This disclosure relates to packaging and in particular, packages having rigid and flexible components which are fused or bonded together.
Pouches or structureless packages commonly used for snacks, chips, yogurt, liquids, and the like have numerous issues or disadvantages. These types of packages are generally not recyclable. They are unable to go through the grinding, cleaning, bleaching, and other processing to produce recycled materials. Contents in these types of packages are subject to increased breakage. Shipping is inefficient due to inability to stack these types of packages. Presentation or display of the packages on store shelves result in similar issues.
Disclosed herein are methods and systems for fusion packaging.
In implementations, a package includes a frame configured to provide structure for the package, a sidewall fused to the frame, and a tethered cap connected to one end of the frame. In implementations, the frame includes a retainment locking element for retaining a retaining element of the tethered cap and the tethered cap includes a tether mechanism connected to the retaining element. In implementations, the tethered cap includes a tab element configured to enable access to content in the package, a tearable membrane portion configured to be peeled away by the tab element to expose an opening to access the content, a tether mechanism configured to connect the tearable membrane portion to a remaining portion of the tethered cap, and a tab element retainer configured to retain the tab element away from the opening. In implementations, the tethered cap includes a tab element configured to enable access to content in the package, wherein the tab element is configured to partly fuse with an outer surface of the sidewall, a peelable portion configured to be peeled away by the tab element to expose an opening to access the content, and a tether mechanism configured to connect the peelable portion to a remaining portion of the tethered cap. In implementations, the frame includes a rim having a narrow section and a wide section, the tether mechanism configured to be fused to the wide section. In implementations, the tethered cap is configured to be pivotable between an open position and a closed position, wherein the tethered cap includes an opening configured to dispense content when the tethered cap is in the open position. In implementations, the tethered cap includes pins configured to engage pin openings on the frame to go from an open position to a close position and a partially openable seal including a perforated portion configured to allow access to content when the perforated portion is removed and the tethered cap is in the open position, the partially openable seal configured to be fused to the frame, where the tethered cap can be placed in a closed position after accessing the content. In implementations, the frame includes a content holding and guiding structure positioned below the perforated portion, the content holding and guiding structure configured to present the content to a user for removal from the package. In implementations, the package further including a divider structure configured to establish two compartments in the package. The divider structure including an access divider configured to provide access to each compartment, where the access divider is connected to a neck of the frame; and a compartment divider configured to divide the frame into the two compartments, wherein the compartment divider is connected to diagonally opposite legs of the frame. In implementations, the divider structure and the injection molded frame are integrated. In implementations, the package further including a seal configured to be fused with another end of the frame, where one of the tethered seal and the seal is fused after filling the package with content.
In implementations, a package includes a sleeve configured to provide structure for the package, a tethered cap fused to one end of the sleeve, and a seal configured to be fused to a remaining end of the sleeve after the package is filled with content. In implementations, the tethered cap includes a peelable portion configured to provide an opening for access to the content in the package, the peelable portion including a retain groove, and a tethered portion fused to the sleeve and connected to the peelable portion by a hinge portion, the tethered portion including a retain projection, where the retain projection and the retain groove lock the peelable portion away from the opening during access to the content.
In implementations, a package includes a frame configured to provide structure for the package, a film fused to the frame, a cap connected to one end of the frame, the cap including a structure to retain the cap after removal from the frame, and a seal connected to another end of the frame, where one of the cap and seal are connected to the frame after material placement. In implementations, the cap further includes a peel portion, a retain portion, and a hinge portion configured to connect the peel portion and the retain portion, where the peel portion is retained to the retain portion after peeling the peel portion away from the package. In implementations, the peel portion can be configured to be detached from the retain portion.
In implementations, a package includes a frame configured to provide structure for the package, the frame including an integrated cap, a film fused to the frame, and a seal connected to one end of the frame after material placement. In implementations, where the integrated cap includes a structure to retain a portion of the integrated cap after removal from the frame. In implementations, where the portion of the integrated cap can be configured to be detached from the integrated cap. In implementations, where a peelable portion of the integrated cap can be configured to be detached from the integrated cap. In implementations, where the integrated cap further includes a peel portion, a retain portion, and a hinge portion configured to connect the peel portion and the retain portion, wherein the peel portion is retained to the retain portion after peeling the peel portion away from the package. In implementations, where the peel portion can be configured to be detached from the hinge portion.
In implementations, a package includes a sleeve configured to provide structure for the package, a cap portion fused to one end of the sleeve, the cap portion including a peel portion, a retain portion, and a hinge portion configured to connect the peel portion and the retain portion, wherein the peel portion is retained to the retain portion after peeling the peel portion from the cap portion, and a seal configured to be fused to a remaining end of the sleeve after the package is filled with content. In implementations, where the peel portion includes a retain element and the retain portion includes a mated retain element configured to maintain the peel portion away from an opening created when peeling the peel portion away from the cap portion. In implementations, where the peel portion can be configured to be detached from the hinge portion.
The disclosure is best understood from the following detailed description when read in conjunction with the accompanying drawings and are incorporated into and thus constitute a part of this specification. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
The figures and descriptions provided herein may be simplified to illustrate aspects of the described embodiments that are relevant for a clear understanding of the herein disclosed processes, machines, manufactures, and/or compositions of matter, while eliminating for the purpose of clarity other aspects that may be found in typical similar devices, systems, compositions and methods. Those of ordinary skill may thus recognize that other elements and/or steps may be desirable or necessary to implement the devices, systems, compositions, and methods described herein. However, because such elements and steps are well known in the art, and because they do not facilitate a better understanding of the disclosed embodiments, a discussion of such elements and steps may not be provided herein. However, the present disclosure is deemed to inherently include all such elements, variations, and modifications to the described aspects that would be known to those of ordinary skill in the pertinent art in light of the discussion herein.
Embodiments are provided throughout so that this disclosure is sufficiently thorough and fully conveys the scope of the disclosed embodiments to those who are skilled in the art. Numerous specific details are set forth, such as examples of specific aspects, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. Nevertheless, it will be apparent to those skilled in the art that certain specific disclosed details need not be employed, and that embodiments may be embodied in different forms. As such, the exemplary embodiments set forth should not be construed to limit the scope of the disclosure.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting. For example, as used herein, the singular forms “a”, “an” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.
The steps, processes, and operations described herein are thus not to be construed as necessarily requiring their respective performance in the particular order discussed or illustrated, unless specifically identified as a preferred or required order of performance. It is also to be understood that additional or alternative steps may be employed, in place of or in conjunction with the disclosed aspects.
Yet further, although the terms first, second, third, etc. may be used herein to describe various elements, steps or aspects, these elements, steps or aspects should not be limited by these terms. These terms may be only used to distinguish one element or aspect from another. Thus, terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, step, component, region, layer or section discussed below could be termed a second element, step, component, region, layer or section without departing from the teachings of the disclosure.
The non-limiting embodiments described herein are with respect to fusion packages. The fusion packages and methods for making the fusion packages may be modified for a variety of applications and uses while remaining within the spirit and scope of the claims. The embodiments and variations described herein, and/or shown in the drawings, are presented by way of example only and are not limiting as to the scope and spirit. The descriptions herein may be applicable to all embodiments of the fusion packages and the methods for making the fusion packages.
Disclosed herein are implementations of fusion packaging. The implementations shown are illustrative and other implementations are within the scope of the specification and claims described herein. For purposes of illustration, certain aspects, features, and the like are described with respect to implementations. These aspects, features, and the like are appropriately applicable to and interchangeable with other implementations described herein.
In implementations, the fusion packages described herein provide structure to the packaging by using a combination of injection molding (IM), in-mold labeling (IML), die cutting, compression blow molding, thermoform molding, and the like processing (collectively “structure forming process”) to form a frame, ribbed frame, vertical frame, cap, neck or collar structure, and the like (collectively “structure” or “molded part or portion”) with injection molding (IM), in-mold labeling (IML), heat, induction, mechanical, staking, ultrasonic, and adhesive or chemical bonding (collectively “join processing”) to fuse, weld, or bond (collectively “fuse”) the structure with a flexible part to create a sealed package which can hold content or materials. In implementations, the fusing can include application of pressure, temperature, and/or combinations thereof. In implementations, the sealed package is an integrally, hermetically sealed package. In implementations, the sealed package can be configured to contain liquid or non-dry content or materials.
In implementations, the frame, ribbed frame, and/or vertical frame (collectively “frame”) can have a rectangular, square, oval, circular, and/or like profile or footprint. In implementations, the frame can have any number of legs or ribs connecting a base portion and a neck portion. In implementations, the structure can be made from polymers, biopolymers, sustainable materials, recyclable materials, biodegradable materials, bio-based resins, weight-optimized biodegradable plastic, and the like.
In implementations, the flexible part can be or can be made from heavy film, paperboard, pressed pulp, compostable coated paper, and the like. In implementations, the flexible part can include a barrier layer or film on an internal or inside surface, where the barrier layer is impervious to the content or material in the fusion package and chemically inert with respect to the content or material in the fusion package. In implementations, the flexible part can be an integrated or integrally formed barrier layer or film with the heavy film, paperboard, pressed pulp, and the like. In implementations, the flexible part can be or can be made from recyclable, sustainable, degradable, biodegradable, and like materials.
In implementations, the fusion packages and/or the components of the fusion packages can be of paper, fiber based, pressed fiber, and/or plastic construction, which can be sustainable materials, recyclable materials, degradable materials, degradable plastic, biodegradable materials, bio-based resins, and/or weight-optimized biodegradable plastic. The fusion packages and/or the components of the fusion packages can efficiently use recyclable, biodegradable, and the like materials for improved sustainability.
In implementations, the fusion packages described herein provide structure to the packaging by fusing a neck part to a tubular or conical sleeve. In implementations, the sleeve can be or can be made from heavy film, paperboard, pressed pulp, and the like. In implementations, the sleeve can include a barrier layer or film on an internal or inside surface. In implementations, the sleeve can be an integrated or integrally formed barrier layer or film with the heavy film, paperboard, pressed pulp, and the like. In implementations, the sleeve can be or can be made from recyclable, sustainable, degradable, biodegradable, and like materials.
The fusion packages described herein provide structural integrity to the package at minimal weight cost and permits the package to flex, stretch, and the like during pressure and temperature variations. The fusion packages are stackable and nestable during shipping and for store shelving. The fusion packages can efficiently use recyclable, biodegradable, and the like materials for improved sustainability.
The fusion package 100 uses the join processing to fuse the frame 200 with the sidewall 210. In implementations, the fusion package 100 includes a liner or foil. In implementations, the fusion package 100 is linerless or foilless. The fusion package 100 is filled from a top and then the cap 110 is snap fitted onto the neck 230. The fusion package 100 is opened by flipping the lid 130 and tearing the plurality of rupture members 160. The retaining element 140 and the tether mechanism 150 secure the lid 130 to prevent environmental disposal issues and enable sustainability.
The fusion package 400 uses the join processing to fuse the cap portion with the rim 535 of the package body 420. The fusion package 400 is filled from a bottom and then the seal 540 is fused to the flange 530 using the join processing processes. In implementations, fusing of the seal 540 can be done at a content or material production site. That is, a non-sealed fusion package 400 can be shipped to a manufacturer of the material, who can then fill and seal the fusion package 400. The fusion package 400 is opened by pulling up on the tab portion 505 to peel the peel portion 450 away from the neck 440 until hitting the hinge portion 510, which prevents environmental disposal issues and enables sustainability. In implementations, the retain groove 500 can engage the retain projection 520 to keep peel portion 450 from interfering in accessing the content or material in the fusion package 400. In implementations, the peel portion 450 can be torn away at the hinge portion 510 with only the retain portion 460 remaining.
The fusion package 800 uses the join processing to fuse the peelable seal 830 to the neck 840 and the cap portion 810 with the rim 910 of the package body 820. The fusion package 800 is filled from a bottom and then the seal 920 is fused to the flange 900. In implementations, fusing of the seal 920 can be done at a content or material production site. That is, a non-sealed fusion package 800 can be shipped to a manufacturer of the material, who can then fill and seal the fusion package 800. The fusion package 800 is opened by tearing the peelable seal 830.
The fusion package 1100 uses the join processing to fuse the sidewall 1210 with the frame 1200 and the cap 1110 to the rim 1250. The fusion package 1100 is filled from a bottom and then the seal 1260 is fused to the flange 1225. In implementations, fusing of the seal 1260 can be done at a content or material production site. That is, a non-sealed fusion package 1100 can be shipped to a manufacturer of the material, who can then fill and seal the fusion package 1100. The fusion package 1100 is opened by pulling the tab element 1130 which tears the tearable membrane portion 1140 until hitting the tether mechanism 1150, which prevents environmental disposal issues and enables sustainability. The tab element 1130 engages the tab element retainer 1400 to prevent interference with disposal of the content or material.
The fusion package 100 uses the join processing to fuse the sidewall 1710 with the frame 1700, a portion of the peelable portion 1640 to portions of the rim 1750, and a portion 1632 of the tab element 1630 with the sidewall 1710, as shown in
The fusion package 100 uses the join processing to fuse the sidewall 2220, the frame 2210, and the seal 2230 together. The fusion package 2000 is filled from a top and then the seal 2100 is fused to the rim 2215. In implementations, fusing of the cap 2100 can be done at a content or material production site. That is, a non-sealed fusion package 2000 can be shipped to a manufacturer of the material, who can then fill and seal the fusion package 2000. The fusion package 2000 is opened by peeling the cap 2100.
The cap 2310 includes an opening 2312 and a pair of pivot arms 2314 on opposite ends of the cap 2310. The pivot arms 2314 are configured to engage a mating structure on an internal surface of the neck 2450. The cap 2310 can pivot between a closed position as shown in
The fusion package 100 uses the join processing to fuse the sidewall 2410 with the frame 2400. The cap 2310 is snapped into place on the frame 2400. The fusion package 100 is filled from a bottom and then the seal 2470 is fused to the flange 2422. The fusion package 2300 is opened by pushing on the spit 2316 of the cap 2310. This enables content to be disposed via the ring 2454 and the opening 2312.
In implementations, the sidewall 2710 can be made from heavy film, paperboard, pressed pulp, and the like materials as described herein. In implementations, the sidewall 2710 can include a barrier layer or film on an internal or inside surface. In implementations, the sidewall 2710 can include an integrated barrier layer, film, and/or material. In implementations, the frame 2700 can be made using the structure forming processes described herein using the materials described herein.
The fusion package 100 uses the join processing to fuse the sidewall 2710 with the frame 2700 and the dispensing seal 2715 to a flange 2736 of the neck 2730. The cap 2510 is snapped into place on the frame 2700. The fusion package 2700 is filled from a bottom and then the seal 2750 is fused to the flange 2722. The fusion package 2700 is opened by opening the cap 2510. The perforated portion 2717 is removed to obtain access to the content. The cap 2510 can be closed after obtaining the content.
The package body 3520 includes a frame 3530, a sidewall 3540, a peelable seal 3550, and a seal 3560. The frame 3530 includes a bottom 3532, a neck 3534, and legs 3536 for connecting the bottom 3532 and the neck 3534. The bottom 3532 includes a flange 3533. The seal 3560 is configured to engage the flange 3533 when closing the fusion package 3500. The peelable seal 3550 includes a tab 3552 to remove the peelable seal 3550 and permit access to the content. In implementations, the sidewall 3540 can be made from heavy film, paperboard, pressed pulp, and the like materials as described herein. In implementations, the sidewall 3540 can include a barrier layer or film on an internal or inside surface. In implementations, the sidewall 3540 can include an integrated barrier layer, film, and/or material. In implementations, the frame 3530 can be made using the structure forming processes described herein using the materials described herein.
The fusion package 100 uses the join processing to fuse the sidewall 3540 with the frame 3530 and the peelable seal 3550 to the neck 3534. The cap 3510 is snapped into place on the neck 3534 of the frame 3530. The fusion package 3500 is filled from a bottom and then the seal 3560 is fused to the flange 3533 after filling is complete. The fusion package 3500 is opened by opening the cap 3510. The peelable seal 3550 is removed by pulling on the tab 3552 to obtain access to the content. The cap 3510 can be closed after obtaining the content.
The fusion package 3800 includes a peelable seal 3810 and a package body 3820. The peelable seal 3810 includes a pull tab 3812. The package body 3820 includes a frame 3900, a sidewall 3910, a seal 3920, and a divider structure 3930. The frame 3900 includes a bottom 3902, a neck 3904, and legs 3906. The legs 3906 connect the bottom 3902 and the neck 3904. The bottom 3902 includes a flange 3903 for fusing with the seal 3920. The neck 3904 includes a rim 3905. The divider structure 3930 divides the fusion package 3800 into two sections. The divider structure 3930 includes a compartment divider 3940 and an access divider 3950. The compartment divider 3940 is connected or fused to two opposite legs of the legs 3906 of the frame 3900. The access divider 3950 is connected or fused to the rim 3905. The access divider 3950 includes a first access opening 3952 and a second access opening (only the first access opening 3952 is shown). In implementations, the frame 3900 and the divider structure 3930 can be an integrated structure. In implementations, the sidewall 3910 can be made from heavy film, paperboard, pressed pulp, and the like materials as described herein. In implementations, the sidewall 3910 can include a barrier layer or film on an internal or inside surface. In implementations, the sidewall 3910 can include an integrated barrier layer, film, and/or material. In implementations, the frame 3900 can be made using the structure forming processes described herein using the materials described herein.
The fusion package 100 uses the join processing to fuse the sidewall 3910 to the frame 3900 and the peelable seal 3810 to the frame 3900 and/or the divider structure 3930, as appropriate. The fusion package 3800 is filled from a bottom and then the seal 3920 is fused to the flange 3903. In implementations, fusing of the seal 3920 can be done at a content or material production site. That is, a non-sealed fusion package 3800 can be shipped to a manufacturer of the material, who can then fill and seal the fusion package 3800. The fusion package 3800 is opened by peeling the peelable seal 3810 using the tab 3812.
The frame 4300 includes a bottom 4310, a cap portion 4320, and legs 4330 for connecting the bottom 4310 and the cap portion 4320. The bottom 4310 includes a flange 4312. The seal 4200 is configured to engage the flange 4312 when closing or sealing the fusion package 4000. The cap portion 4320 includes a peel portion 4500, a retain portion 4600, and a hinge portion 4700. The peel portion 4500 has a tab portion 4510 and a retain groove 4520. The retain portion 4600 includes a retain projection 4610 for engagement with the retain groove 4520. The hinge portion 4700 flexibly or hingedly connects the peel portion 4500 and the retain portion 4600. In implementations, the cap portion 4320 is a peel portion only which can be removed for access to the content.
The fusion package 4000 uses the join processing to fuse the frame 4300 with the sidewall 4400. The fusion package 4000 is filled from a bottom and then the seal 4200 is fused to the flange 4312 using the join processing processes. In implementations, fusing of the seal 4200 can be done at a content or material production site. That is, a non-sealed fusion package 4000 can be shipped to a manufacturer of the material, who can then fill and seal the fusion package 4000. The fusion package 4000 is opened by pulling up on the tab portion 4510 to peel the peel portion 4500 away from the frame 4300 until hitting the hinge portion 4700, which prevents environmental disposal issues and enables sustainability. In implementations, the retain projection 4610 can engage the retain groove 4520 to keep peel portion 4500 from interfering in accessing the content or material in the fusion package 4000. In implementations, the peel portion 4500 can be torn away at the hinge portion 4700 with only the retain portion 4600 remaining as shown in
As described herein a fusion package includes a structure and a flexible part. The structure, which can include a frame, ribbed frame, vertical frame, cap, neck, or collar structure, is fused with the flexible part using the join processing to create the fusion package which is sealed to hold content or materials. The flexible part, for example, can be a sidewall, a seal, a peelable seal, a cap, or a dispensing seal. The fusing of the flexible part with the structure results in edge(s) of the flexible part being intermingled, impregnated, encapsulated, embedded, or coated with the material of the structure to form a sealed edge at junctions between the structure and the flexible part. The sealed edges prevent leakage of content from the fusion package. This is illustrated with respect to
The fusion package 5100 uses the join processing to fuse the frame 5100 with the sidewall 5200. The resulting sealed edges at the junctions are shown with respect to
The fusion package 6000 includes a cap 6100 and a package body 6200. The cap 6100 includes a threaded, interference fit, or press fit (collectively “refittable”) cap 6110 and a sealing lid 6120. The refittable cap 6110 includes a refittable component 6112 and a lid 6114. The lid 6114 can made heavy film, paperboard, pressed pulp, and the like materials as described herein. The lid 6114 can have a barrier layer on an internal surface or content facing surface as described herein. The lid 6114 can be fused to the refittable component 6112 as described herein. The refittable cap 6110 is a structure formed using structure forming processes as described herein. The refittable cap 6110 can be made from polymers, biopolymers, sustainable materials, recyclable materials, biodegradable materials, bio-based resins, weight-optimized biodegradable plastic, and the like as described herein. The sealing lid 6120 can made heavy film, paperboard, pressed pulp, and the like materials as described herein. The sealing lid 6120 can have a barrier layer on an internal surface or content facing surface as described herein. In implementations, the sealing lid 6120 can be fused to the refittable component 6112. In implementations, the sealing lid 6120 can be fused to the a frame 6210.
The package body 6200 includes the frame 6210, a sidewall 6220, and a seal 6230. The frame 6210 includes a bottom 6212, a neck 6214, and legs 6216 for connecting the bottom 6212 and the neck 6214. The neck 6214 includes a counterpart refittable section 6215 corresponding to the refittable component 6112. In implementations, the sidewall 6220 can be made from heavy film, paperboard, pressed pulp, compostable coated paper, and like materials as described herein. In implementations, the sidewall 6220 can include a barrier layer or film on an internal or inside surface. In implementations, the sidewall 6220 can include an integrated barrier layer, film, and/or material. In implementations, the frame 6210 can be made using the structure forming processes described herein using the materials described herein. The seal 6230 can made heavy film, paperboard, pressed pulp, compostable coated paper, and the like materials as described herein. The seal 6230 can have a barrier layer on an internal surface or content facing surface as described herein. In implementations, the frame 6210 can be made using the structure forming processes described herein using the materials described herein.
The fusion package 6000 uses the join processing to fuse the frame 6210 with the sidewall 6200 and the seal 6230. In implementations, the sealing lid 6120 can be fused to a top surface of the frame 6210. Due to the fusing, each juncture where an edge or surface of the sidewall 6200, the seal 6230, and/or the sealing lid 6120 meets the frame 6210, a sealed edge is formed which is a barrier against content leakage. For example, the sealed edges can include sealed edges 6300, 6310, 6320, and 6330.
The fusion package 6000 is filled from a top, for example, and then the refittable cap 6110 is attached to counterpart refittable section 6215, which results in the sealing lid 6120 being compressed therebetween. The fusion package 6000 is opened by detaching the refittable cap 6110 and removing the sealing lid 6120. The fusion package 6000 can be reclosed by reattaching the refittable cap 6110.
To substantially overcome the wrinkles, a biaxial oriented film is used for the film 6520. Biaxially oriented film is cold worked or cold formed film that has been stretched or worked at a temperature below the film's melt temperature. In implementations, the biaxially oriented film is cold worked or cold formed film that has been stretched or worked at a temperature below the film's equal cohesive temperature. In implementations, the biaxially oriented film is cold worked or cold formed film that has been stretched or worked at a temperature above the softening point but below the melting point. At this point, the film retains shape memory. After the fusing of the film 6520 to the frame 6510 and the cool down period, the biaxially oriented film can be locally heated (i.e., as required with respect to the wrinkles on the fusion package 6600), which causes the biaxially oriented film to change material state and shrink a defined amount per a biaxial orientation rate. That is, upon reheating, the film will shrink and revert to dimensions approaching its pre-stretch shape. Consequently, the wrinkles substantially disappear as shown in
The construction and arrangement of the methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials and components, colors, orientations, etc.). For example, the position of elements may be reversed or otherwise varied and the nature or number of discrete elements or positions may be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
Although the figures may show a specific order of method steps, the order of the steps may differ from what is depicted. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps.
While the disclosure has been described in connection with certain embodiments, it is to be understood that the disclosure is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application is a continuation-in-part of International Patent Application Ser. No. PCT/US2021/022726, filed on Mar. 17, 2021, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/990,551, filed on Mar. 17, 2020, the entire contents of which are incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3317109 | Palmer | May 1967 | A |
4143764 | Moss, III | Mar 1979 | A |
4665713 | Delatte | May 1987 | A |
4905822 | Bosco | Mar 1990 | A |
7568590 | Gross et al. | Aug 2009 | B1 |
D645754 | Corbett et al. | Sep 2011 | S |
8430262 | Corbett et al. | Apr 2013 | B2 |
D692768 | Corbett et al. | Nov 2013 | S |
D692769 | Corbett et al. | Nov 2013 | S |
D694635 | Corbett et al. | Dec 2013 | S |
8663419 | Corbett et al. | Mar 2014 | B2 |
8746489 | Boehler | Jun 2014 | B2 |
8807377 | Corbett et al. | Aug 2014 | B2 |
8991635 | Myerscough | Mar 2015 | B2 |
9126717 | Myerscough | Sep 2015 | B2 |
9126719 | Corbett et al. | Sep 2015 | B2 |
9145251 | Minnette et al. | Sep 2015 | B2 |
9302832 | Park | Apr 2016 | B2 |
9452857 | Corbett et al. | Sep 2016 | B2 |
9463894 | Minnette et al. | Oct 2016 | B2 |
9574307 | Corbett et al. | Feb 2017 | B2 |
9604769 | Minnette et al. | Mar 2017 | B2 |
9884716 | Minnette et al. | Feb 2018 | B2 |
10005222 | Corbett et al. | Jun 2018 | B2 |
10005605 | Corbett et al. | Jun 2018 | B2 |
10532872 | Minnette et al. | Jan 2020 | B2 |
11167904 | Corbett et al. | Nov 2021 | B2 |
11286104 | Corbett et al. | Mar 2022 | B2 |
11383887 | Corbett et al. | Jul 2022 | B2 |
20030218017 | Schmidtner et al. | Nov 2003 | A1 |
20060011635 | Shibata | Jan 2006 | A1 |
20070164095 | Schuetz | Jul 2007 | A1 |
20080110920 | Hlista et al. | May 2008 | A1 |
20080169297 | Kelly | Jul 2008 | A1 |
20100108693 | Zhang et al. | May 2010 | A1 |
20100140129 | Sanfilippo et al. | Jun 2010 | A1 |
20110290798 | Corbett et al. | Dec 2011 | A1 |
20120012586 | Rinderer et al. | Jan 2012 | A1 |
20120024897 | Corbett et al. | Feb 2012 | A1 |
20120145710 | Corbett et al. | Jun 2012 | A1 |
20130001233 | Hylton | Jan 2013 | A1 |
20140252032 | Corbett et al. | Sep 2014 | A1 |
20140367296 | Berger | Dec 2014 | A1 |
20150314916 | Corbett et al. | Nov 2015 | A1 |
20160000269 | Van Puijenbroek et al. | Jan 2016 | A1 |
20160159530 | Minnette et al. | Jun 2016 | A1 |
20160159545 | Corbett et al. | Jun 2016 | A1 |
20180022534 | McCormick | Jan 2018 | A1 |
20190135479 | Corbett et al. | May 2019 | A1 |
20190161236 | Knob | May 2019 | A1 |
20210284418 | Corbett et al. | Sep 2021 | A1 |
20220169437 | Corbett et al. | Jun 2022 | A1 |
20220340335 | Corbett et al. | Oct 2022 | A1 |
20230054953 | Graham et al. | Feb 2023 | A1 |
20230055756 | Brown | Feb 2023 | A1 |
20230331449 | Graham et al. | Oct 2023 | A1 |
20230371675 | Graham et al. | Nov 2023 | A1 |
Number | Date | Country |
---|---|---|
8434358 | Feb 1985 | DE |
2236264 | Oct 2010 | EP |
2289394 | May 1976 | FR |
2510643 | Aug 2014 | GB |
H10-058482 | Mar 1998 | JP |
2013534496 | Sep 2013 | JP |
2008134174 | Nov 2008 | WO |
2014031869 | Feb 2014 | WO |
2014193608 | Dec 2014 | WO |
2022055921 | Mar 2022 | WO |
Entry |
---|
Extended European Search Report dated Oct. 31, 2023 from corresponding European Application No. 21772427.7. |
Office Action issued in corresponding U.S. Appl. No. 17/911,773, dated Apr. 18, 2024. |
Number | Date | Country | |
---|---|---|---|
20220048669 A1 | Feb 2022 | US |
Number | Date | Country | |
---|---|---|---|
62990551 | Mar 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2021/022726 | Mar 2021 | WO |
Child | 17412837 | US |