0
9.8
9.8
10.1
10.4


Al2O3
11.4
9.0
9.0
9.0
9.8
9.9
10.3
10.8


SiO2
61.0
63.9
63.9
63.9
60.9
62.0
62.0
62.0


SnO2
0.10
0.10
0.10
0.10
0.10
0.10
0.10
0.10


Tstr
640
632
632
635
630
631
633
638


α
41.2
46.5
45.9
45.8
48.2
46.0
43.7
41.7


ρ
2.58
2.73
2.72
2.72
2.77
2.71
2.67
2.62


T200
1510
1490
1490
1494
1443

1475
1490


Tliq
1000
1050
1025
1020
1045

1000
1010


ηliq (kP)
893
166
364
437
106

756
808


















TABLE 5









Example

















Mole %
39
40
41
42
43
44
45
46
47
48




















MgO
1.4
1.3
1.8
0.0
2.0
4.4
6.4
5.4
5.4
6.4


CaO
15.4
14.2
11.0
10.0
9.0
8.5
6.5
7.5
7.5
7.5


SrO


2.9
9.0
8.0
2.0
2.0
1.0
1.0
0


BaO
1.4
1.3
3.3
0
0
2.4
2.4
3.4
3.4
3.4


RO
18.1
16.7
19.0
19.0
19.0
17.3
17.3
17.3
17.3
17.3


B2O3


10.7
8.0
8.0
10.0
10.0
10.0
9.0
9.0


Al2O3
7.0
8.1
8.5
9.0
9.0
11.1
11.1
11.1
12.1
12.1


SiO2
74.9
74.9
62.3
64.0
64.0
61.5
61.5
61.5
61.5
61.5


SnO2
0.10
0.10
0.07
0.10
0.10
0.10
0.10
0.10
0.10
0.10


Tstr
735
745
613
648
649
650
645
650
659
661


α
42.7
40.6
46
48.4
45.8
40.4
41.4
39.5
40.3
39.8


ρ

2.67

2.67
2.63
2.57
2.60
2.56
2.60
2.58


T200


Tliq
1080
1080
1075
1150
1145
1080
1080
1095
1080
1090


ηliq (kP)


















TABLE 6









Example
















Mole %
49
50
51
52
53
54
55
56
57



















MgO
0.1
2.0
0.0
0.0
2.0
2.0
0.1
0.1
0.1


CaO
4.3
2.0
4.3
3.3
1.3
0.8
4.6
4.6
4.5


SrO
9.7
12.0
10.0
10.5
11.9
11.5
9.7
9.6
10.2


BaO
0.1
0.1
0.1
0.1
2.0
4.0
0.1
0.1
0.1


RO
14.1
16.1
14.4
13.9
17.2
18.3
14.4
14.4
14.8


B2O3
8.4
6.4
8.5
8.5
6.4
6.4
9.9
11.4
9.9


Al2O3
9.3
9.3
10.0
10.5
8.6
8.6
9.3
9.3
9.9


SiO2
68.1
67.8
67.0
66.9
67.6
66.5
66.2
64.8
65.2


SnO2
0.16
0.18
0.18
0.18
0.17
0.17
0.17
0.17
0.17


Tstr
668
674
668
673
667
665
658
649
659


α
40.9
42.8
41.7
41.8
45.9
46.6
42.1
42.5
42.3


ρ
2.59
2.65
2.59
2.59
2.72
2.77
2.58
2.58
2.59


T200
1595
1595
1594
1610
1563
1545
1569
1540
1555


Tliq
1125
1125
1135
1150
1100
1075
1075
1070
1080


ηliq (kP)
142
162
119
121
124
235
274
202
253


















TABLE 7









Example












Mole %
58
59
60
61
62















MgO
0.1
0.1
1.6
0.1
0.1


CaO
4.6
5.0
4.9
6.5
8.0


SrO
9.5
9.8
8.4
8.5
6.9


BaO
0.1
0.1
0.1
0.1
0.1


RO
14.2
15.0
15.0
15.1
15.1


B2O3
11.5
10.4
10.3
10.3
10.4


Al2O3
10.0
9.7
9.6
9.6
9.6


SiO2
64.1
64.9
65.0
64.8
64.8


SnO2
0.17
0.16
0.16
0.16
0.16


Tstr
656
655
653
657
656


α
42.4
42
41.8
42
42.5


ρ
2.59
2.60
2.56
2.57
2.55


T200
1528
1539
1546
1539
1536


Tliq
1080
1090
1100
1100
1080


ηliq (kP)
163
132
136
106
178









It will be apparent to those skilled in the art that various modifications and variations can be made to the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims
  • 1. A glass comprising, in mole percent: 73 to 75 percent SiO2;6 to 9 percent Al2O3;0 percent B2O3;1 to 3 percent MgO;0 percent SrO;13 to 16 percent CaO; and1 to 3 percent BaO;
  • 2. The glass according to claim 1, wherein the glass has a liquidus viscosity of 200,000 poise or greater.
  • 3. The glass according to claim 1, wherein MgO+CaO+BaO+SrO is 16 to 20 percent.
  • 4. The glass according to claim 1, having a coefficient of thermal expansion in the range of from 35×10−7/° C. to 50×10−7/° C.
  • 5. The glass according to claim 4, having a coefficient of thermal expansion in the range of from 39×10−7/° C. to 50×10−7/° C.
  • 6. The glass according to claim 1, further comprising 0 to 0.5 mole percent of a fining agent.
  • 7. The glass according to claim 6, wherein the fining agent is SnO2.
  • 8. The glass according to claim 1, having a strain point of 600° C. or greater.
  • 9. The glass according to claim 1, having a strain point of 630° C. or greater.
  • 10. The glass according to claim 1, further comprising 0 to 2 mole percent of TiO2, MnO, ZnO, Nb2O5, Ta2O5, ZrO2, La2O3, Y2O3, P2O5, or a combination thereof.
  • 11. The glass according to claim 1, having a strain point of 600° C. or greater and a coefficient of thermal expansion in the range of from 39×10−7/° C. to 50×10−7/° C.
  • 12. The glass according to claim 1, wherein the glass is in the form of a sheet.
  • 13. The glass according to claim 12, wherein the sheet has a thickness in the range of from 0.5 mm to 4.0 mm.
  • 14. A photovoltaic device comprising the glass according to claim 1.
  • 15. The photovoltaic device according to claim 14, wherein the glass is in the form of a sheet and is either a substrate or superstrate.
  • 16. The photovoltaic device according to claim 15, comprising a functional layer comprising copper indium gallium diselenide, amorphous silicon, crystalline silicon, one or more crystalline silicon wafers, cadmium telluride, or combinations thereof adjacent to the substrate or superstrate.
  • 17. The photovoltaic device according to claim 16, further comprising one or more intermediate layers disposed between the superstrate or substrate and the functional layer.
Parent Case Info

This application claims the benefit of priority under 35 U.S.C. §119 of U.S. Provisional Application Ser. No. 61/522,956 filed on Aug. 12, 2011 the content of which is relied upon and incorporated herein by reference in its entirety.

US Referenced Citations (75)
Number Name Date Kind
4012263 Shell Mar 1977 A
4824808 Dumbaugh, Jr. Apr 1989 A
4994415 Imai et al. Feb 1991 A
5116787 Dumbaugh, Jr. May 1992 A
5116788 Dumbaugh, Jr. May 1992 A
5244847 Kushitani et al. Sep 1993 A
5326730 Dumbaugh et al. Jul 1994 A
5348916 Kushitani et al. Sep 1994 A
5374595 Dumbaugh et al. Dec 1994 A
5508237 Moffatt et al. Apr 1996 A
5631195 Yanagisawa et al. May 1997 A
5770535 Brix et al. Jun 1998 A
5780373 Yanagisawa et al. Jul 1998 A
5801109 Nishizawa et al. Sep 1998 A
5811361 Miwa Sep 1998 A
5885914 Nishizawa et al. Mar 1999 A
5908703 Brix et al. Jun 1999 A
5908794 Maeda et al. Jun 1999 A
5925583 Yoshii et al. Jul 1999 A
6060168 Kohli May 2000 A
6096670 Lautenschlager et al. Aug 2000 A
6162749 Brocheton et al. Dec 2000 A
6169047 Nishizawa et al. Jan 2001 B1
6207603 Danielson et al. Mar 2001 B1
6319867 Chacon et al. Nov 2001 B1
6329310 Peuchert et al. Dec 2001 B1
6417124 Peuchert et al. Jul 2002 B1
6465381 Lautenschlager et al. Oct 2002 B1
RE37920 Moffatt et al. Dec 2002 E
6664203 Nagashima et al. Dec 2003 B2
6671026 Peuchert et al. Dec 2003 B2
6680266 Peuchert et al. Jan 2004 B1
6858552 Peuchert Feb 2005 B2
RE38959 Kohli Jan 2006 E
6992030 Paulson Jan 2006 B2
7019207 Harneit et al. Mar 2006 B2
7087541 Kohli Aug 2006 B2
7153797 Peuchert Dec 2006 B2
7157392 Peuchert et al. Jan 2007 B2
7211957 Bergmann et al. May 2007 B2
RE41127 Kohli Feb 2010 E
7670975 Suzuki et al. Mar 2010 B2
7727916 Peuchert et al. Jun 2010 B2
7754631 Maehara et al. Jul 2010 B2
7833919 Danielson et al. Nov 2010 B2
8598056 Ellison et al. Dec 2013 B2
20010034293 Peuchert et al. Oct 2001 A1
20010034294 Peuchert et al. Oct 2001 A1
20020013210 Peuchert et al. Jan 2002 A1
20020183188 Peuchert Dec 2002 A1
20040070327 Bergmann et al. Apr 2004 A1
20040220039 Peuchert Nov 2004 A1
20060003884 Nishizawa et al. Jan 2006 A1
20060010917 Fechner et al. Jan 2006 A1
20060293162 Ellison Dec 2006 A1
20070027019 Nishizawa et al. Feb 2007 A1
20070191207 Danielson et al. Aug 2007 A1
20070193623 Krasnov Aug 2007 A1
20080127679 Nishizawa et al. Jun 2008 A1
20080206494 Kurachi et al. Aug 2008 A1
20080308146 Krasnov et al. Dec 2008 A1
20090176038 Komori et al. Jul 2009 A1
20090226671 Yanase et al. Sep 2009 A1
20090239008 Ovutthitham Sep 2009 A1
20090266111 Nagashima et al. Oct 2009 A1
20090270242 Yanase et al. Oct 2009 A1
20090286091 Danielson et al. Nov 2009 A1
20090294773 Ellison Dec 2009 A1
20100084016 Aitken et al. Apr 2010 A1
20100288351 Speit et al. Nov 2010 A1
20100288361 Rudigier-Voigt et al. Nov 2010 A1
20110048074 Danielson et al. Mar 2011 A1
20130225390 Ellison et al. Aug 2013 A1
20130255779 Aitken et al. Oct 2013 A1
20130296157 Ellison et al. Nov 2013 A1
Foreign Referenced Citations (33)
Number Date Country
101074146 Nov 2007 CN
0396896 May 1994 EP
0607865 Jul 1994 EP
0672629 Sep 1995 EP
1878709 Jan 2008 EP
2759077 Mar 1997 FR
2743333 Feb 1988 JP
08-133778 May 1996 JP
10-152339 Jun 1998 JP
11-135819 May 1999 JP
11-180727 Jul 1999 JP
11-180728 Jul 1999 JP
11-310433 Nov 1999 JP
11-314933 Nov 1999 JP
11-335133 Dec 1999 JP
2002025762 Jan 2002 JP
2002053340 Feb 2002 JP
2002198504 Jul 2002 JP
2003261352 Sep 2003 JP
2003335546 Nov 2003 JP
200435295 Feb 2004 JP
2004238283 Aug 2004 JP
2004244257 Sep 2004 JP
2006188406 Jul 2006 JP
2007246365 Sep 2007 JP
2008069021 Jun 2008 JP
2008280189 Nov 2008 JP
2008308343 Dec 2008 JP
9827019 Jun 1998 WO
02076899 Oct 2002 WO
2006137683 Dec 2006 WO
2007052489 Oct 2007 WO
2008028599 Mar 2008 WO
Non-Patent Literature Citations (27)
Entry
Machine translation of CN101074146.
Machine translation of FR2759007.
Machine translation of JP2743333.
Full translation of JP1996133778.
Full translation of JP1998152339.
Full translation of JP1999135819.
Full translation of JP1999180727.
Full translation of JP1999180728.
Full translation of JP1999310433.
Full translation of JP1999314933.
Full translation of JP1999335133.
Full translation of JP2002025762.
Full translation of JP2002053340.
English Abstract of JP200198504.
Full translation of JP2003261352.
Machine translation of JP2003335546.
English Abstract of JP200435295.
English Abstract of JP2004238283.
Full translation of JP2004244257.
Machine translation of JP2006188406.
English Abstract of JP2007246365.
Machine translation of JP2008069021.
Machine translation of JP2008280189.
Machine translation of JP2008308343.
Machine translation of WO2007052489.
Machine translation of WO2008028599.
PCT International Search Report, Jul. 10, 2013.
Related Publications (1)
Number Date Country
20130037105 A1 Feb 2013 US
Provisional Applications (1)
Number Date Country
61522956 Aug 2011 US