GADUSOL PRODUCTION

Information

  • Patent Application
  • 20200199631
  • Publication Number
    20200199631
  • Date Filed
    December 19, 2019
    4 years ago
  • Date Published
    June 25, 2020
    4 years ago
Abstract
The present disclosure relates to engineered microorganisms capable of producing gadusol. The engineered microorganisms contain a nucleotide sequence encoding 2-epi-5-valione synthase (EEVS) and a nucleotide sequence encoding methyltransferase-oxidoreductase (MT-Ox). Methods of using the engineered microorganisms to produce gadusol, including the culturing of such microorganisms, are also described.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on Nov. 22, 2019, is named 127789-250275_SL.txt and is 125,217 bytes in size.


FIELD

The present disclosure is in the field of molecular biology and is related to engineered microorganisms and the production of gadusol by genetically engineered microorganisms.


BACKGROUND

Exposure to sun is believed to cause many of the skin changes associated with aging and contributes to pre-cancerous and cancerous skin lesions, benign tumors, wrinkling, mottle pigmentations, and other important challenges to human health and well-being.


Despite the wide availability of sun protectant sunscreens and general knowledge of the dangers of too much sun exposure and sun burn, skin cancer rates continue to grow. Each year more and more cases of skin cancer are diagnosed, and every fifty-seven minutes someone dies from melanoma. Unfortunately, consumer's choice in sunscreens remain limited, especially for sunscreens and formulations derived from naturally occurring sun protective compounds.


Gadusol is a natural sunscreen/antioxidant found in marine fish, is derived from 4-deoxygadusol, the precursor of mycosporine-like amino acids produced by cyanobacteria, some Gram-positive bacteria, fungi, macroalgae, and marine invertebrates. These UV-protective compounds appear to be critical for the survival of reef-building corals and other marine organisms exposed to high solar irradiance.


Despite a continued need for better UV protectants and sunscreens, there remains a lack of means for producing sufficient amounts of such compounds. The present disclosure meets those needs.


SUMMARY OF THE DISCLOSURE

Disclosed is a transgenic yeast cell, or population thereof, the transgenic yeast cell including a nucleotide sequence capable of expressing 2-epi-5-valione synthase (EEVS) protein integrated in a genome of the transgenic yeast cell, and a nucleotide sequence capable of expressing methyltransferase/oxidoreductase (MT-Ox) protein integrated in the genome of the transgenic yeast cell.


In embodiments, the yeast cell comprises one or more disrupted transaldolase genes of the transgenic yeast cell, wherein the disruption results in a reduction of transaldolase activity in the transgenic yeast cell as compared to a wild-type yeast cell.


In embodiments, the one or more disrupted transaldolase genes comprises TAL1.


In embodiments, the one or more disrupted transaldolase genes comprises NQM1.


In embodiments, the one or more disrupted transaldolase genes comprises both TAL1 and NQM1.


In embodiments, the yeast cell is engineered to over express ZWF1.


In embodiments, the at least one of the nucleotide sequence capable of expressing EEVS protein and the nucleotide sequence capable of expressing MT-Ox protein are codon optimized for expression in yeast.


In embodiments, the yeast cell comprises a Saccharomyces cerevisiae yeast cell.


In embodiments, the nucleotide sequence capable of expressing EEVS protein comprises a yeast promoter operably connected to a nucleic acid sequence encoding a EEVS protein.


In embodiments, the nucleic acid sequence encoding the EEVS protein comprises a nucleic acid sequence that encodes a protein having an amino acid sequence at least 95% identical to SEQ ID NO: 21.


In embodiments, the nucleic acid sequence encoding the EEVS protein comprises a nucleic acid sequence at least 95% identical to any one of SEQ ID NOs 1-8.


In embodiments, the yeast promoter is a yeast TEF1 promoter.


In embodiments, the nucleotide sequence capable of expressing MT-Ox protein comprises a yeast promoter operably connected to a nucleic acid sequence encoding a MT-Ox protein.


In embodiments, the nucleic acid sequence encoding the MT-Ox protein comprises a nucleic acid sequence that encodes a protein having an amino acid sequence at least 95% identical to SEQ ID NO: 22.


In embodiments, the nucleic acid sequence encoding the MT-Ox protein comprises a nucleic acid sequence at least 95% identical to any one of SEQ ID NOs: 9-16.


In embodiments, the yeast promoter is a yeast PGK1 promoter.


In embodiments, the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are integrated into the yeast genome at chromosome 15 at the his3Δ1 locus.


In embodiments, the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are stably integrated.


In embodiments, the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are stably integrated for at least 20 generations.


Disclosed is a bioreactor comprising a population of transgenic yeast cell.s


Disclosed is a method for the production of the gadusol, the method comprising culturing a transgenic yeast cell in growth media.


In embodiments, at least a portion of the gadusol in secreted into the growth media.


In embodiments, the method further comprises isolating gadusol.





BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.



FIG. 1 is the structure of gadusol.



FIG. 2 is a graph showing the pH-dependent tautomers of gadusol.



FIG. 3 is a scheme showing the biosynthesis of gadusol from SH7P catalyzed by an EEVS protein (SEQ ID NO. 21) produced using the nucleotide sequence of SEQ ID NO. 1 (LOC100003999) and an MT-Ox protein (SEQ ID NO. 22, encoded by SEQ ID NO. 9, accession no. zgc:113054.



FIG. 4 is schematic showing pathways related to gadusol biosynthesis. Enzymes are labeled in blue and intermediates are labeled in black. Abbreviations: DHAP, dihydroxyacetone phosphate; E4P, erythrose 4-P; EEVS, 2-epi-5-epi-valiolone synthase; F1,6diP, fructose 1,6-diphosphate; F6P, fructose 6-phosphate; Fbal, Fructose bisphosphate aldolase; G3P, glyceraldehyde 3-phosphate; G6P, glucose 6-phosphate; Hxkl/2, hexokinase; MT-Ox, methyl transferase oxidase; Pfkl/2, phosphofructokinase; Pgil, phosphoglucoisomerase; PGL, phosphogluconolactone; PGLC, phosphogluconate; Ru5P, ribulose 5-phosphate; R5P, ribose 5-phosphate; Shb17, sedoheptulose 1,7-bisphosphatase; SH7P, sedoheptulose 7-phosphate; and SH1,7bisphosphate, sedoheptulose 1,7-P Tall/Nqm1, transaldolase; Tkl1/Tkl2, transketolase; and X5P, xylulose 5-phosphate. Gadusol and its precursor SH7P are shown in bold.



FIG. 5 is schematic showing the oxidative phase of the PPP (red dashed box) in relation to gadusol biosynthesis.



FIG. 6 is schmatic showing the non-oxidative phase of the PPP (red dashed box) in relation to gadusol biosynthesis.



FIG. 7 is schmatic showing S7P biosynthesis (red dashed box) from glycolytic intermediates in relation to gadusol.



FIG. 8 is a map of plasmid pXP416-MTOx.



FIG. 9 is a map of plasmid pXP416-SHB17-2μΔ.



FIG. 10 is a map of plasmid pXP420-EEVS.



FIG. 11 is a map of plasmid pGH420-EEVS-MTOx-2μΔ.



FIG. 12 is a map of plasmid pXP422-ZWF1.



FIG. 13 is a graph showing growth and gadusol production by G0 (TAL1) and G1 (tal1Δ). Maximal measurements for gadusol and biomass were taken at 110 hours as indicated by the dashed line. Error bars are standard deviations.



FIG. 14 is a graph showing growth and gadusol production by G1 (tal1Δ) and G10 (tal1Δ/pXP422-ZWF1). Maximal gadusol and biomass measurements for G10 and G1 were taken at 207 and 110 hours, respectively (dashed lines). Error bars are standard deviations.



FIG. 15 is a graph showing growth and gadusol production by G1 (tal1Δ NQM1) and G2 (tal1Δ nqm1Δ). Maximal gadusol and biomass measurements for G1 and G2 were taken at 110 and 130 hours, respectively (dashed lines). Error bars are standard deviations.



FIG. 16 is a graph showing growth and gadusol production by G2 (tal1Δ nqm1Δ) and G3 (tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-MTOx). Maximal gadusol and biomass measurements for G2 and G3 were taken at 130 and 169 hours, respectively (dashed lines). Error bars are standard deviations.



FIG. 17 is a graph showing growth and gadusol production by G3 (tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-MTOx) in YNB+2% glucose supplemented with 2×Trp+2×Lys, 2×Trp, and 2×Lys. Maximal gadusol and biomass measurements for the 2×Trp+2×Lys and 2×Trp treatments were taken at 154 h (dashed line). Maximal gadusol and biomass measurements for the 2×Lys treatments were taken at 131 hours (dashed line). Error bars are standard deviations.



FIG. 18 is a graph showing growth and gadusol production by G9 (tal1Δ pho13Δ). Maximal gadusol and biomass measurements for G9 were taken at 186 hours (dashed line). Error bars are standard deviations.



FIG. 19 is a graph showing growth and gadusol production by G6 (tal1Δ shb17Δ). Maximal gadusol and biomass measurements for G6 were taken at 156 hours (dashed line). Error bars are standard deviations.



FIG. 20 is a graph showing growth and gadusol production by G7 (tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-MTOx/pXP416-SHB17) and G8 (tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-MTOx pXP416-SHB7 integrant). Maximal gadusol and biomass measurements for G7 and G8 were taken at 208 and 106 hours, respectively (dashed lines). Error bars are standard deviations.



FIG. 21 is a graph showing growth and gadusol production by G3 (tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-MTOx) in YNB+NADPH nutr. Maximal gadusol and biomass measurements for G3 grown in YNB+NADPH nutr. were taken at 230 hours (dashed line). Error bars are standard deviations.



FIG. 22 is a graph showing growth and gadusol production by G4 (tal1Δ nqm1Δ pgi1Δ) and G5 (tal1Δ pgi1Δ). Maximal gadusol and biomass measurements for G4 and G5 were taken at 264 and 302 hours, respectively (dashed lines). Error bars are standard deviations.



FIG. 23 is scheme for constructing pGH420-EEVS-MTOx by in vivo ligation.



FIG. 24 is schematic diagram showing gel dissection for DNA purification



FIG. 25 is a graph of determining exit from log phase for G2.



FIG. 26 illustrates a model for the active site geometry of EEVS. Shown are the 14 active site residues conserved in all EEVS enzymes, the NAD+, and the Zn2+ atom, along with a mesh that delineates the pocket suitable for binding a SH7P substrate. Residue numbers identifying the active site residues are from the EEVS. FIG. 26 was made with PyMOL using the coordinates of ValA, an EEVS from Streptomyces hygroscopicus subsp. jinggangensis 500821.



FIGS. 27-28 illustrate UV absorptions of gadusol at pH7.0 and 2.5.



FIGS. 29-30 illustrate high-performance liquid chromatography (HPLC) traces of gadusol at pH 7.0 and 2.5.



FIGS. 31-32 illustrate transcription patterns of EEVS and MT-Ox encoding genes during zebrafish embryonic development using qRT-PCR analysis of mRNA isolated from zebrafish embryos at 12, 24, 48, 72, 96, and 120 hours post fertilization (hpf).



FIG. 33 illustrates results of a comparative HPLC analysis of gadusol from recombinant enzymatic reaction, Danio rerio (zebrafish) extract, and yeast extract.



FIG. 34 illustrates a time course of gadusol production in an engineered yeast comprising SEQ ID NO. 2 (EEVS) and SEQ ID NO. 10 (MT-Ox) genes. Yeast growth was monitored as A600 values (control, dotted line; gadusol producer, solid line). Gadusol concentration in the supernatant was monitored as A296 values in 50 mM phosphate buffer, pH 7.0 (dashed line) corrected for non-gadusol background absorbance in the control supernatant, normalized to A600 value. Gadusol was quantified based on an extinction coefficient of 21,800 M−1 cm−1 in 50 mM phosphate buffer, pH 7.



FIG. 35 illustrates results that gadusol suppresses the UVB sensitivity of a rad1Δ yeast mutant.



FIG. 36 illustrates results that gadusol increases UVB tolerance of a wild-type (RAD1) strain.



FIG. 37 illustrates an exemplary pUC57-Kan cloning vector.



FIG. 38 illustrates an exemplary pRSETB E. coli expression vector.



FIG. 39 illustrates an exemplary pXP416 yeast expression vector.





DETAILED DESCRIPTION OF DISCLOSED EMBODIMENTS

In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of embodiments is defined by the appended claims and their equivalents.


Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order dependent.


The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical contact with each other. “Coupled” may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.


For the purposes of the description, a phrase in the form “A/B” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.


The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous, and are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).


With respect to the use of any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.


Unless otherwise noted, technical terms are used according to conventional usage. Definitions of common terms in molecular biology can be found in Benjamin Lewin, Genes IX, published by Jones and Bartlet, 2008 (ISBN 0763752223); Kendrew et al. (eds.), The Encyclopedia of Molecular Biology, published by Blackwell Science Ltd., 1994 (ISBN 0632021829); and Robert A. Meyers (ed.), Molecular Biology and Biotechnology: a Comprehensive Desk Reference, published by VCH Publishers, Inc., 1995 (ISBN 9780471185710); and other similar references.


Suitable methods and materials for the practice or testing of this disclosure are described below. Such methods and materials are illustrative only and are not intended to be limiting. Other methods and materials similar or equivalent to those described herein can be used. For example, conventional methods well known in the art to which this disclosure pertains are described in various general and more specific references, including, for example, Sambrook et al., Molecular Cloning: A Laboratory Manual, 2d ed., Cold Spring Harbor Laboratory Press, 1989; Sambrook et al., Molecular Cloning: A Laboratory Manual, 3d ed., Cold Spring Harbor Press, 2001; Ausubel et al., Current Protocols in Molecular Biology, Greene Publishing Associates, 1992 (and Supplements to 2000); Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 4th ed., Wiley & Sons, 1999. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.


By “bioreactor” is meant a vessel comprising a liquid medium in which biological reactions are carried out by microorganisms, or the enzymes they produce, contained within the vessel itself. The term “bioreactor” is used throughout the specification to describe any vessel or container wherein the biological production and/or isolation of gadusol is carried out in a controlled fashion. The main objective in the design of a bioreactor is to generate an optimal environment for the desired biological process to take place on a large and economic scale. Bioreactors can be made from an inert material such as stainless steel or glass. An exemplary bioreactor may comprise a vertical Pyrex (glass) column that is adapted with at least two inlets for medium and air at the bottom of the column and at least one outlet port at the top of the column to accommodate expunged medium and/or air. See, for example, Hamdy, et al., Biomass., 21, 189-206 (1990).


As used herein, “disrupted gene” refers to an insertion, substitution, or deletion either in a gene of interest or in the vicinity of the gene, i.e., upstream (5′) or downstream (3′) of the gene, which results in the reduction of the biological activity or the loss of substantially all of the biological activity associated with the gene's product. For example, a disrupted TAL1 gene would be unable to express a protein having substantial TAL1 activity. A gene can be disrupted by any one of a number of methods known to the art, for example, by site-directed mutagenesis or homologous recombination.


“Expression” refers to the transcription and translation of an endogenous gene or a transgene in a host cell. For example, in the case of antisense constructs, expression may refer to the transcription of the antisense DNA only. In addition, expression refers to the transcription and stable accumulation of sense (mRNA) or functional RNA. Expression may also refer to the production of protein.


The term “gene” is used broadly to refer to any segment of nucleic acid associated with a biological function. Thus, genes include coding sequences and/or the regulatory sequences required for their expression. For example, gene refers to a nucleic acid fragment that expresses mRNA, or specific protein, including regulatory sequences. Genes also include nonexpressed DNA segments that, for example, form recognition sequences for other proteins. Genes can be obtained from a variety of sources, including cloning from a source of interest or synthesizing from known or predicted sequence information, and may include sequences designed to have desired parameters.


A “mutation” refers to an insertion, deletion or substitution of one or more nucleotide bases of a nucleic acid sequence, so that the nucleic acid sequence differs from the wild-type sequence. For example, a ‘point’ mutation refers to an alteration in the sequence of a nucleotide at a single base position from the wild type sequence.


The term “nucleic acid molecule” refers to a polymer of DNA or RNA that can be single- or double-stranded, optionally containing synthetic, non-natural or altered nucleotide bases capable of incorporation into DNA or RNA polymers. The terms “nucleic acid” or “nucleic acid sequence” may also be used interchangeably with gene, cDNA, DNA and RNA encoded by a gene (Batzer et al., 1991; Ohtsuka et al., 1985; Rossolini et al., 1999).


“Operably linked” when used with respect to nucleic acid, means joined as part of the same nucleic acid molecule, suitably positioned and oriented for transcription to be initiated from the promoter. DNA operably linked to a promoter is under transcriptional initiation regulation of the promoter. Coding sequences can be operably-linked to regulatory sequences in sense or antisense orientation.


“Overexpression” refers to the level of expression in transgenic cells or organisms that exceeds levels of expression in corresponding normal or untransformed cells or organisms.


“Promoter” refers to a nucleotide sequence, usually upstream (5′) to its coding sequence, which controls the expression of the coding sequence by providing the recognition for RNA polymerase and other factors required for proper transcription. An “inducible promoter” is a regulated promoter that can be turned on in a cell by an external stimulus, such as a chemical, light, hormone, stress, or a pathogen.


The terms “protein,” “peptide” and “polypeptide” are used interchangeably herein.


As used herein, a “transgenic”, “transformed”, or “recombinant” cell refers to a genetically modified or genetically altered cell, the genome of which comprises a recombinant DNA molecule or sequence (“transgene”). For example, a “transgenic cell” can be a cell transformed with a “vector.” A “transgenic”, “transformed”, or “recombinant” cell thus refers to a host cell such as yeast cell into which a heterologous nucleic acid molecule has been introduced. The nucleic acid molecule can be stably integrated into the genome by methods generally known in the art (e.g., disclosed in Sambrook and Russell, 2001). For example, “transformed,” “transformant,” and “transgenic” cells have been through the transformation process and contain a foreign or exogenous gene. The term “untransformed” refers to cells that have not been through the transformation process.


The term “transformation” refers to the transfer of a nucleic acid fragment into the genome of a host cell, or the transfer into a host cell of a nucleic acid fragment that is maintained extrachromosomally. A “transgene” refers to a gene that has been introduced into the genome by transformation. Transgenes may include, for example, genes that are heterologous or endogenous to the genes of a particular cell to be transformed. Additionally, transgenes may comprise native genes inserted into a non-native organism, or chimeric genes. The term “endogenous gene” refers to a native gene in its natural location in the genome of an organism. Such genes can be hyperactivated in some cases by the introduction of an exogenous strong promoter into operable association with the gene of interest. A “foreign” or an “exogenous” gene refers to a gene not normally found in the host cell but that is introduced by gene transfer.


“Vector” is defined to include, inter alia, any plasmid, cosmid, phage or other construct in double or single stranded linear or circular form that may or may not be self transmissible or mobilizable, and that can transform prokaryotic or eukaryotic host either by integration into the cellular genome or exist extrachromosomally, e.g., autonomous replicating plasmid with an origin of replication. A vector can comprise a construct such as an expression cassette having a DNA sequence capable of directing expression of a particular nucleotide sequence in an appropriate host cell, comprising a promoter operably linked to the nucleotide sequence of interest that also is operably linked to termination signals. An expression cassette also typically comprises sequences required for proper translation of the nucleotide sequence. The expression cassette comprising the nucleotide sequence of interest may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of its other components. The expression cassette may also be one that is naturally occurring but has been obtained in a recombinant form useful for heterologous expression. The expression of the nucleotide sequence in the expression cassette may be under the control of a constitutive promoter or of an inducible promoter that initiates transcription only when the host cell is exposed to some particular external stimulus.


The term “wild type” refers to an untransformed cell, i.e., one where the genome has not been altered by the presence of the recombinant DNA molecule or sequence or by other means of mutagenesis. A “corresponding” untransformed cell is a typical control cell, i.e., one that has been subjected to transformation conditions, but has not been exposed to exogenous DNA.


In addition, a “wild type” gene refers to a gene, e.g., a recombinant gene, with its original or native DNA sequence, in contrast to a “mutant” gene.


Introduction


Gadusol (FIG. 1) was first identified in the early 1980's by workers at the National Environmental Research Council, Institute of Marine Biochemistry based in Scotland. The team was investigating the composition of roe in fish off the coast of Aberdeen. Gadusol was initially found in the roe of Gadus morhua where its UV-absorbent properties were identified (Grant 1980). Subsequently, it was observed in the roe of several additional fish species (Melanogrammus aeglefinus, Limanda platessa, Hippoglossoides platessa, Platichthys flesus, Pleuronectes platessa, and Microstomus kitt) and in sea urchin eggs (Plack et al. 1981; Chioccara et al. 1986). Plack et al. (1981) reported 4.3±0.30 (mg/g dry wt.) in the roe and between 0.10 to 0.01 mg/g dry wt. gadusol in the tissue of G. morhua. The higher levels observed in ovaries suggested that gadusol played a protective role in fish roe. Similar levels were reported for the other fish species studied (Plack et al. 1981).


The zebrafish (Danio rerio) EEVS-like gene having the sequence shown in SEQ ID NO. 1 was codon-optimized to provide SEQ ID NO. 2 for heterologous expression in Escherichia coli and synthesized commercially. Incubation of the recombinant protein with SH7P gave a product, which was confirmed by TLC, GC-MS, ESI-MS and 1H NMR to be 2-epi-5-epi-valiolone (EEV) (FIG. 37) revealing the EEVS activity of recombinant protein encoded by SEQ ID NO. 2. The best characterized bacterial EEVS is ValA from the validamycin pathway in Streptomyces hygroscopicus subsp. jinggangensis 500819, and the crystal structure of ValA (PDB entry 4P53), allowed identification of a fingerprint set of 14 active site residues with characteristic variations that could differentiate the various SH7P cyclases. Further supporting the assignment of SEQ ID NO. 1 and SEQ ID NO. 2 as encoding an EEVS, sequence comparisons show that all animal EEVS-like proteins are highly similar to each other (60 to 72% identity) and also match the sequence of ValA at all 14 fingerprint sites. Accordingly, the present disclosure provides the first biochemical evidence for EEVS activity in animals and also provides codon-optimized EEVS encoding sequences.


MT-Ox gene sequence shown in SEQ ID NO: 9 (zgc: 113054) is predicted to encode a protein that contains two possible domains: the N-terminal domain is similar to SAM-dependent methyltransferases and the C-terminal domain is similar to NAD+-dependent oxidoreductases. The MT-Ox gene is a bifunctional protein involved in modifying EEV to yield a reduced and methylated product (FIG. 37). By way of example, recombinant zgc:113054 protein was incubated with EEV in the presence of S-adenosylmethionine (SAM) and NAD+. Following incubation, a product with λmax of 294 nm (pH 7) and 270 (pH 2.5) was detected (FIG. 27-30) (A294 max absorbance). Further analysis of the product by (−)-ESI-MS (m/z 203 [M−H]) and 1H NMR confirmed its identity as gadusol. It is postulated that the conversion of EEV to gadusol by zgc: 113054 protein takes place via oxidation of the C-2 or C-3 OH, followed by enolization and methylation of the resulting C-2 OH. In zebrafish, both LOC100003999 and zgc: 113054 genes are expressed during embryonic development. qRT-PCR analysis of mRNA isolated from zebrafish embryos at 12, 24, 48, 72, 96, and 120 hpf showed maximal expression at 72 hpf (FIGS. 31-32). To demonstrate de novo synthesis of gadusol in zebrafish, the embryos were collected at 72 hpf, lyophilized and extracted with methanol, and the extract was analyzed by HPLC and ESI-MS (FIG. 33).


Gadusol or 3,5,6-trihydroxy-5-hydroxymethyl-2-methoxycyclohex-2-en-1-one is a cyclohexanone tautomer. Gadusol shifts between enol and enolate forms as a function of pH as shown in FIG. 2. The enol (gadusol) form dominates at lower pH and has a λmax of 269 nm, while at neutral and basic pH the enolate (gadusolate) form dominates with a λmax of 296 nm (Plack et al. 1981). Gadusolate is the more effective sunscreen with an extinction coefficient of 21,800 M−1 cm−1 compared to 12,400 M−1 cm−1 for gadusol (Arbeloa et al. 2011). The gadusolate form absorbs light in the UV-B region (290-315 nm). Estimating how much UV-B light penetrates the Earth's atmosphere is difficult because many factors affect UV absorbance. Two major factors include solar angle and the presence of UV-absorbent compounds. The combination of these factors makes it difficult to estimate a typical UV-B dose or how far UV light penetrates into bodies of water (Booth and Morrow 1997). Gadusolate is more photostable than gadusol. Arbeloa et al. (2011) investigated the photodecomposition of gadusol and gadusolate by monitoring the change in gadusol concentration as a function of UV-light absorbed at their respective absorbance maxima. They found that gadusolate, the form that predominates at physiological pH, has a quantum yield of photodecomposition 260 times greater than gadusol indicating that gadusolate can absorb a larger quantity of light before breaking down (Arbeloa et al. 2011). Throughout this disclosure the term “gadusol” will be used generically to refer to both tautomers, unless a distinction is needed for clarity.


Gadusol is synthesized from sedoheptulose 7-phosphate (SH7P), a pentose phosphate pathway (PPP) intermediate. As shown in FIG. 3, 2-epi-5-epi-valiolone synthase (EEVS) initially cyclizes SH7P to 2-epi-5-epi-valiolone (EEV). A bifunctional methyltransferase-oxidase (MT-Ox) then catalyzes the S-adenosyl methionine (SAM)-dependent methylation and NAD+-dependent oxidation of EEV to gadusol (FIG. 3).


While chemical data for gadusol suggest a role as a sunscreen and antioxidant, in vivo studies are less clear. Gadusol's high molar absorptivity in the UV-B range first led to suggestions for a role as a sunscreen (Plack et al. 1981). Sunscreens like gadusol protect tissues by absorbing UV light before it can damage cells. UV-B causes damage through at least two known mechanisms. It induces pyrimidine dimer formation in DNA, leading to mutations and can also generate free radicals which lead to oxidation of lipids and proteins (Sinha and Häder 2002). The photostability of the gadusolate tautomer found at physiological pH supports a sunscreen role (Arbeloa et al. 2011). However, gadusol is found in relatively low concentrations in fish tissues except in the roe (Plack et al. 1981). In order for a sunscreen to be effective, it must be sufficiently concentrated to prevent UV irradiation from penetrating the periphery of the cell and reaching molecular targets. Sunscreens like gadusol, which are soluble in the cytosol, must reach a high-intracellular concentration to provide such protection (Garcia-Pichel 1994; Gao and Garcia-Pichel 2011). While gadusol has also been shown to exhibit antioxidant activity in vitro, it is unknown to what extent it contributes to such activity in vivo where NADPH and GSH play prominent roles. Gadusol may also have protective and tuning roles in animal vision, as it has been found in the lenses of the eyes of several marine animals. In addition to protecting sensitive tissues from UV-B-damage (Dunlap et al. 1989), gadusol also helps tune the UV vision of mantis shrimp by absorbing light in the 296-nm range, preventing activation of receptors that absorb light at that wavelength (Bok et al. 2014).


While it would be possible to harvest gadusol from naturally occurring sources, this would not be economical for producing the quantities of gadusol needed for commercially relevant sunscreen products. To overcome this and other problems, the inventors have developed methods and compositions that allow for the high efficiency production of gadusol in microorganism host cells, such as yeast. Expressing the biosynthetic genes for gadusol in microorganisms, such as yeast, provides an opportunity to leverage in-depth knowledge of yeast biochemistry to generate a sustainable process. Yeast possesses a robust pentose phosphate pathway, and by removing the transaldolase enzyme, which normally metabolizes SH7P, and adding EEVS and MT-Ox facilitated an effective shunt pathway from SH7P to gadusol. The mutant was cultured in YNB+2% glucose supplemented with leucine and lysine at 30° C. for 2 days. Analysis of the culture broth by HPLC, ESI-MS, and UV spectrophotometry revealed the presence of gadusol (FIG. 33). In 20 ml cultures (n=3), the recombinant yeast culture produced approximately 20 mg/l of gadusol after 5 days (FIG. 34). The results not only demonstrate the ability of the engineered yeast to produce and secrete gadusol but also present a new avenue for large-scale production of the compound for possible clinical uses. Large-scale production allows for the use of gadusol in pharmaceuticals, formulations, cosmetics or dietary formulations and products. By way of example, formulations may include pills/capsules, creams, lotions, or the like. In embodiments, the present disclosure provides for a synthetic gadusol having UV-protective activity. By way of example, a yeast rad1Δ mutant, which is sensitive to UVB, was suspended at approximately 107 cells/ml in the concentrated supernatant from the engineered gadusol-producing yeast strain or from an otherwise isogenic control strain that did not produce gadusol. Cells were then irradiated with UVB and spotted in 3 μl aliquots (n=4) onto YEPD plates which were incubated at 30° C. for 24 h. The gadusol-containing supernatant suppressed the UVB-sensitivity of the rad1Δ mutant (FIG. 35), confirming the UVB-protective activity of the synthetic gadusol. Analogous experiments with a wild-type strain (RAD1) at higher doses of UVB showed comparable results (FIG. 36), consistent with UVB protective activity.


Sedoheptulose 7-phosphate (SH7P) is the natural precursor of gadusol and is a central intermediate in the pentose phosphate pathway, but is also derived from glycolytic intermediates (FIG. 4). In yeast, most glucose is metabolized by glycolysis, however, it has been estimated that about 20% is metabolized by the oxidative pentose phosphate pathway to generate reducing equivalents (NADPH) and pentoses to meet biosynthetic needs, depending on growth conditions and genotype (Van Winden et al. 2005; CadiBre et al. 2011). NADPH is primarily consumed in the biosynthesis of fatty acids, sulfur-containing amino acids, and deoxynucleotides (Stincone et al. 2015). NADPH is also produced to help counteract oxidative stress by serving as a cofactor in the glutathione reductase-dependent regeneration of glutathione from glutathione disulfide (Stincone et al. 2015). The pentose phosphate pathway is largely regulated by altering flux through the rate-limiting step, glucose-6-phosphate dehydrogenase (ZWF1), at both protein and transcriptional levels (Stincone et al. 2015).


The oxidative phase of the pentose phosphate pathway (PPP) is composed of three steps that generate two NADPH, a CO2 and the SH7P precursor, ribulose 5-phosphate. For emphasis, the oxidative phase of the pentose phosphate pathway originally shown in FIG. 4 is in indicated by a red dashed box in FIG. 5. The pathway begins with an irreversible step that oxidizes glucose 6-phosphate (G6P) to phosphogluconolactone (PGL) while reducing NADP+ to NADPH. PGL is then oxidized to phosphogluconate, yielding another NADPH, CO2 and ribulose 5-phosphate (RuSP).


The non-oxidative phase of the pentose phosphate pathway shuffles carbons between intermediates to generate a variety of phosphosugars, including SH7P, the precursor for gadusol. The non-oxidative phase of the pentose phosphate pathway originally shown in FIG. 4 is indicated by the red dashed box in FIG. 6. The transketolase step encoded by TKL1 and TKL2 reversibly generates SH7P and glyceraldehyde 3-phosphate (G3P) from the PPP intermediates ribose 5-phosphate (R5P) and xylulose 5-phosphate (X5P) (Schaaff et al. 1990). The SH7P precursor, sedoheptulose 1,7-bisphosphate (SH1,7bisP) can also be generated through an alternative activity of fructose bisphosphate aldolase (Fbal) acting on the PPP intermediate erythrose 4-phosphate (E4P) and the glycolytic intermediate dihydroxyacetone phosphate (DHAP) (Clasquin et al. 2011). SH1,7bisP can then be dephosphorylated to yield SH7P by the phosphatase Shb17. Transaldolase reversibly converts SH7P and glyceraldehyde 3-phosphate into fructose 6-phosphate and E4P. Two yeast-transaldolase paralogs exist, TAL1 and NQM1. Tall is the active transaldolase in cells grown on glucose. tal1Δ mutants lack transaldolase activity when incubated on glucose because NQM1 is not expressed when cells grow on fermentable substrates (Huang et al. 2008; Michel et al. 2015). tal1Δ mutants also accumulate SH7P, as noted in a report of a >30-fold increase relative to a wild-type strain grown on glucose (Schaaff et al. 1990). tal1Δ mutants have also been observed to be more sensitive to oxidative stress (Ng et al. 2008). Accumulation of SH7P and other pentose phosphates could inhibit flux through the oxidative portion of the pentose phosphate pathway, depriving cells of the NADPH needed to regenerate glutathione.


An alternative SH7P biosynthetic pathway was recently described based on a previously unknown activity of Fbal described above, and a newly-discovered phosphatase, Shb17 (Clasquin et al. 2011). This pathway originally shown in FIG. 4 is indicated by the red dashed box in FIG. 7. Previously, Fbal was only thought to catalyze the conversion of fructose 1,6-diphosphate to dihydroxyacetone-phosphate (DHAP) and glyceraldehyde 3-phosphate. Recently, an additional activity was discovered, the reversible conversion of E4P and DHAP into sedoheptulose 1,7-diphosphate. This previously unrecognized activity was confirmed through labeling experiments where 13C-labeled DHAP and 4EP led to the production of doubly-labeled sedoheptulose 1,7-diphosphate (SH1,7bisP) (Clasquin et al. 2011). Shb17, a bisphosphatase, dephosphorylates SH1,7bisP to sedepheptulose 7-phosphate. Clasquin et al. (2011) hypothesized that this shunt pathway provided carbon from glycolysis to produce ribose 5-phosphate when NADPH was not required. The authors found that supplementing the growth medium with lipids and aromatic amino acids that presumably reduced demand for NADPH, led to a two-fold increase in flux through Shb17 (Clasquin et al. 2011).


The combined deletion of TAL1 and PGI1 was reported to increase accumulation of SH7P 4-fold, relative to a tal1 mutant (Schaaff et al. 1990). Phosphoglucoisomerase (PGIJ) catalyzes the isomerization of glucose 6-phosphate to fructose 6-phosphate. One characteristic of pgi1Δ mutants is an inability to grow on glucose as sole carbon source (Aguilera 1987; Schaaff et al. 1990). Schaaff et al. (1990) isolated pgi1Δ mutants on growth medium containing 2% fructose and 0.1% glucose. pgi1Δ mutants must rely on the SH7P shunt or Tall activity to generate ribose 5-phosphate for growth because they cannot generate glucose 6-phosphate from fructose. tal1 pgi1 double mutants are forced to route carbon exclusively through the SHB17-shunt pathway to meet the cell's need for ribose 5-phosphate. Because pgi1 mutants are also unable to generate NADPH via the oxidative portion of the pentose phosphate pathway, they oxidize more acetaldehyde via an NADP+-dependent cytosolic aldehyde dehydrogenase (ALD6) and/or oxidize more isocitrate via NADP+-dependent cytosolic isocitrate dehydrogenase (IDP2) (Grabowska and Chelstowska 2003; Minard and McAlister-Henn 2005). Although pgi1Δ mutants cannot grow on glucose, a small amount (0.1%) is required for growth on fructose (Aguilera 1987). This requirement may arise from the role of glucose as a signaling molecule needed to induce expression of ribosomal protein genes (Pernambuco et al. 1996).


Description of Several Embodiments


The present disclosure provides genetically engineered microorganisms and methods for the production of gadusol, for example using the 2-epi-5-valione synthase (EEVS) and methyltransferase-oxidoreductase (MT-Ox) encoding nucleotide sequences of EEVS and MTOx proteins that are used by the microorganisms in the production of gadusol. Gadusol produced by the engineered microorganisms and methods disclosed herein is useful as a UV protectant, and thus the present disclosure contributes significantly to the improvement of human health and well-being. The engineered microorganisms present a new avenue for large-scale production of a UV protectant for possible commercial and clinical uses. Large-scale production allows for the use of gadusol in pharmaceuticals, formulations, cosmetics, or dietary formulations and products. By way of example, formulations may include pills/capsules, creams, lotions, or the like.


Disclosed is a transgenic yeast cell (or population thereof) that includes a nucleotide sequence capable of expressing EEVS integrated in a genome of the transgenic yeast cell and a nucleotide sequence capable of expressing MT-Ox integrated in the genome of the transgenic yeast cell. During the development of the disclosed genetically engineered microorganisms and methods, the inventors discovered that integration of the EEVS and MT-Ox genes into the genome of a yeast cell had the effect of increasing the production on gadusol over yeast strains where the two genes were carried on one or more plasmids, for example as integrated into yeast chromosome 15 at the his3Δ1 locus. Furthermore, such integration increased the stability of gadusol production from the yeast. For example, a yeast cell containing a linearized and modified construct with EEVS under the control of the yeast TEF1 promoter and CYCI terminator, MT-Ox under the control of the yeast PGK1 promoter and terminator was found to stably produce 64 mg/L vs 30 mg/L of gadusol. It was also found that integration resulted in yeast cells without significant loss of stability over time, for example, in tests no reduction in gadusol yields was noticed in cultures stored for weeks or months at storage conditions of 4° C. or over longer periods at −70° C. Additional advantages were also observed. For example, in a synthetic YNB-based medium, it had a doubling time of 1.7 hr vs 3.5 hr. In addition, this stable integration required no selection to maintain the genes, for example, one of the early plasmid expression systems tested required a medium lacking histidine and tryptophan. Absent such a selection requirement the yeast cells can be grown in a rich, histidine- and tryptophan-containing medium such as YEPD that will result in a much higher cell titer, and more gadusol. Gadusol production was found to be much more stable. That is, the ability to produce gadusol was lost within a few generations of growth by cells containing the plasmid-based expression system, whereas with the integrated genes, loss of gadusol production was only observed to drop after about 32 generations. By way of example, the yeast Saccharomyces cerevisiae may be engineered to include EEVS and MT-Ox sequences that are codon optimized for expression in yeast.


The yeast may be further engineered such that the EEVS and MT-Ox encoding sequences are under the control of at least one yeast promoter. In embodiments, the yeast cell comprises a Saccharomyces cerevisiae yeast cell. In embodiments, the nucleotide sequence capable of expressing EEVS comprises a yeast promoter operably connected to a nucleic acid sequence encoding a EEVS protein. In embodiments, the nucleic acid sequence encoding the EEVS protein comprises a nucleic acid sequence that encodes a protein having an amino acid sequence at least 95% identical to SEQ ID NO: 21, such as at least 95%, 96%, 97%, 98% 99% or even 100% identical. In embodiments, the nucleic acid sequence encoding the EEVS protein comprises a nucleic acid sequence at least 95% identical to any one of SEQ ID NOs 1-8, such as at least 95%, 96%, 97%, 98% 99% or even 100% identical. In embodiments, the yeast promoter is a yeast TEF1 promoter. In embodiments, nucleotide sequence capable of expressing MT-Ox protein comprises a yeast promoter operably connected to a nucleic acid sequence encoding a MT-Ox protein. In embodiments, the nucleic acid sequence encoding the MT-Ox protein comprises a nucleic acid sequence that encodes a protein having an amino acid sequence at least 95% identical to SEQ ID NO: 22, such as at least 95%, 96%, 97%, 98% 99% or even 100% identical. In embodiments, the nucleic acid sequence encoding the MT-Ox protein comprises a nucleic acid sequence at least 95% identical to any one of any one of SEQ ID NOs: 9-16, such as at least 95%, 96%, 97%, 98% 99% or even 100% identical. In embodiments, the yeast promoter is a yeast PGK1 promoter. In embodiments, the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are integrated into the genome of the yeast at chromosome 15 at the his3Δ1 locus. In embodiments, the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are stably integrated. In embodiments, the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are stably integrated for at least 20 generations, such as at least 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 or more. In embodiments, at least one of the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are codon optimized for expression in yeast.


In embodiments, the yeast cell includes one or more disrupted transaldolase genes of the transgenic yeast cell, wherein the disruption results in a reduction of transaldolase activity in the transgenic yeast cell as compared to a wild-type yeast cell. In embodiments, the one or more disrupted transaldolase genes comprises TAL1. In embodiments, the one or more disrupted transaldolase genes comprises NQMJ. In embodiments, the one or more disrupted transaldolase genes comprises both TAL1 and NQM1.


The inventors further discovered that over expression of ZWF1 further increased the gadusol production. In embodiments, the transgenic yeast cell is engineered to over express ZWF1. This strain carries an overexpressed yeast gene called ZWF1 that encodes glucose 6-P dehydrogenase. This enzyme catalyzes the first step in the oxidative phase of the pentose phosphate pathway (PPP). This step is also believed to be rate-limiting for the PPP (Ralser et al., 2007; Stincone et al., 2015). Because the PPP generates the gadusol precursor sedoheptulose 7-P (S7P), it was thought that overexpression of ZWF1 would lead to more gadusol by increasing the pool of S7P. In fact, in tests it produced 37 mg/L gadusol vs 22 mg/L for which was isogenic except for the overexpressed ZWF1 gene.


A method for producing gadusol, the method comprising culturing transgenic yeast cell disclosed herein, for example in growth media. In embodiments, at least a portion of the gadusol is secreted into the growth media, for example, were it can be collected. The growth media may be a Yeast Nitrogen Base (YNB) that supports the growth of an engineered strain of yeast. Alternatively, the growth media may support the growth of an engineered bacterial strain. Generally, the method includes culturing a recombinant microorganism harboring functional EEVS and MT-OX genes at a sufficient temperature under sufficient conditions and for a sufficient period of time to allow for the production of gadusol. By way of example, the culturing temperature may be approximately 30° C. Preferably, the temperature is adjusted to match the optimal temperature for the type of microorganism being used, such a yeast strain.


In some embodiments, a starter culture may be used. For example, an engineered microorganism may be cultured for approximately 24-48 hours in YNB. The YNB may include approximately 2% glucose and necessary essential amino acids or nucleic acid bases that the strain itself cannot make. The starter culture may be used to inoculate a larger volume of the same or similar medium that is then cultured at an appropriate temperature for a period of time sufficient for maximum production of gadusol. By way of example, the engineered microorganism may be cultured up to 5 days. After the microorganism is cultured the gadusol containing broth may be subject to centrifugation (1,000×g) to provide a cell pellet and a cell-free broth that contains the produced gadusol. The cell-free broth may be extracted and the produced gadusol may be substantially purified from the cell-free broth. By way of example, extracting the cell-free broth may be accomplished with an equal volume of n-butanol. The resulting butanol phase may be recovered using a separatory funnel and the n-butanol removed by rotoevaporation to provide for a gadusol containing residue. The residue may be dissolved in methanol or distilled water or other polar solvent and subjected to various standard chromatographic steps to remove unwanted impurities and provide for substantially pure gadusol. In some embodiments, methods for producing gadusol are carried out in an engineered yeast strain configured for producing gadusol. The engineered yeast may secrete the produced gadusol.


The nucleic acid sequences disclosed herein and/or used for the production of gadusol and the construction of such nucleic acid sequences and/or expression vectors that may be employed in conjunction with the present disclosure will be known to those of skill of the art in light of the present disclosure (see, e.g., Sambrook and Russell, 2001). The expression sequences of the disclosure may contain one or a plurality of restriction sites allowing for placement of the polynucleotide encoding functional EEVS and MT-OX genes under the regulation of a regulatory sequence. The expression cassette may also contain a termination signal operably linked to the polynucleotide as well as regulatory sequences required for proper translation of the polynucleotide. The expression cassette containing the polynucleotide of the disclosure may be chimeric, meaning that at least one of its components is heterologous with respect to at least one of the other components. Expression of the polynucleotide in the expression cassette may be under the control of a constitutive promoter, inducible promoter, regulated promoter, viral promoter or synthetic promoter. The expression cassette may include, in the 5′-3′ direction of transcription, a transcriptional and translational initiation region, the polynucleotide of the disclosure and a transcriptional and translational termination region functional in vivo and/or in vitro. The termination region may be native with the transcriptional initiation region, may be native with the polynucleotide, or may be derived from another source. The regulatory sequences may be located upstream (5 non-coding sequences), within (intron), or downstream (3 non-coding sequences) of a coding sequence, and influence the transcription, RNA processing or stability, and/or translation of the associated coding sequence. Regulatory sequences may include, but are not limited to, enhancers, promoters, repressor binding sites, translation leader sequences, introns, and polyadenylation signal sequences. They may include natural and synthetic sequences as well as sequences that may be a combination of synthetic and natural sequences.


Propagation of yeast cells in culture has become a regular procedure in recent years, and the yeast cells of the present disclosure may be grown using conventional techniques. Yeast strains of the disclosure may be cultured in any appropriate medium known to the art for the particular strain (see, for example, Adams et al., 1998). For example, S. cerevisiae strains may be grown at 30° C. in complete yeast extract/peptone/dextrose (YPD) medium supplemented with 2% glucose. Alternatively, the minimal selective medium with 2% glucose supplemented with auxotrophic requirements can be used.


A transgenic yeast cell of the disclosure may contain a selective marker, thus requiring selective conditions for culture, e.g., conditions that require the expression of a plasmid encoded gene for growth. Most selective markers currently in use are genes coding for enzymes of amino acid or purine biosynthesis. This makes it necessary to use synthetic minimal media deficient in the corresponding amino acid or purine base. However, some genes conferring antibiotic resistance may be used as well (e.g. genes conferring resistance to cycloheximide or to the amino-glycoside G418). Yeast cells transformed with vectors containing antibiotic resistance genes may be grown in complex media containing the corresponding antibiotic whereby faster growth rates and higher cell densities can be reached. Yeast cells transformed with DNA integrating into the chromosomes do not require selective growth conditions. These transformed cells are sufficiently stable to allow growth without selective pressure. For the above reason, these cells are advantageously grown in complex media.


Further disclosed is a bioreactor comprising a population of the transgenic yeast cell disclosed herein. Any one of a number of bioreactors known to the art can be used with the transgenic yeast cell of the disclosure for the production of gadusol. In some embodiments, methods for producing gadusol are carried out in an engineered bacterial or yeast strain configured for producing gadusol. The engineered bacteria or yeast may secrete the produced gadusol. In some embodiments, the methods for producing gadusol are carried out in a microorganism that lacks, or is engineered to lack, a functional TAL1 gene.


EXAMPLES
Example 1

Materials and Methods


Media and Growth Conditions


Cells were grown in 2× YEPD (2% yeast extract, 4% peptone, and 4% glucose) for transformations, and in minimal medium (M) (Bacto yeast nitrogen base [YNB] without amino acids) (6.7 g/L)+2% glucose supplemented with histidine (20 μg/ml), leucine (30 μg/ml), lysine (30 μg/ml), tryptophan (20 μg/ml), or uracil (10 μg/ml) as needed. pgi1 mutants were grown in YNB+2% fructose+0.1% glucose with supplements as needed. “YNB+NADPH nutr.” is YNB+2% glucose supplemented with 20 μg/ml ergosterol from a 2 mg/ml ergosterol stock dissolved in 1:1 (vol/vol) EtOH:Tween 80, lysine (30 mg/ml), tryptophan (20 mg/ml), histidine (20 mg/ml), phenylalanine (50 mg/ml), and tyrosine (30 mg/ml). Stocks of all antibiotics were stored at −20° C. Ampicillin was prepared as an aqueous sterile-filtered 1000× stock (100 mg/ml). G-418 was prepared as an aqueous sterile-filtered 500× stock (100 mg/ml). Hygromycin B was prepared as an aqueous sterile-filtered 500× stock (150 mg/ml). The stocks were filtered through a sterile 0.45-μm filter. Agar-based media were sterilized by autoclaving. Liquid cultures were grown at 30° C. and 200 rpm; plates were incubated statically at 30° C.


For growth and gadusol experiments, isolated colonies from selective media were used to inoculate 2 ml cultures. The 2 ml cultures were grown for either 16 or 48 h at 30° C. and 200 RPM. Cells were harvested by centrifugation, washed with sterile water, and counted using hemocytometer. Cells were inoculated into 75 ml of media that was then split into three 25 ml cultures in 125-ml Erlenmeyer flasks to yield an initial cell density=105 cell/ml. Cultures were incubated at 30° C. and 200 RPM. Cultures were sampled periodically to measure growth (A600) and gadusol (A296).


Transformations


Yeast was transformed using the lithium acetate method (Gietz and Woods 2001). Briefly, the strain to be transformed was grown overnight at 30° C. and 200 RPM in 1 ml of 2×YEPD in an incubator shaker. The overnight culture was used to inoculate 25 ml of 2×YEPD at a concentration of 5×106 cells/ml. The 25 ml 2×YEPD culture was kept at 30° C. and 200 RPM until at least two cell doublings had occurred. Cells were then harvested by centrifugation at 1,200 g and washed twice with sterile water. An aliquot of 2×108 cells was then transferred to a 1.5 ml Eppendorf tube and centrifuged at 16,000 RPM in a microcentrifuge. Supernatant was removed from the tube without disturbing cells. The following chemicals and DNAs were then added in this specific order: 240 μl 50% (w/v) polyethylene glycol 3500, 36 μl lithium acetate, 50 μl 2.0 mg/ml single-stranded carrier DNA, and 34 μl of plasmid or PCR amplicon DNA. The transformation mixture was then mixed by pipetting and incubated at 42° C. for 40 minutes. Cells were pelleted to remove the transformation mixture and then washed with 1 ml of sterile water before plating on selective media.



E. coli strains were transformed according to suppliers' directions for chemically competent TOP10 cells (Invitrogen) and NEB-23 cells (New England Biolabs). Suppliers' directions briefly stated that 50 μl aliquots of the cells were to be removed from −70° C. storage and thawed on ice for 10 minutes. A 1-5 μl aliquot of DNA was added to the thawed cells followed by a 30-minute incubation on ice. After the incubation, the DNA-treated cells were heat shocked for 30 sec at 42° C. followed by a second 5 min incubation on ice. Cells were resuspended in 950 μl of SOC medium before aliquots were plated on selective media and grown at 37° C.


Strain Construction



E. coli strains (Table 1) maintained on LB+amp at 37° C. Liquid cultures were grown at 37° C. and shaken at 200 RPM.











TABLE 1





Strain
Genotype
Origin







BL21
B F ompT gal dcm lon hsdSB(rBmB) [malB+]K−12S)
Stratagene Inc.,




CA


DH5α
FendA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG
ThermoFisher



purB20 φ80dlacZΔM15 Δ(lacZYA-argF)U169,
Scientific Inc.,



hsdR17(rKmK+), λ
Waltham, MA


NEB-5α
DH5α derivative
New England




Biolabs Inc.,




Ipswich, MA


NEB-10β
DH10B derivative, F− mcrA Δ(mrr-hsdRMS-mcrBC)
New England



Φ80lacZΔM15 ΔlacX74 recA1 endA1 araD139 Δ(araleu)
Biolabs Inc.,



7697 galU galK rpsL nupG λ−
Ipswich, MA


TOP10
F− mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 Δ
ThermoFisher



lacX74 recA1 araD139 Δ(araleu)7697 galU galK rpsL
Scientific Inc.,



(StrR) endA1 nupG
Waltham, MA









Yeast strains (Table 2) were constructed as described below.











TABLE 2





Strain
Genotype
Origin







BY4742
MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0
ATC 204508,




Manassas,VA


BY4742 tal1Δ
MATα tal1Δ::KanMX4 his3Δ1 leu2Δ0 lys2Δ0
Thermo Fisher



ura3Δ0
Scientific Inc.,




Waltham, MA


BY4742 trp1Δ
MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0
This study



trp1Δ::URA3


G0
MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0
This study



trp1Δ::URA3/pXP416-MTOx, pXP420-EEVS


G1
MATα tal1Δ::KanMX4 his3Δ1 leu2Δ0 lys2Δ0
This study



ura3Δ0 trp1Δ::URA3/pXP416-MTOx, pXP420-



EEVS


G2
MATα tal1Δ::KanMX4 nqm1Δ::LEU2 his3Δ1
This study



leu2Δ0 lys2Δ0 ura3Δ0 trp1Δ::URA3/pXP416-



MT-Ox, pXP420-EEVS


G2C
MATα tal1Δ::KanMX4 nqm1Δ::LEU2 his3Δ1
This study



leu2Δ0 lys2Δ0 ura3Δ0 trp1Δ::URA3/pXP416,



pXP420


G3
MATα tal1Δ::KanMX4 nqm1Δ::LEU2
This study



his3Δ1::pGH420-EEVS-MTOx-2μΔ leu2Δ0



lys2Δ0 ura3Δ0 trp1Δ::URA3


G4
MATα tal1Δ::KanMX4 nqm1Δ::LEU2
This study



pgilΔ::TRP1 his3Δ1::pGH420-EEVS-MTOx-



2μΔ leu2Δ0 lys2Δ0 ura3Δ0 trp1Δ::URA3


G5
MATα tal1Δ::KanMX4 pgi1Δ::TRP1
This study



his3Δ1::pGH420-EEVS-MTOx-2μΔ leu2Δ0



lys2Δ0 ura3Δ0 trp1Δ::URA3


G6
MATα tal1Δ::KanMX4 nqm1Δ::Leu2
This study



shb17Δ::HphMX his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0



trp1Δ::URA3/pXP416-MTOx, pXP420-EEVS


G7
MATα tal1Δ::KanMX4 nqm1Δ::Leu2
This study



his3Δ1::pGH420-EEVS-MTOx-2μΔ leu2Δ0



lys2Δ0 ura3Δ0 trp1Δ::URA3/pXP416-SHB17


G8
MATα tal1Δ::KanMX4 nqm1Δ::Leu2
This study



his3Δ1::pGH420-EEVS-MTOx-2μΔ TEF1



TEF1::pXP416-SHB17-2μΔ leu2Δ0 lys2Δ0



ura3Δ0 trp1Δ::URA3


G9
MATα tal1Δ::KanMX4 his3Δ1 leu2Δ0 lys2Δ0
This study



ura3Δ0 pho13Δ::HphMX trp1Δ::URA3/pXP416-



MT-Ox, pXP420-EEVS


G10
MATα tal1Δ::KanMX4 his3Δ1 leu2Δ0 lys2Δ0
This study



ura3Δ0 trp1Δ::URA3/pXP416-MT-Ox, pXP420-



EEVS, pXP422-ZWF1









G0 (BY4742 trp1/pXP416-MTOx, pXP420-EEVS)


TRP1 in BY4742 was deleted by replacement with a 1.8 Kb PCR amplicon encoding URA3. The URA3 amplicon was generated using the TRP1DisURA3UP/LO primers (SEQ ID NO. 23 and 24) according to standard methods (Baudin et al. 1993; Gietz and Woods 2001). Transformants were selected on M+his+trp+leu+lys. The deletion of TRP1 was confirmed by diagnostic PCR, using the TRP1DisUP/LO primers (SEQ ID NO. 27 and 28) to generate a unique PCR amplicon of the URA3 gene inserted at the TRP1 locus (1.9 Kb). The BY4742 trp1Δ strain was co-transformed with both pXP416-MTOx (SEQ ID NO. 10 from the original provisional to which a stop codon has now been added) and pXP420-EEVS (SEQ ID NO. 2 from the original provisional to which a stop codon has now been added) using the lithium acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+leu+lys.


G1 (BY4742 tal1Δ trp1Δ/pXP416-MTOx, pXP420-EEVS)


TRP1 in BY4742 tal1Δ::KanMX4 was deleted by replacement with a 1.8 Kb PCR amplicon encoding URA3. The URA3 amplicon was generated using the TRP1DisURA3UP/LO primers according to standard methods (Baudin et al. 1993; Gietz and Woods 2001). Transformants were selected on M+his+trp+leu+lys+G418. Deletion of TRP1 was confirmed by diagnostic PCR using the TRP1DisUP/LO primers (SEQ ID NO. 27 and 28) to generate a unique PCR amplicon of the URA3 gene inserted at the TRP1 locus (1.9 Kb). The BY4742 tal1Δ trp1Δ strain was co-transformed with both pXP416-MTOx (SEQ ID NO. 10) and pXP420-EEVS (SEQ ID NO. 2) using the lithium acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+leu+lys.


G2 (BY4742 tal1Δ nqm1Δ trp1Δ/pXP416-MTOx, pXP420-EEVS)


NQM1 in BY4742 tal1Δ::KanMX4 was deleted by replacement with a 3.1 Kb PCR amplicon encoding LEU2. The LEU2 amplicon was generated using the NQM1DisLEU2UP/LO primers (SEQ ID NO.40 and 41) according to standard methods (Baudin et al. 1993; Gietz and Woods 2001). Transformants were selected on M+his+trp+lys. Deletion of NQM1 was confirmed by diagnostic PCR using NQM1UP/LO primers (SEQ ID NO. 42 and 43) to generate a unique 4.2 Kb PCR amplicon. The BY4742 tal1Δ trp1Δ nqm1Δ strain was co-transformed with both pXP416-MTOx (SEQ ID NO. 10) and pXP420-EEVS (SEQ ID NO. 2) using the lithium acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+leu+lys.


G2C (BY4742 tal1Δ nqm1Δ trp1Δ/pXP416, pXP420)


The BY4742 tal1Δ trp1Δ nqm1Δ strain was co-transformed with both pXP416 and pXP420 using the lithium acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+leu+lys.


G3 (tal1Δ nqm1Δ trp1Δ his3Δ::pGH420-EEVS-MTOx-2μΔ)


BY4742 tal1Δ::KanMX4 trp1Δ nqm1Δ was transformed with NdeI-linearized pGH420-EEVS-MTOx-2μΔ (SEQ ID NO. 79) to direct integration to the his3Δ locus according to standard methods (Gietz and Woods 2001). Transformants were selected on M+lys+trp. Integration of pGH420-EEVS-MTOx-2μΔ (SEQ ID NO. 79) at the his3Δ locus was confirmed by diagnostic PCR targeting the junction between HIS3 and the MTOx gene (SEQ ID NO. 10) to generate a 2.3 Kb amplicon using HIS3MTOx-F/R primers (SEQ ID NO. 86 and 87).


G4 (BY4742 tal1Δ nqm1Δ trp1Δ pgi1Δ his3Δ::pGH420-EEVS-MTOx)


PGI1 in BY4742 tal1Δ::KanMX4 trp1Δ nqm1Δ his3Δ::pGH420-EEVS-MTOx-2μΔ was deleted by replacement with a 1.9 Kb PCR amplicon encoding TRP1. The TRP1 amplicon was generated using the PGI1DisTRP1UP/LO primers (SEQ ID NO. 44 and 45) according to standard protocols (Baudin et al. 1993; Gietz and Woods 2001). Transformants were selected and maintained on YNB+2% fructose+0.1% glucose+lys. Deletion of PGI1 was confirmed by diagnostic PCR using PGI1DisUP/LO primers (SEQ ID NO. 46 and 47) to generate a unique 3.2 Kb PCR amplicon.


G5 (BY4742 tal1Δ trp1Δ pgi1Δ his3Δ::pGH420-EEVS-MTOx)


PGI1 in BY4742 tal1Δ::KanMX4 trp1Δ was deleted by replacement with a 1.9 Kb PCR amplicon encoding TRP1. The TRP1 amplicon was generated using the PGI1DisTRP1UP/LO primers according to standard protocols (Baudin et al. 1993; Gietz and Woods 2001). Transformants were selected and maintained on YNB+2% fructose+0.1% glucose+his+leu+lys. Deletion of PGI1 was confirmed by diagnostic PCR using PGI1DisUP/LO primers (SEQ ID NO. 44 and 45) to generate a unique 3.2 Kb PCR amplicon. BY4742 tal1Δ::KanMX4 trp1Δ pgi1Δ was transformed with NdeI-linearized pGH420-EEVS-MTOx-2μΔ (SEQ ID NO. 79) to direct integration to the his3Δ locus according to standard methods (Baudin et al. 1993). Transformants were selected on YNB+2% fructose+0.1% glucose+leu+lys. Integration of pGH420-EEVS-MTOx-2μΔ (SEQ ID NO. 79) at the his3Δ locus was confirmed by diagnostic PCR targeting the junction between the HIS3 marker and the MTOx gene (SEQ ID NO. 10) using HIS3MTOx-F/R primers (SEQ ID NO. 86 and 87) to generate a 2.3 Kb amplicon.


G6 (BY4742 tal1Δ trp1Δ nqm1Δ shb17Δ/pXP416-MTOx, pXP420-EEVS)


SHB17 in BY4742 tal1Δ trp1Δ nqm1Δ was deleted by replacement with a 1.6 Kb PCR amplicon encoding HphMX. HphMX was generated using SHB17disHphUP/LO primers (SEQ ID NO. 48 and 49) according to standard protocols (Baudin et al. 1993; Gietz and Woods 2001). Transformants were selected and maintained on YEPD+hygromycin B. Deletion of SHB17 (SEQ ID NO. 77) was confirmed by diagnostic PCR using SHB17DisUP/LO (SEQ ID NO. 50 and 51) to generate a unique 2 Kb PCR amplicon. BY4742 tal1Δ trp1Δ nqm1Δ shb17Δ was co-transformed with both pXP416-MTOx (SEQ ID NO. 10—MTOx only, not pXP416) and pXP420-EEVS (SEQ ID NO. 2—EEVS only, not pXP420) according to the lithium-acetate method. Transformants were selected and maintained on M+lys.


G7 (BY4742 tal1Δ trp1Δ nqm1Δ his3Δ::pGH420-EEVS-MTOx-2μΔ/pXP416-SHB17)


BY4742 tal1Δ trp1Δ nqm1Δ his3Δ::pGH420-EEVS-MTOx-2μΔ was transformed with pXP416-SHB7 (SEQ ID NO. 77—SHB17 only, not pXP416) according to the lithium-acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+lys.


G8 (BY4742 tal1Δ trp1Δ nqm1Δ his3Δ::pGH420-EEVS-MTOx TEF1::pXP416-SHB7-2μΔ)


BY4742 tal1Δ trp1Δ nqm1Δ his3Δ::pGH420-EEVS-MTOx was transformed with BbsI-linearized pXP416-SHB17-2μΔ (SEQ ID NO. 80) to direct integration to the TEF1 locus according to the lithium-acetate method (Gietz and Woods 2001). The 2μ yeast replicative origin was removed (˜2μΔ) to ensure construct integration. Transformants were selected and maintained on M+lys media. Integration of pXP416-SHB17-2μΔ (SEQ ID NO. 80) at the TEF1 locus could not be verified by PCR. However, growth on the selection medium indicates integration of at least the TRP1 gene with the genome.


G9 (BY4742 tal1Δ trp1Δ pho13Δ/pXP416-MTOx, pXP420-EEVS)


PHO13 (SEQ ID NO. 81) in BY4742 tal1Δ trp1Δ was deleted by replacement with a 1.6 Kb PCR amplicon encoding HphMX. The HphMX amplicon was generated using the PHO13HphUP/LO primers according to standard methods (Baudin et al. 1993; Gietz and Woods 2001). Transformants were selected on YEPD+hygromycin B. Deletion of PHO13 (SEQ ID NO. 81) was confirmed by diagnostic PCR using PHO13UP/LO primers (SEQ ID NO. 54 and 55) to generate a unique 2.4 Kb PCR amplicon. The BY4742 tal1Δ trp1Δ pho13Δ strain was co-transformed with both pXP416-MTOx (SEQ ID NO. 10—MTOx only) and pXP420-EEVS (SEQ ID NO. 2—EEVS only) using the lithium acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+leu+lys.


G10 (BY4742 tal1Δ trp1Δ/pXP416-MTOx, pXP420-EEVS, pXP422-ZWF1)


BY4742 tal1Δ trp1Δ was transformed with pXP420-EEVS (SEQ ID NO. 2-EEVS only), pXP416-MTOx (SEQ ID NO. 10—MTOx only), and pXP422-ZWF1 (SEQ ID NO. 78—ZWF1 only) according to the lithium-acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+lys.


DNA Primers


DNA primers needed to construct yeast strains and plasmids are listed in Table 3.












TABLE 3





Primer
SEQ




Name
ID NO:
Sequence (5′→3′)
Notes







TRP1DisURA3UP
SEQ ID
TATAGGAAGCATTTAATAGAACAGC
TRP1-annealing



NO. 23
ATCGTAATATATGTGTACTTTGCAG
sequence




TTATGACGCCGAAATTGAGGCTACT
underlined





GCGCC







TRP1DisURA3LO
SEQ ID
CCTGTGAACATTCTCTTCAACAAGT
TRP1-annealing



NO. 24
TTGATTCCATTGCGGTGAAATGGTA
sequence




AAAGTCAACCGGCAGCGTTTTGTTC
underlined





TTGGA







TRP1DisUP
SEQ ID
CTCACCCGCACGGCAGAGAC




NO. 27







TRP1DisLO
SEQ ID
TGCCGGCGGTTGTTTGCAAG




NO. 28







NQM1DisLEU2UP
SEQ ID
TTCTTGCTAGCGTAAGTCATAAAAA
LEU2-annealing



NO. 40
ATAGGAAATAATCACATATATACAA
sequence




GAAATTAAATCACTGTTCACGTCGC
underlined





ACCTA







NQM1DisLEU2LO
SEQ ID
ATTATACGTCAGAATTTTAATGAAT
LEU2-annealing



NO. 41
ATATAAGTCTGTACACTATGCTATG
sequence




CACATATACTGCTGCATTAATGAAT
underlined





CGGCCA







NQM1DisUP
SEQ ID
AAAACTCACATCGCACGCAC




NO. 42







NQM1DisLO
SEQ ID
GAGCTGAAAGCAATTCTAAATCCA




NO. 43







PGI1DisTRP1UP
SEQ ID
ACCCAGAAACTACTTTGTTTTTGAT
TRP1-annealing



NO. 44
TGCTTCCAAGACTTTCACTACCGCT
sequence




GAAACTATCAATGCGTAAGGAGAAA
underlined





ATACC







PGI1DisTRP1LO
SEQ ID
AGATAGAACCAGTAGAGTAGTCAGT
TRP1-annealing



NO. 45
AAACACGTTACCTCTGGTAACAGAC
sequence




TTACCGTTAGATGCAGCTCAGATTC
underlined





TTTGT







PGI1DisUP
SEQ ID
GGCAAGAACCGGGATGGTAA




NO. 46







PGI1DisLO
SEQ ID
TGTAGTTACTTGGACGCTGTTC




NO. 47







SHB17DisHphUP
SEQ ID
AGCACATTTTGTTCATAGCTAAGTG
HphMX-annealing



NO. 48
GATAGGGAAACACCTACACTTAATT
sequence




GCAAGCAACAGGGCATGATGTGACT
underlined





GTCGCCC







SHB17DisHphLO
SEQ ID
AAAAAATGTTTTTATCACTTTCTAT
HphMX-annealing



NO. 49
AACTGCATATCTTTTTTTGCATTTC
sequence




GAATGATTGCTCTGGGCAGATGATG
underlined





TCGAGGC







SHB17DisUP
SEQ ID
CCACCGCCAAATTGCTATCC




NO. 50







SHB17DisLO
SEQ ID
ACAGTCCTTTGTACTATCCCTTTTA




NO. 51







PHO13HphUP
SEQ ID
AGCCAAATCACAAAAAAAGCCTTAT
HphMX-annealing



NO. 52
AGCTTGCCCTGACAAAGAATATACA
sequence




ACTCGGGAAAGGGCATGATGTGACT
underlined





GTCGCCC







PHO13HphLO
SEQ ID
AAACCTGAATATTTTTCCTTTTCAA
HphMX-annealing



NO. 53
AAAGTAATTCTACCCCTAGATTTTG
sequence




CATTGCTCCTTCTGGGCAGATGATG
underlined





TCGAGGC







PHO13Up
SEQ ID
AAGTGGCTTGAGCTGTGGAT




NO. 54







PHO13LO
SEQ ID
GGTTCTTCTGCTGCATTAGGC




NO. 55







MTOXUP
SEQ ID
AGATCCACTAGTATGCAAACGGCAA
SpeI site



NO. 34
AAGTCTC
underlined





MTOXLO
SEQ ID
TAGCCACTCGAGTCACCACAGAGAC
XhoI site



NO. 35
TGACCG
underlined





PTEF1-Spe1-
SEQ ID

TTCTTGCTCATTAGAAAGAAAGCAT

pXP416-annealing


SHB17
NO. 56

AGCAATCTAATCTAAGTTTTAATTA

sequence





CAAAACTAGTATGCCTTCGCTAACC

underlined




CCC






TCYC1-XhoI-
SEQ ID

GAGCGGATGTGGGGGGAGGGCGTGA

pXP416-annealing


SHB17
NO. 57

ATGTAAGCGTGACATAACTAATTAC

sequence





ATGACTCGAGTTACACATCGCCATG

underlined




CTGGG






DEEVSUP
SEQ ID
AGATCCACTAGTATGGAACGTCCGG
SpeI site



NO. 32
GCGAAAC
underlined





DEEVSLO
SEQ ID
TAGCCACTCGAGTCACTGCGGTGAG
XhoI site



NO. 33
CCGGT
underlined





A-HIS3-F
SEQ ID
ACTATATGTGAAGGCATGGCTATGG
Paired with



NO. 58
CACGGCAGACATTCCGCCAGATCAT
B-HIS3-R




CAATAGGCACcttcattcaacgttt





cccatt






B-HIS3-R
SEQ ID
GTTGAACATTCTTAGGCTGGTCGAA
Paired with



NO. 59
TCATTTAGACACGGGCATCGTCCTC
A-HIS3-F




TCGAAAGGTGtgatgcattaccttg





tcatc






B-PPGK1-FII
SEQ ID
ACCTTTCGAGAGGACGATGCCCGTG
Paired with



NO. 60
TCTAAATGATTCGACCAGCCTAAGA
MT-PPGK1-RII




ATGTTCAACcctgacttcaactcaa





gacgc






MT-PPGK1-RII
SEQ ID
CAGCAGATGTTCCACAATAAATTCA
Paired with



NO. 61
ACCGGGGTGTCCGAGACTTTTGCCG
B-PPGK1-FII




TTTGCATactagtatatttgttgta





aaaagtagataattacttcc






MTOx-F
SEQ ID
ACGTCTCACGGATCGTATATGCCGT
Paired with



NO. 62
AGCGACAATCTAAGAACTATGCGAG
MTOx-R




GACACGCTAGactagtatgcaaacg





gcaaaagtctc






MTOx-R
SEQ ID
AATCACTCTCCATACAGGGTTTCAT
Paired with



NO. 63
ACATTTCTCCACGGGACCCACAGTC
MTOx-F




GTAGATGCGTctcgagtcaccacag





agactgaccg






Ox-TPGK1-FII
SEQ ID
GCATCCGACTACATGACCGGTCACA
Paired with



NO. 64
ATCTGGTTATTGAAGGCGGTCAGTC
C-TPGK1-RII




TCTGTGGTGAattgaattgaattga





aatcgatagatca






C-TPGK1-RII
SEQ ID
GCCTACGGTTCCCGAAGTATGCTGC
Paired with 



NO. 65
TGATGTCTGGCTATACCTATCCGTC
OX-TPGK1-FII




TACGTGAATAttttgttgcaagtgg





gatga






C-2μ-F
SEQ ID
TATTCACGTAGACGGATAGGTATAG
Paired with



NO. 66
CCAGACATCAGCAGCATACTTCGGG
D-2μ-R




AACCGTAGGCgaattcgtatgatcc





aatatc






D-2μ-R
SEQ ID
TGCCGAACTTTCCCTGTATGAAGCG
Paired with



NO. 67
ATCTGACCAATCCTTTGCCGTAGTT
C-2μ-F




TCAACGTATGgaattcaacgaagca





tctgtgc






D-ORI-F
SEQ ID
CATACGTTGAAACTACGGCAAAGGA
Paired with



NO. 68
TTGGTCAGATCGCTTCATACAGGGA
E-AMP-R




AAGTTCGGCAaaaggcggtaatacg





gtta






E-AMP-R
SEQ ID
GTCACGGGTTCTCAGCAATTCGAGC
Paired with



NO. 69
TATTACCGATGATGGCTGAGGCGTT
D-ORI-F




AGAGTAATCTgaaaaaggaagagta





tgagtattc






E-PTEF1-F
SEQ ID
AGATTACTCTAACGCCTCAGCCATC
Paired with



NO. 70
ATCGGTAATAGCTCGAATTGCTGAG
A-TCYC1-RII




AACCCGTGACaccgcgaatccttac





atcac






A-TCYC1-RII
SEQ ID
GTGCCTATTGATGATCTGGCGGAAT
Paired with



NO. 71
GTCTGCCGTGCCATAGCCATGCCTT
E-PTEF1-F




CACATATAGTcagacaagctgtgac





cgtct






HIS3MTOx-F
SEQ ID
CTTGGATTTATGGCTCTTTTGG
Confirmation of



NO. 86

pGH420-EEVS-





MTOx-2μΔ





integration





HIS3MTOx-R
SEQ ID
CTTAGCCTTCAGCAGATGTTCC
Confirmation of



NO. 87

pGH420-EEVS-





MTOx-2μΔ





integration





ZWF1SpeIUP
SEQ ID
AGATCCACTAGTATGAGTGAAGGCC
SpeI restriction



NO. 88
CCGTC
site





underlined





ZWF1XhoILO
SEQ ID
AGATCCCTCGAGCTAATTATCCTTC
XhoI restriction



NO. 89
GTATCTTC
site





underlined









Construction of Plasmids


Plasmids (Table 4) were constructed as described below. Plasmid maps are shown in FIG. 8-12.












TABLE 4





Plasmid
Feature

E. coli carrier

Source/reference







pRSETB-EEVS
EEVS (EcoRV)
BL-21
(Osborn et al. 2015)


pRSETB-MTOX
MTOx (EcoRV
BL-21
(Osborn et al. 2015)


pXP416
TRP1; TEF1
DH5α
(Fang et al. 2011)



promoter




pXP416-MTOx
MT-Ox
NEB-10β
(Osborn et al. 2015)



(SpeI + XhoI)




pXP416-SHB17
SHB17
TOP10



pXP416-
SHB17, and
TOP10



SHB17-2μΔ
missing 2μ ORI




pXP420
HIS3; TEF1
DH5α
(Fang et al. 2011)



promoter




pXP420-EEVS
EEVS
TOP10
(Osborn et al. 2015)



(SpeI + XhoI)




pGH420-EEVS-
EEVS, MT-Ox
TOP10



MTOx





pGH420-EEVS-
EEVS,
TOP10



MTOx-2μΔ
MT-Ox, and





missing 2μ ORI




pXP422
LEU2; TEF1
TOP10
(Fang et al. 2011)



promoter




pXP422-ZWF1
ZWF1
NEB-5α









pXP416-MTOx (SEQ ID NO. 10—MTOx Only)


pXP416 plasmid was extracted and purified from a 1-ml culture of DH5a/pXP416 E. coli grown in LB+amp. An aliquot of pXP416 was digested with SpeI- and XhoI-restriction enzymes yielding a 5.8 Kb fragment. SpeI-, XhoI-digested plasmid was gel purified using a Qiagen gel-purification kit. The MTOx cDNA (SEQ ID NO. 10—MTOx only) was amplified by PCR from pRSETB-MTOx (SEQ ID NO. 10—MTOx only) yielding a 1.7 Kb amplicon. The MTOXUP/MTOXLO primers (SEQ ID NO. 34 and 35) used for amplification attached a SpeI site to the 5′-end and a XhoI site to the 3′-end of the cDNA. The MTOx PCR amplicon (SEQ ID NO. 10—MTOx with added 5′ SpeI site 3′ XhoI site) flanked by SpeI and XhoI sites was digested with SpeI and XhoI and gel purified using a gel-purification kit (Qiagen). The purified SpeI-XhoI-digested MTOx cDNA (SEQ ID NO. 10) was ligated into SpeI-XhoI-digested pXP416 using New England Biolab's T4 DNA ligase kit. The ligation mixture was used to transform competent TOP10 E. coli (Invitrogen). Transformants were selected and maintained on LB+amp plates. Construction of pXP420-MTOx (SEQ ID NO. 10—MTOx only) (FIG. 8) was confirmed by digesting purified plasmid DNA with SpeI and XhoI to yield 5.8 and 1.7 Kb fragments.


pXP416-SHB17


SHB17 (SEQ ID NO. 77) was cloned into pXP416 by homologous recombination to avoid disrupting the SHB17 ORF by cutting with XhoI. SHB17 was amplified using PTEF1-Spe1-SHB17/TCYC1-XhoI-SHB17 primers (SEQ ID NO.56 and 57) that contained 60-bp of sequence homologous to both ends of SpeI-XhoI-linearized pXP416. BY4742 tal1Δ trp1Δ was transformed with SHB17 amplicon (SEQ ID NO. 77) and SpeI-XhoI linearized pXP416 plasmid according to standard methods (Gietz and Woods 2001). Transformants were selected and maintained on M+his+leu+lys. The plasmid was rescued from a yeast transformant by extracting DNA according to a genomic DNA extraction protocol and used to transform competent TOP10 E. coli (Schwartz and Sherlock 2016). Plasmid DNA was extracted and purified from E. coli transformants using a plasmid miniprep kit (Qiagen). Construction of pXP416-SHB17 (SEQ ID NO. 77—SHB17 only) was verified by digestion with BbsI and analysis by gel electrophoresis which yielded 2.8 and 3.8 Kb fragments as expected.


pXP416-SHB17-2μΔ


The yeast origin of replication (2μΔ) sequence was removed from pXP416-SHB17 (SEQ ID NO. 77—SHB17 only) by digestion with EcoRI. Five nanograms of EcoRI-digested pXP416-SHB7 DNA (SEQ ID NO. 77—SHB17 only) were added to a T4 ligase-mediated ligation reaction after which competent TOP10 E. coli was transformed with 5 μl of the reaction mixture. Transformants were selected on LB+Amp. Construction of pXP416-SHB17-2μΔ (SEQ ID NO. 77—SHB17 only) (FIG. 9) was confirmed by digestion with BbsI and analyzed by gel electrophoresis which indicated a 5.3 Kb fragment.


pXP420-EEVS


pXP420 plasmid was extracted and purified from a 1-ml culture of DH5a/pXP420 E. coli grown in LB+amp. An aliquot of pXP420 was digested with SpeI- and XhoI-restriction enzymes yielding a 6.0 Kb fragment. SpeI-, XhoI-digested plasmid was gel purified using a Qiagen gel-purification kit. The EEVS cDNA (SEQ ID NO. 2) was amplified by PCR from pRSETB-EEVS (SEQ ID NO. 2—EEVS only) yielding a 1.4 Kb amplicon. The DEEVSUP/DEEVSLO primers (SEQ ID NO. 32 and 33) used for amplification attached a SpeI site to the 5′-end and a XhoI site to the 3′-end of the cDNA. The EEVS PCR amplicon (SEQ ID NO. 2—EEVS with added 5′SpeI and 3′XhoI sites) bordered by SpeI and XhoI sites was digested with SpeI and XhoI and gel purified using a Qiagen gel-purification kit. The purified SpeI-XhoI digested EEVS cDNA (SEQ ID NO. 2—EEVS with added 5′SpeI and 3′XhoI sites) was ligated into SpeI-XhoI digested pXP420 using New England Biolab's T4 DNA ligase kit. The ligation mixture was then used to transform competent TOP10 E. coli from Invitrogen. Transformants were selected and maintained on LB+amp plates. Construction of pXP420-EEVS (SEQ ID NO. 2—EEVS only) (FIG. 10) was confirmed by digesting purified plasmid DNA with SpeI and XhoI to yield 6.0 and 1.4 Kb fragments.


pGH420-EEVS-MTOx


A plasmid expressing both EEVS (SEQ ID NO. 2—EEVS only) and MTOx (SEQ ID NO. 10—MTOx only) was constructed using in vivo ligation. BY4742 tal1Δ trp1Δ nqm1Δ was co-transformed with seven PCR amplicons as described in Example 2. Yeast transformants were selected on M+trp+lys. Plasmid DNA was purified from a yeast transformant and used to transform E. coli. Transformants were selected on LB+amp and verified as described in the Example 2.


pGH420-EEVS-MTOx-2μΔ


To facilitate stable integration of the pGH420-EEVS-MTOx plasmid (SEQ ID NOs. 2 and 10-EEVS and MTOx only) into the yeast genome the yeast origin of replication (2μ) was first digested with EcoRI restriction enzyme for 30 min at 37° C. EcoRI-digested pGH420-EEVS-MTOx (SEQ ID NOs. 2 and 10-EEVS and MTOx only) was then heated to 65° C. for 20 min to inactivate enzyme. Digested plasmid was diluted 20-fold in a T4 DNA ligase reaction to circularize the construct without the 2μ sequence (FIG. 11). Competent TOP10 E. coli was transformed with 5 pd of the ligation mixture. Transformants were selected and maintained on LB+amp plates. Construction of pGH420-EEVS-MTOx-2μΔ (SEQ ID NOs. 2 and 10-EEVS and MTOx only) was confirmed by digestion with EcoRI which yielded an 8.5 Kb fragment by gel electrophoresis.


pXP422-ZWF1 (SEQ ID No. 78)


pXP422 plasmid was extracted and purified from a 1-ml culture of TOP10/pXP420 E. coli grown in LB+amp. An aliquot of pXP422 was digested with SpeI- and XhoI-restriction enzymes yielding a 6.3 Kb fragment. SpeI-, XhoI-digested plasmid was gel purified using a Qiagen gel-purification kit. The ZWF1 gene (SEQ ID NO. 78) was amplified by PCR from BY4742 yielding a 1.5 Kb amplicon. The ZWF1SpeIUP/ZWF1XhoILO primers (SEQ ID NOs. 88 and 89) used for amplification attached a SpeI site to the 5′-end and a XhoI site to the 3′-end of the gene. The ZWF1 PCR amplicon (SEQ ID NO. 78 with added 5′ XhoI and 3′ SpeI sites) bordered by SpeI and XhoI sites was digested with SpeI and XhoI and gel purified using a Qiagen gel-purification kit. The purified SpeI-XhoI digested ZWF1 gene (SEQ ID NO. 78 with added 5′ XhoI and 3′ SpeI sites) was ligated into SpeI-XhoI digested pXP422 using New England Biolab's T4 DNA ligase kit. The ligation mixture was then used to transform competent TOP10 E. coli from Invitrogen. Transformants were selected and maintained on LB+amp plates. Construction of pXP422-ZWF1 (SEQ ID NO. 78—ZWF1 only) (FIG. 12) was confirmed by digesting purified plasmid DNA with SpeI and XhoI to yield 6.3 and 1.5 Kb fragments. The DNA sequence for ZWF1 (SEQ ID NO. 78—ZWF1 only) can be found in below.


Measurements of Biomass and Gadusol


Yeast biomass was monitored spectrophotometrically at A600 using a UV-visible spectrophotometer (Shimadzu UV-1601). Cultures were diluted with distilled water such that the measured values did not exceed 0.3 because previous measurements had shown this to be the limit of linearity for this spectrophotometer. Actual A600 values were calculated by multiplying by the dilution factor. Exit from log phase was determined to estimate when gadusol production was relative to growth. Exit from log phase was estimated by finding the intersection of an exponential growth trend line fitted to cultures in log phase and a polynomial trend line fitted to cultures exiting log phase (Microsoft Excel, Redmond, Wash.). An example featuring strain G2 may be found in FIG. 25.


To measure extracellular gadusol from a culture, yeast cells were spun down and a sample of culture supernatant was diluted to 50 mM phosphate, pH 7. The absorbance of the supernatant was measured at 296 nm using distilled water as a blank. Gadusol concentrations were calculated according to Beer's law using gadusol's extinction coefficient, 21,800 M−1 cm−1 at pH 7 in 50 mM phosphate. This value was determined previously for a gadusol sample of undefined purity (Plack et al. 1981). The formula below accounts for background absorbance at 296 nm due to non-gadusol components in the fermentation. The average A296/A600 ratio (0.0537) of a control strain (G2C) grown in triplicate for three days at 30° C. and 200 RPM, was subtracted from the A296/A600 ratio of a sample to correct for background A296 absorbance. The difference in ratios was then multiplied by the sample's A600, giving absorbance from gadusol which was then divided by gadusol's extinction coefficient (21,800 M−1 cm−1) to determine molarity.







Gadusol






(
M
)


=



[



(


A
296


A
600


)

Gad

-
0.0537

]

×


(

A
600

)

Gad



21


,


800






M

-
1




cm

-
1








(A296%)Gad=The A296 of a yeast culture supernatant as described in the preceding section.


(A600)Gad=The A600 of a yeast culture as described in the preceding section.


Statistical Analysis


Statistical significance (p<0.05) of differences was determined using Student's two-tailed, paired t test (Microsoft Excel, Redmond, Wash.).


Results and Discussion


The gadusol biosynthetic pathway in vertebrates was recently shown to originate from the pentose phosphate pathway intermediate SH7P and to require two enzymes: EEVS and bifunctional MT-Ox (Osborn et al. 2015). cDNAs encoding the two genes from zebrafish (Danio rerio) were expressed in E. coli and were shown to mediate the in vitro conversion of S7P to EEV, and the SAM- and NAD+-dependent conversion of EEV to gadusol, respectively. In order to explore the possibility of producing gadusol in yeast, the cDNAs were sub-cloned into the yeast expression vectors pXP420 and pXP416 to yield pXP420-EEVS (SEQ ID NO. 2—EEVS only) and pXP416-MTOx (SEQ ID NO. 10—MTOx only), respectively. Both vectors contained the same strong constitutive S. cerevisiae promoter, TEF1, but different selectable markers. Table 5 lists a set of gadusol-producing strains that were constructed and provides characteristics related to growth and gadusol yields. Although the strains have been numbered, no relationship is necessarily implied based on the numerical designation. Strains and interventions that increased gadusol yields are presented earlier in the table and reflect their position in the text, while the remaining strains and interventions follow.

















TABLE 5









Gadusol
Time to








End of
made (%)
reach




Doubling
log
after
maximal
Biomass (Atext missing or illegible when filed )
Maximal




time
phase
exiting
gadusol
at maximal
gadusol


Strain
Conditions
(h)text missing or illegible when filed
(h)
log phase
(h)
gadusoltext missing or illegible when filed
(mg/L)text missing or illegible when filed
Feature







G0
YNB + 2% glu +
2.0 ± 0.1text missing or illegible when filed
17
96
110
1.30 ± 0.3text missing or illegible when filed
11.9 ± 0.1text missing or illegible when filed
TAL1 NQM1/pXP416-MTOx, pXP420-



leu + lys






EEVS


G1
YNB + 2% glu +
3.text missing or illegible when filed  ± 0.4text missing or illegible when filed
2text missing or illegible when filed
87
110
1.42 ± 0.04text missing or illegible when filed
22.4 ± 0.5text missing or illegible when filed
tal1Δ NQM1/pXP416-MTOx, pXP420-



leu + lys






EEVS


G10
YNB + 2% glu +
3.0 ± 1.4text missing or illegible when filed
39
93
207
3.31 ± 0.47text missing or illegible when filed
36.7 ± 1.5text missing or illegible when filed
tal1Δ NQM1/pXP422-ZWF1, pXP41text missing or illegible when filed -



lys






MTOx, pXP420-EEVS


G2
YNB + 2% glu +
3.5 ± 0.1text missing or illegible when filed
33
93
130
3.07 ± 0.8text missing or illegible when filed
30.1 ± 0.2text missing or illegible when filed
tal1Δ nqm1Δ/pXP416-MTOx, pXP420-



lys






EEVS


G3
YNB + 2% glu +
1.7 ± 0.0text missing or illegible when filed
15
98
169
3.text missing or illegible when filed 4 ± 0.42text missing or illegible when filed
64.1 ± 7.5text missing or illegible when filed
tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-



lys + trp






MTOx-2text missing or illegible when filed Δ


G3
2xlys + 2Xtrp
2.1 ± 0.7text missing or illegible when filed
24
86
155
5.5text missing or illegible when filed  ± 0.20text missing or illegible when filed

text missing or illegible when filed 5.7 ± 1.4text missing or illegible when filed

tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-










MTOx-2text missing or illegible when filed Δ


G3
2xtrp
2.5 ± 0.1text missing or illegible when filed
27
85
1text missing or illegible when filed
5.00±0.13text missing or illegible when filed


text missing or illegible when filed .text missing or illegible when filed  ± 6.3text missing or illegible when filed

tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-










MTOx-2text missing or illegible when filed Δ


G3
2xlys
2.3 ± 0.0text missing or illegible when filed
23
88
131
3.50 ± 0.29text missing or illegible when filed

text missing or illegible when filed 3.3 ± 3.9text missing or illegible when filed

tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-










MTOx-2text missing or illegible when filed Δ


G3
YNB + 2% glu +
3.6 ± 0.2text missing or illegible when filed
35
95
186
 1.text missing or illegible when filed  ± 0.05text missing or illegible when filed
13.7 ± 0.4text missing or illegible when filed
tal1Δ NQM1 pho13Δ/pXP416-MTOx,



leu + lys






pXP420-EEVS


G6
YNB + 2% glu +
5.0 ± 0.text missing or illegible when filed
60
74
1text missing or illegible when filed 6
2.91 ± 0.05text missing or illegible when filed
17.text missing or illegible when filed  ± 0.8text missing or illegible when filed
tal1Δ nqm1 shb17Δ/pXP416-MTOx,



lys






pXP420-EEVS


G7
YNB + 2% glu +
4.4 ± 0.1text missing or illegible when filed
48
84
106
4.76 ± 0.15text missing or illegible when filed
28.4 ± 3.5text missing or illegible when filed
tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-



lys






MTOx-2text missing or illegible when filed Δ/pXP416-SHB17


G8
YNB + 2% glu +
2.0 ± 0.0 
17
98
208
3.44 ± 0.22text missing or illegible when filed

text missing or illegible when filed 0.text missing or illegible when filed  ± 2.text missing or illegible when filed

tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-



lys






MTOx-2text missing or illegible when filed Δ/pXP416-SHB17 integrant


G3
NADPH text missing or illegible when filed .
2.text missing or illegible when filed  ± 0.1text missing or illegible when filed
32
85
2text missing or illegible when filed 0
3.67 ± 0.14text missing or illegible when filed

text missing or illegible when filed 7.8 ± 2.2text missing or illegible when filed

tal1Δ nqm1Δ his3Δ1::pGH420-EEVS-










MTOx-2text missing or illegible when filed Δ


G4
YNB + 2% text missing or illegible when filed  +
8.text missing or illegible when filed  ± 0.4text missing or illegible when filed
47
83
2text missing or illegible when filed 4
2.text missing or illegible when filed 6 ± 0.0text missing or illegible when filed
53.0 ± 4.7text missing or illegible when filed
tal1Δ nqm1Δ pgl1Δ his3Δ1::pGH420-



0.1% glu + lys






EEVS-MTOx-2text missing or illegible when filed Δ


G5
YNB + 2% text missing or illegible when filed  +
4.2 ± 0.5text missing or illegible when filed
39
90
302
0.93 ± 0.21text missing or illegible when filed
15.1 ± 3.0text missing or illegible when filed
tal1Δ NQM1Δ pgl1Δ his3Δ1::pGH420-



0.1% glu + leu + lys






EEVS-MTOx-2text missing or illegible when filed Δ






text missing or illegible when filed indicates data missing or illegible when filed







EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) Expression is Sufficient for Gadusol Synthesis in S. cerevisiae


A trp1Δ derivative of the laboratory haploid BY4742 was co-transformed with both plasmids to generate strain G0 that was found to produce 12 mg/L of gadusol after 110 h (FIG. 13). Comparing G0 to a standard haploid laboratory strain, S288c leu2Δ/pGP564 grown in YNB+2% glucose, pH 4.8 (td=2.0 vs 2.0 h), shows that expression of EEVS and MTOx is not particularly costly for yeast (Ding et al. 2015). To determine whether deletion of the major yeast transaldolase gene TAL1 would increase yields by eliminating an important S7P-consuming reaction, strain G1 was constructed that lacked Tall activity but still expressed EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10). G1 (tal1Δ) was found to produce 22 mg/L after the same 110 h (FIG. 13). While G1 produced almost twice as much gadusol as G0, it grew more slowly than G1 (td=3.6 vs 2 h), but reached about the same final cell titer (A600=1.4 vs 1.3). The increase in doubling time between G0 and G1 could be explained by the loss of Tall activity, which would lead to decreased throughput in the PPP and availability of intermediates needed for producing biomass (E4P, and R5P).


Overexpression of ZWF1 Increases Gadusol Production


ZWF1 (SEQ ID NO. 78) encodes glucose 6-P dehydrogenase which catalyzes the first step in the oxidative phase of the PPP (Stincone et al. 2015). A ZWF1-overexpressing mutant (G10) was constructed in the G1 background (tal1Δ) because it is thought to be the rate-limiting step in the PPP (Ralser et al. 2007; Stincone et al. 2015). Overexpression of ZWF1 was therefore expected to divert more glucose 6-P from glycolysis to the PPP to form more S7P, the gadusol precursor. FIG. 14 compares growth and gadusol yield for the G1 (tal1Δ) and G10 (tal1Δ/pXP422-ZWF) strains to allow assessment of the contribution of ZWF1 (SEQ ID NO. 78) overexpression.


The G10 strain produced 37 mg/L of gadusol compared to 22 mg/L for G1, a 68% increase (FIG. 14). However, G10 required 207 h to reach this higher concentration. It is not clear if gadusol production by G1 would have continued to increase after the final measurement was taken for this strain at 110 h. G10 grew faster than G1 (td=2.6 vs 3.6 h) and produced 2.4 times more cells (A600=3.3 vs 1.4). This latter observation indicates greater carbon assimilation by the ZWF1-overexpressing G10 strain, consistent with a more active PPP.


Elimination of a Second Transaldolase Gene NQM1 Increases Gadusol Yield


NQM1 encodes a paralogue of TAL1 (Huang et al. 2008). While the encoded enzyme is not active during fermentative growth on glucose, it is heavily transcribed during respiratory growth on glycerol (21, 31). Deletion of NQM1 was expected to eliminate all known transaldolase activity and therefore increase gadusol yields. To this end, the G2 strain (tal1Δ nqm1Δ) was constructed and compared to G1 (tal1Δ).


The G2 strain produced 30 vs 22 mg/L of gadusol or 36% more than G1, but required 130 h to reach this level. While the two strains grew at about the same rate (td˜3.5 h), G2 produced twice as much biomass as G1 (A600=3.1 vs 1.4). It is likely that decreased throughput in the PPP blocked by a lack of transaldolase activity elevated levels of ribose 5-P which in turn fueled greater carbon assimilation. G2 produced more than twice the gadusol made by G1 during stationary phase.


Chromosomal Integration of a Plasmid Carrying EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) Leads to Increased Gadusol Production


The limited number of genetic markers available in the G2 strain necessitated redesigning the gadusol expression system. In order to eliminate the need for two plasmids (and two genetic markers), both EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) genes were cloned into a single plasmid by in vivo ligation to generate pGH420-EEVS-MTOx (SEQ ID NO. 2 and 10-EEVS and MTOx only). The plasmid was then converted into an integrative construct by excision of the 2μ yeast origin of replication. The pGH420-EEVS-MTOx-2P A construct (SEQ ID NO. 79) was digested with NdeI and used to transform a tal1Δ nqm1Δ yeast mutant. Prior digestion with NdeI was meant to facilitate integration of the construct at the NdeI site in the his3Δ1 locus. The resultant strain was designated G3 (FIG. 16).


The G3 strain produced 64 vs 30 mg/L of gadusol or 113% more than G2, but required 169 h to reach this concentration. In contrast, G2 reached 30 mg/L by 130 h. G3 grew much faster than G2 (td=1.6 vs 3.5 h), but did not produce significantly more biomass, (A600=3.5 vs 3.1). The observation that G3 grew more than two times faster than G2 and that the only difference between the strains was the integrated construct vs two high copy plasmids suggests that the plasmids caused growth inhibition. Inclusion of constitutive glycolytic promoters on plasmids has been reported to reduce yeast growth rates by 12-15% (Görgens et al. 2001). In this particular case, the authors speculated that multiple copies of plasmid-borne constitutive promoters could attenuate the transcriptional machinery by titrating a limited number of transcription factors and RNA polymerases which would normally exist in excess.


Supplementation with the Growth-Limiting Nutrients Tryptophan and Lysine has No Effect on Gadusol Yield


Supplementing growth medium with the nutrients lysine (Lys) and tryptophan (Trp) was tested as a means to increase gadusol production. Supplementation had no significant effect on gadusol production by G3 (64 vs 63-67 mg/L).


The culture treated with 2×Lys+2×Trp (FIG. 17), where the concentration of lysine and tryptophan were doubled, did not grow significantly faster than the 2×Trp or 2×Lys treatments (2.1 vs 2.5 vs 2.3 h). The 2×Trp+2×Lys treatment resulted in the largest increase in biomass followed by 2×Trp then 2×Lys (A600=5.5>5.0>3.5).


Doubling the concentration of lysine alone had no effect on peak A600 (3.5 vs 3.5) or gadusol levels, however it was found to reduce the time to reach final gadusol by 38 h compared to the standard YNB+2% glucose+lys+trp medium (FIG. 17). Doubling the tryptophan concentration significantly increased biomass, indicating that tryptophan was a limiting nutrient for growth but not gadusol production (FIG. 17). When lysine was doubled in conjunction with tryptophan, biomass increased even further suggesting that lysine was the next nutrient to become growth limiting (FIG. 17). Despite increases in biomass, gadusol levels did not increase significantly. It is unclear why gadusol production did not increase with biomass in the supplemented cultures. If accumulated intracellular metabolites inhibited gadusol yield then production should have scaled proportionally with biomass, which was not observed. Alternatively, inhibition by gadusol or another extracellular metabolite could have led to production that did not scale proportionately or that stopped at a certain threshold.


Deletion of PHO13 Decreases Gadusol Production


PHO13 (SEQ ID NO. 81) encodes a phosphatase whose deletion was found to upregulate the second and third steps of the PPP, 6-phosphogluconolactonase (SOL3) and 6-phosphogluconate dehydrogenase (GNDI) (Kim et al. 2015). pho13Δ's upregulation of the PPP was originally identified during a screen for mutants with enhanced xylose fermentation rates (Ni et al. 2007). It was thought that a pho13Δ mutation would enhance gadusol yield by increasing expression of two enzymes that provide precursors for S7P biosynthesis. A pho13Δ mutant in the tal1Δ, gadusol-producing background was designated G9 (FIG. 18).


G9 produced 36% less gadusol (14 vs 22 mg/L) than G1, but required 185.6 h to reach this concentration. In contrast, G1 reached 22 mg/L by 110 h. G9 and G1 reached comparable cell densities (A600=1.6 vs 1.4). G9 grew at the same rate as G1 (td=3.6 h). It is unclear why pho13Δ lead to a substantial decrease in gadusol yield. Increased expression of the two steps after glucose 6-P dehydrogenase was expected to cause accumulation of PPP intermediates. However, if such accumulation occurred it did not result in improved gadusol yield and hindered production.


The SHB17 Shunt is a Key Source of S7P for Gadusol Biosynthesis


Sedoheptulose 7-P can be generated from the PPP and glycolytic intermediates erythrose 4-P and DHAP by a two-step pathway. Erythrose 4-P and DHAP combine to form sedoheptulose 1,7-P via an additional activity of Fbal (Clasquin et al. 2011). Sedoheptulose 1,7-P is then dephosphorylated by the phosphatase Shb17 to generate S7P. SHB17 (SEQ ID NO. 77) was deleted to determine if the SHB17 (SEQ ID NO. 77) shunt is a significant source of S7P.


As shown in FIG. 19, G6 (tal1Δ nqm1Δ shb17Δ) produced 40% less gadusol than G2 (18 mg/L vs 30 mg/L). The G6 strain showed increased biomass production (A600=2.9 vs 1.4) but grew more slowly (td=5.9 vs 3.6 h) than G2. These results show that SHB17 (SEQ ID NO. 77) has a role in generating SH7P precursor for gadusol production however the increase in biomass was unexpected. Clasquin et al. (2011) speculated that Shb17 provided a route to generate ribose 5-P precursors without generating NADPH. Based on that hypothesis deletion of SHB17 (SEQ ID NO. 77) should have decreased rather than increased biomass.


Overexpression of SHB17 (SEQ ID NO. 77) does not Increase Gadusol Yield


Because deletion of SHB17 (SEQ ID NO. 77) reduced gadusol yield, it was reasoned that overexpression of SHB17 (SEQ ID NO. 77) would lead to an increase. SHB17 (SEQ ID NO. 77) was overexpressed in the transaldolase mutant strain G3 (tal1Δ nqm1Δ) and designated G7. Contrary to expectations, overexpression of SHB17 (SEQ ID NO. 77) decreased gadusol production as shown in FIG. 20. G7 produced much less gadusol than G3 (18 vs 64 mg/L). Overexpression of SHB17 (SEQ ID NO. 77) increased biomass (A600=4.8 vs 3.5) and slowed growth (td=4.4 vs 1.7 h) compared to G3. These results indicate that overexpression of SHB17 (SEQ ID NO. 77) led to more biomass but reduced gadusol production. Based on these results, it is possible that overexpression of SHB17 (SEQ ID NO. 77) may have titrated transcription proteins as described earlier or that accumulation of EEV in the gadusol biosynthesis pathway inhibited production.


It is unclear why overexpression of SHB17 (SEQ ID NO. 77) failed to increase gadusol yield. Based on the improvement in gadusol production observed when the gadusol construct was integrated it was decided to integrate the SHB17 construct to determine if eliminating plasmid burden would improve yield. The resultant strain was designated G8.


As shown in FIG. 20, the G8 strain did not produce more gadusol than G3 (61 vs 64 mg/L). However, it made twice as much gadusol as the G7 strain, which relied on a high-copy plasmid to overexpress SHB17 (SEQ ID NO. 77). G8 reached a similar biomass (A600=3.4 vs 3.5) to G3 but grew significantly more slowly (td=2.0 vs 1.7 h). The restoration of 95% of the gadusol yield by integrating the SHB17 construct suggests that use of high-copy plasmids inhibits gadusol yield. It was speculated that the similar gadusol yields between G8 and G3 were caused by inhibition at a step after S7P, either the 2-epi-5-epi valiolone synthase or methyl transferase-oxidoreductase steps in gadusol biosynthesis.


Supplementation with Nutrients to Increase Activity of Shb17 does not Increase Gadusol Yield


Previous work has shown that growing yeast in YNB+2% glucose medium with nutrients that require NADPH for biosynthesis increased production of ribose 5-P via the SHB7 (SEQ ID NO. 77) shunt while repressing the PPP reactions that generate NADPH (Clasquin et al. 2011). Supplementing the growth medium for G3 was rationalized to increase gadusol yield by forcing more glycolytic intermediates to enter the PPP via the SHB17 (SEQ ID NO. 77) shunt and increase the amount of available S7P. Supplementation was expected to reduce the requirement for NADPH while maintaining the need for ribose 5-P. Biosynthetic requirements for ribose 5-P were expected to draw intermediates from the SHB7 (SEQ ID NO. 77) shunt towards S7P, providing a source of precursor for gadusol biosynthesis.


As shown in FIG. 21, the YNB+NADPH nutr. did not increase gadusol production (68 mg/L vs 64 mg/L) or change biomass (A600=3.8 vs 3.5) of G3. The YNB+NADPH nutr. medium made G3 grow slower than normal (td=2.57 vs 1.65 h). The supplementation also increased the time to reach maximal gadusol levels by 61 h (FIG. 21). It is possible that increased availability of S7P may have been insufficient to increase gadusol yield if production was inhibited at one of the steps after S7P formation.


Eliminating Phosphoglucoisomerase Activity in Transaldolase Mutants does not Increase Gadusol Yield.


Deletion of PGI1 was rationalized to increase gadusol yields in the transaldolase mutant background based on a report showing a tal1Δ pgi1Δ mutant accumulating up to 4-fold more S7P than a tal1Δ strain (Schaaff et al. 1990). PGI1 encodes a phosphoglucoisomerase that converts glucose 6-P to fructose 6-P. Phosphoglucoisomerase-transaldolase double mutants (pgi1Δ tal1Δ) are unable to grow on glucose as the sole carbon source because glycolysis is interrupted after glucose 6-P formation (Aguilera 1986). These mutants must rely on the SHB7 (SEQ ID NO. 77) shunt to generate S7P and ribose 5-P. PGI1 mutants in both the tal1Δ nqm1Δ (G4) and tal1Δ (G5) backgrounds were generated. Gadusol production was evaluated in YNB+2% fructose+0.1% glucose medium supplemented with lysine for G4 and both lysine and tryptophan for G5.


As shown in FIG. 22, eliminating phosphoglucoisomerase activity significantly reduced gadusol production in both G4 and G5. G4 produced much more gadusol than G5 (53 vs 15 mg/L) and reached a higher biomass (A600=2.6 vs 0.9). However, G4 grew more slowly than G5 (td=8.6 vs 4.2 h). The higher gadusol yield by G4 compared to G5 was consistent with observations by Michel et al. (2015) who showed that expression of the second transaldolase Nqm1 increased under glucose-restricted conditions (<0.5%) in tal1Δ mutants. G4 and G5 were grown on medium containing 2% fructose and 0.1% glucose, which may have caused upregulation of NQM1 and concomitant loss of S7P by transaldolase activity in the G5 strain. The absence of transaldolase activity in G4 may have also decreased throughput in the PPP, resulting in elevated levels of ribose 5-P that could have translated to greater biomass relative to G5. It is difficult to disentangle the effect of pgi1Δ on growth from its effect on gadusol production. G4 produced significantly less gadusol than G3 (53 vs 64 mg/L) and grew much more slowly (td=8.6 vs 1.7 h). G4 also reached a lower biomass than G3 (A600=2.6 vs 3.5). It is possible that in addition to the growth defects caused by pgi1Δ, both G4 and G5 would encounter the same problem that prevented SHB17 overexpression from increasing gadusol yield. Both interventions were intended to make S7P rate limiting for production of ribose 5-P and presumably biomass. However, gadusol yield either decreased or was unaffected, suggesting that the step limiting production comes after S7P.


Promoter Titration May Inhibit Gadusol Production


Simultaneous integration of the gadusol biosynthesis genes into yeast chromosome XV and promoter swapping led to a doubling in gadsuol yield from 30 to 64 mg/L. Although the integrated construct used a different promoter for MTOx (PPGK1), this change is unlikely to explain the increase in gadusol yield because PPGK1 possess roughly half of the activity of PTEF1 as estimated using a GFP assay (Sun et al. 2012). Promoters on high-copy plasmids can deplete transcription factors, and RNA polymerase activity leading to competition for transcription machinery that is normally in excess. Because constitutive promoters typically derive from genes encoding essential functions (e.g., translation or glycolysis), promoter titration can lead to growth defects (Görgens et al. 2001). Integration of EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) decreased the doubling time of G3 compared to G2 (td=1.7 vs 3.5 h). Integrating EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) would leave limited copies of the promoters in each cell, reducing competition for transcription factors. Using the same promoter (PTEF1) to express both EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) in G2 could have led to reduced expression of these genes in addition to growth defects. Determining expression levels for EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) in the G2 and G3 strains would help determine if gene expression increased after integration or if gadusol yield improved because of changes in growth from plasmid integration.


Observations from the SHB17 (SEQ ID NO. 77) overexpression experiments support a role for promoter titration in gadusol production. Introduction of the high-copy plasmid pXP416-SHB7 (PTEF1) (SEQ ID NO. 77—SHB17 only) into the G3 strain led to a sharp decrease in gadusol production (64 vs 28 mg/L). Integration of a construct derived from pXP416-SHB7 (SEQ ID NO. 77—SHB17 only) resulted in the near complete restoration of gadusol production in strain G8 (60 vs 64 mg/L). This difference suggests that high-copy plasmids have an inhibitory effect on gadusol production that should be recognized when testing further interventions. Measuring gadusol production and expression of EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) in G3 derivative strains carrying empty PTEn-expression vector or integrated PTEF1-expression vector would help support this conclusion.


Conclusion


This study demonstrated that rational genetic interventions were able to increase gadusol yields approximately 5-fold. Deleting both transaldolase genes (TAL1 and NQM1) resulted in a 2.5-fold increase in gadusol yield compared to the tal1Δ mutant. Overexpressing the glucose 6-P dehydrogenase gene (ZWF1) (SEQ ID NO. 78) in a tal1Δ strain caused a 64% increase in gadusol yield. Integrating the gadusol genes and switching the promoter for MTOx (SEQ ID NO. 10) doubled gadsuol production relative to a tal1Δ nqm1Δ strain expressing the gadusol genes from free plasmids. In most of the strains studied, 83-98% of gadusol was made after exiting log phase.


Example 2

Construction of pGH420-EEVS-MTOx (SEQ ID NO. 82)


A plasmid expressing both EEVS (SEQ ID NO. 2) and MTOx (SEQ ID NO. 10) was constructed using in vivo ligation as described, according to the scheme outlined in FIG. 1 (Kuijpers et al, 2013). The essential elements in the construct were synthesized via PCR as seven individual amplicons sharing terminal homology that directed ligation and recombination in a unique order. The seven amplicons are numbered, and the terminal sequence regions are lettered in FIG. 1. For example, sequence A (SEQ ID NO. 72) mediates ligation between amplicons 1 (SEQ ID NO. 83) and 7 (SEQ NO. 85) and sequence B (SEQ ID NO. 73) mediates ligation between amplicons 1 (SEQ ID NO. 83) and 2 (SEQ NO. 84). The plasmid was designed to place the yeast origin of replication (2μ) and selectable marker (HIS3) on non-contiguous amplicons because previous work demonstrated that such a separation reduced the number of false positive transformants (Kuijpers et al. 2013).


PCR primers designed to amplify DNA sequences containing the HIS3 marker, PGK1 promoter, MTOx ORF (SEQ NO. 10), PGK1 terminator, 2μ yeast ORI, E. coli AMPr-ORI sequence, and the EEVS (SEQ NO. 2) expression cassette are listed in Table 3. Primers containing 5′-60-bp barcode sequences were designed using the sequences described in Table 7. The barcode sequences lacked homology to the yeast genome, limiting the risk of chromosomal recombination. In the case of MTOx (SEQ NO. 10) (3) a portion of the ORF sequence was used to target recombination. Specifically, the downstream end of fragment 2 contained 60-bp of homology to the 5′-region of the MTOx ORF (SEQ NO. 10) while the upstream region of fragment 4 contained 60-bp of homology to 3′-region of the MTOx ORF (SEQ NO. 10).











TABLE 7





Barcode




sequence

Sequence 5′-3′







A
SEQ ID
ACTATATGTGAAGGCATGGCTATGGC



NO. 72
ACGGCAGACATTCCGCCAGATCATCA




ATAGGCAC





B
SEQ ID
CACCTTTCGAGAGGACGATGCCCGTG



NO. 73
TCTAAATGATTCGACCAGCCTAAGAA




TGTTCAAC





C
SEQ ID
TATTCACGTAGACGGATAGGTATAGC



NO. 74
CAGACATCAGCAGCATACTTCGGGAA



(This
CCGTAGGC



is a




portion




of




SEQ ID




NO. 66)






D
SEQ ID
CATACGTTGAAACTACGGCAAAGGAT



NO. 75
TGGTCAGATCGCTTCATACAGGGAAA




GTTCGGCA





E
SEQ ID
AGATTACTCTAACGCCTCAGCCATCA



NO. 76
TCGGTAATAGCTCGAATTGCTGAGAA




CCCGTGAC









The PCR conditions used to amplify the components of the plasmid construct were modified from the manufacturer's instructions for the polymerase (Thermofisher Phusion Hot Start II). Primer concentrations were lowered from 500 to 200 nM and polymerase concentration was raised from 0.02 to 0.03 U/μl. Amplicons were gel-purified using a Qiagen gel purification kit. To improve DNA extraction, after a PCR amplicon was excised from a horizontal gel, the slice was cut into a top layer (A) and a bottom layer (B) (FIG. 24). The bottom layer (b) typically contained most of the DNA and was processed according to the manufacturer's instructions while the top layer (A) was disposed of. Approximately 200 fmol each of the purified 2μ and HIS3 amplicons and 100 fmol each of the purified MTOx ORF (SEQ NO. 10), EEVS (SEQ NO. 2) cassette, E. coli AMPr-ORI, PGK1 promoter, and terminator amplicons were used to transform BY4742 tal1Δ trp1Δ nqm1Δ using the lithium-acetate method (Gietz and Woods 2001). Transformants were selected and maintained on M+lys+trp plates. Transformants were screened for gadusol production in 1 ml YNB+2% glucose+lys+trp screwcap-tube cultures shaken at 200 RPM and 30° C. for 72-h. A gadusol-producing strain was then screened for the E. coli AMPT-ORI sequence using the primers F—ORI-F/H-AMP-R to generate a 1.8 Kb PCR amplicon. The pGH420-EEVS-MTOx plasmid (SEQ NO. 2 and 10-EEVS and MTOx only) was extracted using Zymoprep yeast plasmid miniprep II kit (Zymoresearch). A 5-p.1 aliquot of yeast plasmid DNA was used to transform competent TOP10 E. coli cells (Invitrogen). Transformants were selected and maintained on LB+amp plates. Then a transformant was selected for culturing and plasmid DNA purification using a Qiaquick plasmid miniprep kit. Plasmid construction was confirmed by EcoR digestion and analysis by agarose gel electrophoresis, yielding 8.5 and 1.5 Kb fragments.


REFERENCES CITED IN EXAMPLES 1 AND 2 AND SPECIFICALLY INCORPORATED HEREIN BY REFERENCE



  • Aguilera A (1987) Mutations suppressing the effects of a deletion of the Phosphoglucose isomerase gene PGI1 in Saccharomyces cerevisiae. Curr Genet 11:429-434. doi: 10.1007/BF00384603

  • Aguilera A (1986) Deletion of the phosphoglucose isomerase structural gene makes growth and sporulation glucose dependent in Saccharomyces cerevisiae. Mol Gen Genet 204:310-316

  • Arbeloa E M, Bertolotti S G, Churio M S (2011) Photophysics and reductive quenching reactivity of gadusol in solution. Photochem Photobiol Sci 10:133-42. doi: 10.1039/cOpp00250j

  • Arbeloa E M, Uez M J, Bertolotti S G, Churio M S (2010) Antioxidant activity of gadusol and occurrence in fish roes from Argentine Sea. Food Chem 119:586-591. doi: 10.1016/j.foodchem.2009.06.061

  • Baudin A, Ozier-kalogeropoulos O, Denouel A, et al (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21:3329-3330. doi: 10.1093/nar/21.14.3329

  • Bok M J, Porter M L, Place A R, Cronin T W (2014) Biological Sunscreens Tune Polychromatic Ultraviolet Vision in Mantis Shrimp. Curr Biol 24:1636-1642. doi: 10.1016/j.cub.2014.05.071

  • Booth C, Morrow J (1997) The penetration of UV into natural waters. Photochem Photobiol 65:355-358

  • CadiBre A, Ortiz-Julien A, Camarasa C, Dequin S (2011) Evolutionary engineered Saccharomyces cerevisiae wine yeast strains with increased in vivo flux through the pentose phosphate pathway. Metab Eng 13:263-271. doi: 10.1016/j.ymben.2011.01.008

  • Chioccara F, Zeuli L, Novellino E (1986) Occurrence of mycosporine related compounds in sea urchin eggs. Comp Biochem Physiol 85:459-461. doi: 10.1016/0305-0491(86)90027-1

  • Clasquin M F, Melamud E, Singer A, et al (2011) Riboneogenesis in yeast. Cell 145:969-980. doi: 10.1016/j.cell.2011.05.022

  • Ding J, Holzwarth G, Bradford C S, et al (2015) PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress. Appl Microb Cell Physiol 99:8667-8680. doi: 10.1007/s00253-015-6708-9

  • Dunlap W C, Williams D M, Chalker B E, Banaszak A T (1989) Biochemical protoadaption in vision: UV absorbing pigments in fish eye tissue. Comp Biochem Physiol 93B:601-607

  • Fang F, Salmon K, Shen M W Y, et al (2011) A vector set for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 3:123-136. doi: 10.1002/yea

  • Gao Q, Garcia-Pichel F (2011) Microbial ultraviolet sunscreens. Nat Rev Microbiol 9:791-802. doi: 10.1038/nrmicro2649

  • Garcia-Pichel F (1998) Solar ultraviolet and the evolutionary history of cyanobacteria. In: Origins of Life and Evolution of the Biosphere. pp 321-347

  • Garcia-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704-1717. doi: 10.4319/lo.1994.39.7.1704

  • Gietz R D, Woods R (2001) Genetic transformation of yeast. Biotechniques 30:816-831

  • Görgens J F, Van Zyl W H, Knoetze J H, Hahn-Hägerdal B (2001) The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 73:238-245. doi: 10.1002/bit.1056

  • Grabowska D, Chelstowska A (2003) The ALD6 gene product is indispensable for providing NADPH in yeast cells lacking glucose-6-phosphate dehydrogenase activity. J Biol Chem 278:13984-8. doi: 10.1074/jbc.M210076200

  • Grant P T (1980) Gadusol, a metabolite from fish eggs. Tetrahedron Lett 21:4043-4044

  • Huang H, Rong H, Li X, et al (2008) The crystal structure and identification of NQM1/YGR043C, a transaldolase from Saccharomyces cerevisiae. Proteins Struct Funct Bioinforma 73:1076-1081. doi: 10.1002/prot.22237

  • Kim S R, Xu H, Lesmana A, et al (2015) Deletion of PHO 13, Encoding Haloacid Dehalogenase Type IIA Phosphatase, Results in Upregulation of the Pentose Phosphate Pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 81:1601-1609. doi: 10.1128/AEM.03474-14

  • Kuijpers N G A, Solis-escalante D, Bosman L, et al (2013) A versatile, efficient strategy for assembly of multi-fragment expression vectors in Saccharomyces cerevisiae using 60 bp synthetic recombination sequences. Microb Cell Fact 12:1-13

  • Michel S, Keller M A, Wamelink MMC, Ralser M (2015) A haploproficient interaction of the transaldolase paralogue NQM1 with the transcription factor VHR1 affects stationary phase survival and oxidative stress resistance. BMC Genet 16:13. doi: 10.1186/s 12863-015-0171-6

  • Minard K I, McAlister-Henn L (2005) Sources of NADPH in yeast vary with carbon source. J Biol Chem 280:39890-39896. doi: 10.1074/jbc.M509461200

  • Ng C H, Tan S X, Perrone G G, et al (2008) Adaptation to hydrogen peroxide in Saccharomyces cerevisiae: The role of NADPH-generating systems and the SKN7 transcription factor. Free Radic Biol Med 44:1131-1145. doi: 10.1016/j.freeradbiomed.2007.12.008

  • Ni H, Laplaza J M, Jeffries T W (2007) Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol 73:2061-2066. doi: 10.1128/AEM.02564-06

  • Osborn A R, Almabruk K H, Holzwarth G, et al (2015) De novo synthesis of a sunscreen compound in vertebrates. Elife 4:1-15. doi: 10.7554/eLife.05919

  • Pernambuco M B, Winderickx J, Crauwels M, et al (1996) Glucose-triggered signaling in Saccharomyces cerevisiae: different requirements for sugar phosphorylation between cells grown on non-fermentable carbon sources. Microbiology 142:1775-1782. doi: 10.1099/13500872-142-7-1775

  • Plack P A, Fraser N W, Grant P T, et al (1981) Gadusol, an enolic derivative of cyclohexane-1,3-dione present in the roes of cod and other marine fish. Biochem J 199:741-747

  • Ralser M, Wamelink M M, Kowald A, et al (2007) Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol 6:10. doi: 10.1186/jbiol61

  • Ro D K, Paradise E M, Quellet M, et al (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940-943. doi: 10.1038/nature04640

  • Schaaff I, Hohmann S, Zimmermann F K (1990) Molecular analysis of the structural gene for yeast transaldolase. Eur J Biochem 188:597-603. doi: 10.1111/j.1432-1033.1990.tb15440.x

  • Schwartz K, Sherlock G (2016) Preparation of yeast DNA sequencing libraries. Cold Spring Harb Protoc 2016:871-876. doi: 10.1101/pdb.prot088930

  • Sinha R P, Häder D-P (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1:225-236. doi: 10.1039/b201230h

  • Stincone A, Prigione A, Cramer T, et al (2015) The return of metabolism: Biochemistry and physiology of the pentose phosphate pathway. Biol Rev 90:927-963. doi: 10.1111/brv.12140

  • Sun J, Shao Z, Zhao H, et al (2012) Cloning and Characterization of a Panel of Constitutive Promoters for Applications in Pathway Engineering in Saccharomyces cerevisiae. 109:2082-2092. doi: 10.1002/bit.24481

  • Thodey K, Galanie S, Smolke C D (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat Chem Biol 1-10. doi: 10.1038/nchembio.1613

  • Van Winden W A, Van Dam J C, Ras C, et al (2005) Metabolic-flux analysis of Saccharomyces cerevisiae CEN.PK113-7D based on mass isotopomer measurements of 13C-labeled primary metabolites. FEMS Yeast Res 5:559-568. doi: 10.1016/j.femsyr.2004.10.007



Example 3

EEVS and MT-Ox


The inventors made the discovery that gadusol is synthesized de novo in zebrafish (Danio rerio) from a pentose phosphate pathway intermediate, sedoheptulose 7-phosphate, by a 2-epi-5-epi-valiolone synthase (EEVS) and a methyltransferase-oxidoreductase (MT-Ox). The EEVS and MT-Ox genes are clustered with a suite of conserved transcription factor genes. Homologous gene clusters have been identified in the genomes of some other fish, amphibians, reptiles, and birds. Mammals do not have the EEVS and MT-Ox genes, but do have a homologous transcription factor gene cluster in their genomes. It has been postulated that these ancient genes were lost during the evolution of mammals circa 220 million years ago. The applicant's discovery revealed the molecular basis for gadusol formation in fish and other vertebrates.


Construction of LOC100003999 and ZGC:113054 Gene Expression Vectors


The LOC100003999 gene was codon optimized for Escherichia coli and synthesized commercially (GeneScript USA Inc.). The optimized gene was cloned into EcoRV site of pUC57-Kan vector. The plasmid was digested with BglII and EcoRI and ligated into BamHI and EcoRI site of pRSET-B (Invitrogen) for the expression of N-terminal hexa-histidine-tagged protein (“hexa-histidine” disclosed as SEQ ID NO: 90). The zgc:113054 gene was also codon optimized for E. coli and commercially synthesized (GeneScript USA Inc.). The optimized gene was cloned into EcoRV site of pUC57-amp vector. The plasmid was digested with Bgll and EcoRI and ligated into BamHI and EcoRI site of pRSET-B (Invitrogen) for the expression of N-terminal hexa-histidine-tagged protein (“hexa-histidine” disclosed as SEQ ID NO: 90).


Expression of VALA, LOC100003999 AND ZGC:113054 Genes in Escherichia coli


pRSETB-valA, pRSETB-LOC100003999 and pRSETB-zgc:113054 plasmids were individually used to transform E. coli BL21 GOLD (DE3) pLysS. Transformants were grown overnight at 37° C. on LB agar plate containing ampicillin (100 μg/mL) and chloramphenicol (25 μg/mL). A single colony was inoculated into LB medium (2 mL) containing the above antibiotics and cultured at 37° C. for 8 h. The seed culture (1 mL) was transferred into LB medium (100 mL) in a 500 mL flask and grown at 30° C. until OD600 reached 0.6. Then, the temperature was reduced to 18° C. After 1 h adaptation, isopropyl-D-1-thiogalactopyranoside (IPTG) (0.1 mM) was added to induce the N-terminal hexa-histidine-tagged proteins (“hexa-histidine” disclosed as SEQ ID NO: 90). After further growth for 16 h, the cells were harvested by centrifugation (5000 rpm, 10 min, 4° C.), washed twice with cold water and stored at −80° C. until used.


Purification of Recombinant VALA, LOC100003999 AND ZGC:113054


Cell pellets from a 400 ml culture of E. coli BL21 GOLD (DE3) pLysS containing pRSETB-valA, pRSETB-LOC100003999 or pRSETB-zgc:113054 plasmids was resuspended in 20 ml of B buffer (40 mM Tris-HCl, 300 mM NaCl, 10 mM imidazole, pH 7.5). Cells were disrupted by sonication for 1 min (4 times, 2 min interval) at 13 watts on ice (Probe sonicator, Misonix). Twenty mL of lysate was divided into 2 mL tubes and centrifuged (14,500 rpm, 20 min, 4° C.). Soluble fractions were collected and transferred into a 50 ml tube. Ni-NTA (QIAGEN) resin (5 mL) was applied into 10 ml volume empty column and the Ni-NTA resin was equilibrated with B buffer (50 ml, 10 CV). About 20 mL of supernatant from cell lysate was applied to the column (flow rate; 0.8 ml/min). The column was then washed with 100 ml (20 CV) of W buffer (40 mM Tris-HCl, 300 mM NaCl, 20 mM imidazole, pH 7.5) at 0.8 ml/min. The hexa-histidine-tagged proteins (“hexa-histidine” disclosed as SEQ ID NO: 90) were eluted by imidazole addition using a gradient mixer containing 100 ml of W buffer and 100 ml of E buffer (40 mM Tris-HCl, 300 mM NaCl, 300 mM imidazole, pH 7.5). The fractions (150 drops or about 5 mL) were collected and checked by SDS-PAGE (Coomassie Blue staining). Fractions containing pure proteins were combined (25 ml) and dialyzed against 2 L of D buffer (10 mM Tris-HCl, pH 7.5) 3 times (every 3 h). Dialyzed protein solution was concentrated by ultrafiltration (MWCO 10 K) to 200 μM and flash frozen in liquid N2 prior to storage at −80° C.


LOC100003999 Assay Condition


Each reaction mixture (25 μL) contained Tris-HCl buffer (20 mM, pH 7.5), NAD+ (1 mM), CoCl2 or ZnSO4 (0.1 mM), sedoheptulose 7-phosphate (4 mM), and enzymes (0.12 mM). The mixture was incubated at 30° C. for 2 h. ValA (instead of LOC100003999) was used as a positive control. No enzyme (buffer only) was used as a negative control.


Coupled LOC100003999 AND ZGC:113054 Assay Condition


Each reaction mixture (50 μL) contained potassium phosphate buffer (10 mM, pH 7.4), NAD+ (2 mM), CoCl2 (0.2 mM), sedoheptulose 7-phosphate (4 mM), and LOC100003999 cell-free extracts (20 μL) was incubated at 30° C. After 6 h, S-adenosylmethionine (5 mM) and zgc: 113054 cell-free extracts (30 μL) were added. The mixture was incubated at 30° C. for another 6 h. ValA was used (instead of LOC100003999) as a positive control. Extract of E. coli harboring pRSET B empty vector was used as a negative control.


ZGC:113054 Assay Using [6,6-2H2]-EEV as Substrate


A reaction mixture (25 jμL) containing potassium phosphate buffer (10 mM, pH 7.4), NAD+ (2 mM), CoCl2 (0.2 mM), S-adenosylmethionine (5 mM), [6,6-2H2]-EEV (4 mM), and zgc: 113054 cell-free extract (20 μL) was incubated at 30° C. for 2 h. An extract of E. coli harboring pRSET B empty vector was used as a negative control.


TLC Analysis of EEV AND Gadusol


Analytical thin-layer chromatography (TLC) was performed using silica gel plates (60 Å) with a fluorescent indicator (254 nm), which were visualized with a UV lamp and ceric ammonium molybdate (CAM) or 5% FeCl3 in MeOH—H2O (1:1) solutions.


GC-MS Analysis of EEV


The enzymatic reaction mixtures were lyophilized and the products were extracted with MeOH. The MeOH extract was then dried and Tri-Sil HTP (Thermo Scientific) (100 gμL) was added and left stand for 20 min. The solvent was removed in a flow of Argon gas and the silylated products were extracted with hexanes (100 jμL) and injected into the GC-MS (Hewlett Packard 5890 SERIES II Gas chromatograph).


Enzymatic Synthesis, Purification, and Analysis of Gadusol


Fifty eppendorf tubes containing reaction mixtures (100 μL each), which consist of potassium phosphate buffer (10 mM, pH 7.4), SH7P (5 mM), NAD+ (2 mM), CoCl2 (0.2 mM), and LOC100003999 cell-free extract (40 μL) was incubated at 30° C. After 6 h, S-adenosylmethionine (5.5 mM) and zgc:113054 cell-free extracts (30 JAL) were added. The reaction mixtures were incubated at 30° C. for another 6 h. The reaction mixtures were quenched with 2 volumes of MeOH, held at −20° C. for 20 min, then centrifuged at 14,500 rpm for 20 min. The supernatants were pooled and dried under vacuum. The residual water was frozen and lyophilized. The crude sample was dissolved in water (1 mL) and subjected to Sephadex LH-20 column chromatography using phosphate buffer (2.5 mM, pH 7) as an eluent. Fractions containing the product as judged by MS were combined and lyophilized. Furthermore, the product was purified by HPLC [Shimadzu LC-20AD, C18 column (YMC), 250×10 mm, 4 μm, flow rate 1 mL/min]. Solvent system: MeOH—phosphate buffer (5 mM, pH 7), gradient 1%-100% of MeOH (0-40 min). Peak at 12.74 min was collected and dried to give gadusol (0.4 mg). 1H NMR (700 MHz, D20, cryo-probe): δ 4.10 (s, 1H, H-4), 3.71 (d, J=12 Hz, H-7a), 3.56 (d, J=12 Hz, H-7β), 3.49 (s, 3H, OCH3), 2.68 (d, J=17 Hz, H-6a), 2.38 (d, J=17 Hz, H-6J3). HR-MS (ESI-TOF) m/z 205.0709 (calculated for C8H13O6[M+H]+: 205.0707).


Zebrafish Lines and Embryos


Adult wild type 5D zebrafish were housed at the Sinnhuber Aquatic Research Laboratory on a recirculating system maintained at 28±1° C. with a 14 h light/10 h dark schedule. Embryos were collected from group spawns of adult zebrafish as described previousyl and all experiments were conducted with fertilized embryos. Embryos were staged and collected by hand for all experiments. Embryos were reared in media consisting of 15 mM NaCl, 0.5 mM KCl, 1 mM MgSO4, 0.15 mM KH2PO4, 0.05 mM Na2HPO4 and 0.7 mM NaHCO3.


Polymerase Chain Reaction (PCR)


All PCR reactions were performed according to manufacturer's specifications. Cycling conditions: 96 OC for 3 minutes, 95° C. for 1 minute, 65° C. for 1 minute, and 72 OC for 1 minute per kB DNA; 35 cycles were used followed by 10 minutes at 72° C. All PCR products were characterized on an agarose gel. If needed, the PCR product was excised from the gel and purified using the E.Z.N.A. Gel Extraction Kit from Omega Bio-tek.


Quantitative PCR of Zebrafish Samples


qPCR was performed on an Applied Biosystems StepOnePlus machine. The super mix PerfeCTa® SYBR® Green FastMix®, ROX™ by Quanta biosciences was used. cDNA (100 ng) from time points at 6, 12, 24, 48, 72, 96, and 120 hpf were used. Super mix (18 μL) were added to bring the final volume to 20 μL. PCR conditions suggested by the supplier were used. For total RNA isolation, 30 embryos were homogenized in RNAzol (Molecular Research Center); RNA was purified according to the manufacturer's protocol. RNA was quantified by A260/280 ratios measured using a SynergyMx microplate reader (Biotek) and analyzed with the Gen5 Take3 module. One μg of RNA was used for cDNA synthesis. Superscript III First-Strand Synthesis (Invitrogen) and oligo d(T) primers were used to synthesize cDNA from the total RNA.


Isolation of Gadusol from Zebrafish


Embryos were collected and euthanized at 72 hpf by induced hypoxia through rapid chilling on ice for 30 minutes. Embryo media was removed until about 5 mL were left and frozen at −80° C. Embryos were lyophilized overnight. The freeze-dried embryos were then ground with a pestle and mortar under liquid nitrogen. The powder was collected and placed in a pre-weighed glass vial. The mortar was washed with MeOH—H2O (80:20) and the solvent was added to the powder. The solvent was evaporated and powder was weighed. The embryo powder was extracted twice with MeOH—H2O (80:20). The two extracts were combined, dried, and weighed. The extract was suspended in MeOH—H2O (80:20) (1 mL) and extracted twice with hexane. The aqueous layer was recovered, dried, and weighed. The extract was suspended in MeOH for analysis by mass spectrometry. The extract was dissolved in phosphate buffer pH 7.0 for identification by HPLC (Shimadzu SPD-20A system, YMC ODS-A column (4.6 id×250 mm), MeOH—5 mM phosphate buffer (1% MeOH for 20 min followed by a gradient from 1 to 95% MeOH in 20 min), flow rate 0.3 mL/min, 296 nm. The isolated gadusol was analyzed by MS (ThermoFinnigan LCQ Advantage system) and NMR [in D20; Bruker Unity 300 (300.15 MHz) spectrometer].


Yeast Strains, Media and Growth Conditions


The yeast strains used are listed in Table 8. For cases in which the yeast strain was newly generated to carry out the work described in this disclosure, the source is listed an “N/A”.









TABLE 8







Yeast strains used











Strain
Genotype
Source






S288c
MATα SUC gal mal mel flo1
ATCC 204508, Manassas,




flo8-1 hap bio1 bio6
VA



BY4742 tal1Δ
MATα his3Δ1 leu2Δ0 lys2Δ0
Thermo Fisher Scientific Inc.,




ura3Δ0 tal1Δ::KanMX4
Waltham, MA



BY4742 tal1Δtrp1Δ
MATα his3Δ1 leu2Δ0 lys2Δ0
N/A




ura3Δ0 tallΔ trp1Δ::URA3




BY4742 tal1Δtrp1Δrad1Δ
MATα his3Δ1 leu2Δ0 lys2Δ0
N/A




ura3Δ0 tal1Δ trp1Δ::URA3





rad1Δ::LEU2




BY4742 tal1Δtrp1Δ/
MATα his3Δ1 leu2Δ0 lys2Δ0
N/A



pXP416 pXP420
ura3Δ0 tal1Δ trp1Δ::URA3/





pXP416 pXP420




BY4742 tal1Δ
MATα his3Δ1 leu2Δ0 lys2Δ0
N/A



trp1Δ/pXP416-MTOX
ura3Δ0 tal1Δ




pXP420-EEVS
trp1Δ::URA3/pXP416-EEVS





pXP420-MTOX




BY4742 tal1Δtrp1Δrad1Δ/
MATα his3Δ1 leu2Δ0 lys2Δ0
N/A



pXP416 pXP420
ura3Δ0 tal1Δ trp1Δ::URA3





rad1Δ::LEU2/pXP416





pXP420









The TRP1 gene was replaced in BY4742 tal1Δ::KanMX4 with a wild-type URA3 allele from S288c by standard methods. The deletion was confirmed by PCR using primer pairs TRP1DisUP/TRP1DisLO and URA3DisUP/TRP1DisLO. The BY4742 tal1Δ::KanMX4 trp1Δ::URA3 strain was then co-transformed5 with pXP416 and pXP420 to generate an empty vector control strain, and with pXP420-EEVS and pXP416-MT-Ox to generate a gadusol-producing strain. The EEVS and MT-Ox genes introduced into yeast were codon-optimized for expression in E. coli. The RAD1 gene was replaced in BY4742 tal1Δ::KanMX4 trp1Δ::URA3 with a wild-type LEU2 allele from S288c by standard methods. The deletion was confirmed by PCR using primer pairs RAD1UP/RAD1LO. The resultant BY4742 tal1Δ::KanMX4 trp1Δ::URA3 rad1Δ::LEU2 strain was then co-transformed with pXP416 and pXP420. Cells were pre-grown in YEPD (1% yeast extract, 2% peptone, and 2% glucose) for transformations, and in YNB (Bacto yeast nitrogen base without amino acids)+2% glucose supplemented with 30 μg/ml leucine and 30 μg/ml lysine to select for transformants and to produce gadusol. Liquid media were sterilized by filtration using a 0.45 μm filter and agar-based media were sterilized by autoclaving. Liquid cultures were grown at 30° C. for 48 h and 200 rpm; plates were incubated at 30° C.


Yeast Overexpression Plasmid Construction


Plasmids are listed in Table 11. Primers used for PCR are listed in Table 12. PCR amplicons with SpeI and XhoI terminal restriction sites were generated for the EEVS gene and MT-Ox gene using pRSETB-EEVS and pRSETB-MTOx as templates, respectively. The EEVS and MT-Ox amplicons were then digested with SpeI and XhoI and ligated into SpeI- and XhoI-digested pXP420 and pXP416, respectively, and introduced into competent E. coli (Top 10; Invitrogen) by transformation. E. coli transformants were selected on LB plates supplemented with ampicillin (100 μg/ml). Transformants were then screened by digesting plasmid DNA with SpeI and XhoI restriction enzymes and analyzing fragments by agarose gel electrophoresis.


Identification of Gadusol Production in S. cerevisiae



S. cerevisiae cell pellets from 5 mL cultures were extracted with MeOH and the supernatant was extracted with nBuOH. Extracts were concentrated and analyzed by HPLC (Shimadzu SPD-20A system, YMC ODS-A column (4.6 id×250 mm), MeOH—5 mM phosphate buffer (1% MeOH for 20 min followed by a gradient from 1 to 95% MeOH in 20 min), flow rate 0.3 mL/min, 296 nm.


Irradiation Protocol


A rad1Δ mutant (MATα his3Δ1 leu2Δ0 lys2Δ0 trp1Δ::URA3 ura3Δ0 rad1Δ::LEU2 tal1Δ:: KanMX4/pXP416, pXP420) or wild-type RAD1 strain (S288c, MATα SUC2 gal2 mal2 mel flo1 flo8-1 hap1 ho bio1 bio6) was grown at 30° C. and 200 rpm in YNB+2% glucose+30 μg/mL leu+30 μg/mL lys. Cells were harvested after 24 h by centrifugation, washed twice in the 9-fold concentrated supernatant of either the gadusol-producing strain BY4742 tal1Δ trp A/pXP416-MTOx, pXP420-EEVS or of the control strain BY4742 tal1Δ trp1Δ/pXP416, pXP420, and suspended in the respective supernatants at 107 cells/mL. Cells (375 μL) were irradiated with UVB (302 nm) at the indicated doses in wells of a 24-well microtiter plate shaken at 900 rpm. Three μL aliquots of cells were then spotted onto a YEPD plate which was incubated 24 h at 30° C. prior to being photographed. The supernatants of the gadusol-producing and control strains were obtained by centrifugation following 5 days of growth in YNB+2% glucose+30 μg/mL leucine+30 μg/mL lysine at 30° C. and 200 rpm. Supernatants were freeze-dried, dissolved in a volume of distilled water 1/10 of the initial culture volume, and stored at 4° C. until use. Just prior to suspension of cells, the concentrated supernatant was adjusted to 50 mM phosphate, pH 7.0 resulting in a final 9-fold concentrate.


Sugar Phosphate Cyclases


Table 9 lists Sugar Phosphate Cyclases, including EEVS proteins.









TABLE 9







Sugar Phosphate Cyclases










Family
Protein
Accession No.
Organism





Bacterial
AcbC
AEV84575.1

Actinoplanes sp. SE50/110



EEVS
EEVS
WP_005152974.1

Amycolatopsis azurea DSM 43854




EEVS
WP_020673085

Amycolatopsis nigrescens




EEVS
WP_006999601.1

Candidatus Burkholderia kirkii




EEVS
CCD36718

Candidatus Burkholderia kirkii UZHbot1




Cja_3250
ACE84801.1

Cellvibrio japonicus Ueda107




CLD_3207
ACA45465.1

Clostridium botulinum B1 str. Okra




Cpap_0968
EGD46588.1
Clostridium papyrosolvens DSM 2782



D187_002969
EPX59479.1

Cystobacter fuscus DSM 2262




AcbC
CBL44970.1

gamma proteobacterium HdN1




EEVS
WP_007320675.1

Gordania araii NBRC 100433




MESS4_430082
CCV12436.1

Mesorhizobium sp. STM 4661




EEVS
WP_020731587.1

Mycobacterium marinum




AroB_1
ACC39042.1

Mycobacterium marinum M




EEVS
WP_020727917.1

Mycobacterium marinum MB2




MMEU_4200
EPQ72818.1

Mycobacterium marinum str. Europe




EEVS
WP_019045670

Nocardia asteroides




NS07 CONTIG 00143-0015
GAF31941.1

Nocardia seriolae N-2927




PrlA
ABL74380.1

Nonomuraea spiralis




EEVS
WP_023102627.1

Pseudomonas aeruginosa




PflA506_4591
AFJ55097.1

Pseudomonas fluorescens A506




EEVS
WP_019817993.1

Pseudomonas sp. CFT9




UUC_15323
EIL99898.1

Rhodanobacter denitrificans




EEVS
WP_008438647.1

Rhodanobacter thiooxydans




UUA_15933
EIL97123.1

Rhodanobacter thiooxydans LCS2




EEVS
WP_020113256.1

Rhodococcus 114MFTsu3.1




EEVS
WP_019667777.1

Rhodococcus 29MFTsu3.1




EEVS
WP_021331771

Rhodococcus erythropolis




O5Y_25890
AGT94995.1

Rhodococcus erythropolis CCM2595




N601_00990
EQM35423.1

Rhodococcus erythropolis DN1




RER_54360
BAH36144.1

Rhodococcus erythropolis PR4




EEVS
WP_021345782

Rhodococcus sp. P27




EEVS
YP_007039401.1

Saccharothrix espanaensis DSM 44229




Staur_1386
ADO69190.1

Stigmatella aurantiaca DW4/3-1




EEVS
WP_010359798.1

Streptomyces acidiscabies 84-104




SalQ
ABV57470.1

Streptomyces albus




EEVS
WP_006603459.1

Streptomyces auratus




SU9_09459
EJJ07289.1

Streptomyces auratus AGR0001




EEVS
WP_005477027.1

Streptomyces bottropensis ATCC 25435




EEVS
WP_010034415.1

Streptomyces chartreusis




SSCG_00526
EDY47498.1

Streptomyces clavuligerus ATCC 27064




SMCF_997
EHN79464.1

Streptomyces coelicoflavus ZG0656




GacC
CAL64849.1

Streptomyces glaucescens GLA.O




VldA
ABC67267.1

Streptomyces hygroscopicus subsp. limoneus




EEVS
AAZ91667.1

Streptomyces hygroscopicus subsp.







yingchengensis




EEVS
WP_009076280.1

Streptomyces sp. AA4




EEVS
WP_018894817.1

Streptomyces sp. CNY228




EEVS
AGZ94062.1

Streptomyces sp. MMG1533




EEVS
WP_010644135.1

Streptomyces sp. S4




EEVS
WP_007385523.1

Streptomyces sviceus




SSEG_08792
EDY55324.2

Streptomyces sviceus ATCC 29083




AciPR4_1231
ADV82056

Terriglobus saanensis SP1PR4



Animal
LOC101799904
XP_005011275.1

Anas platyrhynchos



EEVS
LOC100554413
XP_003217873.2

Anolis carolinensis




LOC103021483
XP_007241787.1

Astyanax mexicanus




UY3_08628
EMP34204.1

Chelonia mydas




LOC101935311
XP_005282175.1

Chrysemys picta bellii




A306_01079
EMC89871.1

Columba livia




LOC100003999
XP_001343422.1

Danio rerio




DLA_It04010
CBN80976.1

Dicentrarchus labrax




LOC102050204
XP_005432702.1

Falco cherrug




LOC101920037
XP_005230087.1

Falco peregrinus




LOC101811082
XP_005053423.1

Ficedula albicollis




ENSGMOG00000007414.1
ENSGMOG00000007414

Gadus morhua




LOC427594
XP_425167.2

Gallus gallus




ENSGACG00000011871
ENSGACP00000015700

Gasterosteus aculeatus




LOC102035384
XP_005420282.1

Geospiza fortis




LOC102309185
XP_005947633.1

Haplochromis burtoni




LOC102684922
XP_006630707.1

Lepisosteus oculatus




LOC101474077
XP_004567457.1

Maylandia zebra




LOC100539368
XP_003210235.1

Meleagris gallopavo




LOC101868264
XP_005149534.1

Melopsittacus undulatus




LOC102782305
XP_006784803.1

Neolamprologus brichardi




GSONMT00065608001
CDQ61676.1

Oncorhynchus mykiss




LOC100690451
XP_003442831.1

Oreochromis niloticus




LOC101163482
XP_004068647.1

Oryzias latipes




LOC102457108
XP_006120116.1

Pelodiscus sinensis




LOC103129387
XP_007540516.1

Poecilia formosa




LOC102106679
XP_005522289.1

Pseudopodoces humilis




LOC102205679
XP_005726665.1

Pundamilia nyererei




LOC100223651
XP_002188776.1

Taeniopygia guttata




LOC100492806
XP_002940521.1

Xenopus (Silurana) tropicalis




LOC102222998
XP_005815791.1

Xiphophorus maculatus



Stramenopile
CYME_CMP183C
XP_005537849

Cyanidioschyzon merolae strain 10D



EEVS
Esi_0086_0074
CBJ27882

Ectocarpus siliculosus




THAOC_37874
EJK43661

Thalassiosira oceanica




PHATRDRAFT87_72
XP_002177202

Phaeodactylum tricornutum




HAPSDRAFT_21539
XP002287560

Thalassiosira pseudonana




CHC_T00009338001
XP005713525

Chondrus crispus




Gasu_30570
XP_005706140

Galdieria sulphuraria



EVS
Amir_2000
ACU35948.1

Actinosynnema mirum DSM 43827




Staur_3140
ADO70932.1

Stigmatella aurantiaca DW4/3-1




DHQS
WP_002620792.1

Cystobacter fuscus




DHQS
WP_02806414.1

Solirubrobacter soli




DHQS
WP_015800837.1

Actinosynnema mirum




DHQS
WP_014443330.1

Actinoplanes missouriensis




DHQS
WP_019435820

Streptomyces sp. AA0539




KF386858.1
AGZ15443

Streptomyces sp. MK498-98F14




DHQS
WP_02550010

Streptomyces scabrisporus



Archaeal
WP_013776014
WP_013776014.1

Acidianus hospitalis



DHQS
WP_015231795
WP_015231795.1

Caldisphaera lagunensis




DHQS
WP_012185860.1

Caldivirga maquilingensis




CM19_06260
EZQ06961.1

Candidatus acidianus copahuensis




DHQS
WP_011998054.1

Ignicoccus hospitalis




DHQS
WP_013304180.1

Ignisphaera aggregans




DHQS
WP_013737014.1

Metallosphaera cuprina




DHQS
WP_012021802.1

Metallosphaera sedula




DHQS
WP_009075654.1

Metallosphaera yellowstonensis




DHQS
WP_011901560.1

Pyrobaculum arsenaticum




DHQS
WP_011849579.1

Pyrobaculum calidifontis




ASUL_02139
EWG07805.1

Sulfolobales archaeon AZ1




DHQS
WP_012711772.1

Sulfolobus islandicus




DHQS
WP_009990597.1

Sulfolobus solfataricus




DHQS
WP_010980356.1

Sulfolobus tokodaii




DHQS
WP_014127627.1

Thermoproteus tenax




DHQS
WP_013335353.1

Vulcanisaeta distributa




DHQS
WP_013604797.1

Vulcanisaeta moutnovskia



Bacterial
DHQS
WP_018087611

Streptomyces sp. FxanaC1



and fungal
Amir_5253****
ACU39074.1

Actinosynnema mirum DSM 43827



DHQS
Ava_4386
ABA23984.1

Anabaena variabilis ATCC 29413




An1DQS
1DQS_A

Aspergillus nidulans




BsDHQS
AAA20860.1

Bacillus subtilis




DHQS
CDH47441

Candidatus Contendobacter odensis




EcDHQS
AAA58186.1

Escherichia coli str. K-12




Hp3CLH
3CLH_A

Helicobacter pylori




DHQS
WP_020681978

Marinobacterium rhizophilum




DHQS
WP_009725480

Methylophaga lonarensis




DHQS
WP_008290485

Methylophaga thiooxydans




MtDHQS
CAB06200.1

Mycobacterium tuberculosis H37Rv




Npun_5729
ACC84029.1

Nostoc punctiforme PCC 73102 (ATCC 29133)




DHQS
WP_023970131

Pseudomonas chlororaphis




DHQS
WP_015479237

Pseudomonas denitrificans




PKB_5345
CDF86657

Pseudomonas knackmussii B13




DHQS
WP_016712492

Pseudomonas monteilii




AU05_25215
EZH77367

Pseudomonas pseudoalcaligenes AD6




Sa1XAG
1XAG_A

Staphylococcus aureus




Staur_4041****
ADO71827.1

Stigmatella aurantiaca DW4/3-1




P354_02295
EXU86293

Streptomyces albulus




DHQS
WP_0066074643

Streptomyces auratus




DHQS
WP_014157372

Streptomyces flavogriseus




DHQS
WP_004942390

Streptomyces mobaraensis




DHQS
WP_005319844

Streptomyces pristinaespiralis ATCC_25486




DHQS
WP_019884829

Streptomyces purpureus




DHQS
WP_003984693

Streptomyces rimosus




DHQS
WP_026249565

Streptomyces sp. ATexAB-D23




DHQS
WP_026359219

Streptomyces sp. DvalAA-83




DHQS
WP_016467710

Streptomyces sp. HPH0547




DHQS
WP_018087611

Streptomyces sp. FxanaC1




DHQS
WP_018539828

Streptomyces sp. MspMP-M5




DHQS
WP_014044818

Streptomyces sp. SirexAA-E




Tt1UJN
1UJN_A

Thermus thermophilus HB8




DHQS
WP_012639562

Thioalkalivibrio sulfidophilus




DHQS
WP_026186219

Thioalkalivibrio thiocyanodenitrzficans



Plant and
DHQS
3ZOK_A

Actinidia chinensis



algal
AT5G66120
NP_56029

Arabidopsis thaliana



DHQS
LOC100834750
XP_003578532

Brachypodium distachyon




CARUB_v10026413mg
XP_006280477

Capsella rubella




CISIN_1g013271mg
KDO171284

Citrus sinensis




COCSUDRAFT_35806
XP_005649993

Coccomyxa subellipsoidea C-169




EUGRSUZ_J02467
KCW53191

Eucalyptus grandis




EUTSA_v10004219mg
XP_00639797

Eutrema salsugineum




L484_026650
EXC35326

Morus notabilis




LOC102714768
XP_006661484

Oryza brachyantha




Os09g0539100
NP_001063802

Oryza sativa Japonica




EF678425.1
ABR18182

Picea sitchensis




LOC101782627
XP_004957492

Setaria italica




LOC 102598775
XP_006340763

Solanum tuberosum




BT043106.1
ACF88111

Zea mays



DDGS
PDE_00008
WP_018334610.1

Actinomycetospora chiangmaiensis




Amir_4259
ACU38114.1

Actinosynnema mirum DSM 43827




Ava_3858
ABA23463.1

Anabaena variabilis ATCC 29413




DDGS
BAO51913.1

Aphanothece halophytica




ACLA_055850
EAW13537.1

Aspergillus clavatus NRRL 1




ANIA_06403.2
CBF69538.1

Aspergillus nidulans FGSC A4




BAUCODRAFT_80557
EMC91075.1

Baudoinia compniacensis UAMH 10762




BBA_00472
EJP70842.1

Beauveria bassiana ARSEF 2860




COCC4DRAFT_167163
ENI05767.1

Bipolaris maydis ATCC 48331




COCHEDRAFT_1194844
EMD91152.1

Bipolaris maydis C5




COCMIDRAFT_8170
EUC42205.1

Bipolaris oryzae ATCC 44560




COCSADRAFT_38955
EMD62170.1

Bipolaris sorokiniana ND90Pr




COCV1DRAFT_15921
EUN27206.1

Bipolaris victoriae FI3




BC1G_03060
XP_001558028.1

Botryotinia fuckeliana B05.10




BcDW1_9470
EMR81915.1

Botryotinia fuckeliana BcDW1




BofuT4_P133930.1
CCD53839.1

Botryotinia fuckeliana T4




DDGS
AFZ02505

Calothrix sp. PCC 6303




DDGS
WP_019490229.1

Calothrix sp. PCC 7103




DDGS 1
WP_019490229.1

Calothrix sp. PCC 7103




DDGS 2
WP_019491244.1

Calothrix sp. PCC 7103




A1O1_01840
EXJ93448.1

Capronia coronata CBS 617.96




DDGS
WP_015160001.1

Chamaesiphon minutus




Cha6605_2820
AFY93856.1

Chamaesiphon minutus PCC 6605




DDGS
WP_016876765.1

Chlorogloeopsis




Chro_0778
AFY86324.1

Chroococcidiopsis thermalis PCC 7203




G647_03988
ETI24619.1

Cladophialophora carrionii CBS 160.54




A1O5_01012
EXJ76504.1

Cladophialophora psammophila CBS 110553




A1O7_04691
EXJ60538.1

Cladophialophora yegresii CBS 114405




CPUR_02718
CCE29027.1

Claviceps purpurea 20.1




CFIO01_11686
EXF78170.1

Colletotrichum fioriniae PJ7




CGLO_11575
EQB49116.1

Colletotrichum gloeosporioides Cg-14




CGGC5_4437
XP_007274966.1

Colletotrichum gloeosporioides Nara gc5




GLRG_05915
EFQ30771.1

Colletotrichum graminicola M1.001




Cob_10738
ENH80676.1

Colletotrichum orbiculare MAFF 240422




W97_04284
EON65049.1

Coniosporium apollinis CBS 100218




CCM_06613
EGX90194.1

Cordyceps militaris CM01




Cri9333_2379
AFZ13246.1

Crinalium epipsammum PCC 9333




DDGS
YP_002380202.1

Cyanothece sp. PCC 7424




Cylst_1339
AFZ23628.1

Cylindrospermum stagnale PCC 7417




HMPREF1541_10826
ETN43961.1

Cyphellophora europaea CBS 101466




DACRYDRAFT_108509
EJU01177.1

Dacryopinax sp. DJM-73I SSI




DDGS
WP_015229181

Dactylococcopsis sauna




DOTSEDRAFT_74971
EME40344.1

Dothistroma septosporum NZE10




EPUS_06787
ERF68371.1

Endocarpon pusillum Z07020




HMPREF1120_03313
EHY55163.1

Exophiala dermatitidis NIH/UT8656




DDGS
WP_016867391.1

Fischerella muscicola




FFUJ_02302
CCT65366.1

Fusarium fufikuroi IMI 58289




FGSG_07578.1
ESU13851.1

Fusarium graminearum PH-1




FOPG_14554
EXL69517.1

Fusarium oxysporum f. sp. conglutinans






race 2 54008



FOC1_g10007978
ENH63840.1

Fusarium oxysporum f. sp. cubense race 1




FOC4_g10004309
EMT72824.1

Fusarium oxysporum f. sp. cubense race 4




FOWG_01820
EWZ97333.1

Fusarium oxysporum f. sp. lycopersici MN25




FOMG_05909
EXK43277.1

Fusarium oxysporum f. sp. melonis 26406




FOVG_03599
EXA51127.1

Fusarium oxysporum f. sp. pisi HDV247




FOCG_01565
EXL63199.1

Fusarium oxysporum f. sp. radicis-lycopersici






26381



FOQG_12197
EXK83496.1

Fusarium oxysporum f. sp. raphani 54005




FOTG_14331
EXM17492.1

Fusarium oxysporum f. sp. vasinfectum 25433




FOZG_06058
EWZ45846.1

Fusarium oxysporum Fo47




FOXB_11899
EGU77611.1

Fusarium oxysporum Fo5176




FOYG_03768
EWY99830.1

Fusarium oxysporum FOSC 3-a




FPSE_08031
EKJ71763.1

Fusarium pseudograminearum CS3096




FVEG_12691
EWG54478.1

Fusarium verticillioides 7600




M7I_2461
EHL01576.1

Glarea lozoyensis 74030




GLAREA_08216
EPE24364.1

Glarea lozoyensis ATCC 20868




GLOTRDRAFT_39501
XP_007864776.1

Gloeophyllum trabeum ATCC 11539




DDGS
WP_023072000

Leptolyngbya sp. Heron Island J




DDGS
WP_006516570

Leptolyngbya sp. PCC 7375




LEMA_P063060.1
CBX90180.1

Leptosphaeria maculans JN3




DDGS
WP_023068561.1

Lyngbya aestuarii




L8106_16364
EAW37588.1

Lyngbya sp. PCC 8106




MPH_07850
EKG14950.1

Macrophomina phaseolina MS6




MGG_00016
EHA49547.1

Magnaporthe oryzae 70-15




OOU_Y34scaffold01060g1
ELQ32736.1

Magnaporthe oryzae Y34




MBM_04236
EKD17375.1

Marssonina brunnea f. sp. multigermtubi MB_m1




MELLADRAFT_46120
XP_007418557.1

Melampsora larici-populina 98AG31




MAC_00588
EFY93350.1

Metarhizium acridum CQMa 102




FVEG_12691
WP_017655453.1

Microchaete sp. PCC 7126




DDGS
WP_002794106.1

Microcystis aeruginosa




C789_465
ELS49746.1

Microcystis aeruginosa DIANCHI905




IPF_3031
CAO90104.1

Microcystis aeruginosa PCC 7806




acbC
CCI02410.1

Microcystis aeruginosa PCC 9443




acbC
CCH99802.1

Microcystis aeruginosa PCC 9717




acbC
CCI19960.1

Microcystis aeruginosa PCC 9807




MICAG_2780005
CCI25385.1

Microcystis aeruginosa PCC 9808




E5Q_03910
GAA97234.1

Mixia osmundae IAM 14324




DDGS
WP_014813469.1

Mycobacterium chubuense




DDGS
AFM14977.1

Mycobacterium chubuense NBB4




NECHADRAFT_48307
XP_003043726.1

Nectria haematococca mpVI 77-13-4




UCRNP2_5834
EOD47414.1

Neofusicoccum parvum UCRNP2




N9414_08103
EAW44170.1

Nodularia spumigena CCY9414




DDGS
WP_006197691.1

Nodularia spumigena




Npun_R5600
ACC83905.1

Nostoc punctiforme PCC 73102




Nos7524_3370
AFY49165.1

Nostoc sp. PCC 7524




OCS_06803
EQK97484.1

Ophiocordyceps sinensis CO18




Osc7112_3782
AFZ08125.1

Oscillatoria nigro-viridis PCC 7112




PDE_00008
EPS25077.1

Penicillium oxalicum 114-2




PFICI_12759
ETS75815.1

Pestalotiopsis fici W106-1




DDGS
WP_019504239

Pleurocapsa sp. PCC 7319




MYCFIDRAFT_33875
XP007931255.1

Pseudocercospora fijiensis CIRAD86




DDGS
WP_010243321.1

Pseudonocardia sp. P1




PaG_02576
ETS62823

Pseudozyma aphidis DSM 70725




PFL1_03740
EPQ28940.1

Pseudozyma flocculosa PF-1




PTT_06860
EFQ95201.1

Pyrenophora teres f. teres 0-1




PTRG_02787
EDU45310.1

Pyrenophora tritici-repentis Pt-1C-BFP




PCON_03344
CCX16645

Pyronema omphalodes CBS 100304




DDGS
WP_020111281.1

Rhodococcus sp. 114MFTsu3.1




DDGS
WP_019663384.1

Rhodococcus sp. 29MFTsu3.1




DDGS
WP_008719709.1

Rhodococcus sp. AW25M09




DDGS
YP_007053294.1

Rivularia sp. PCC 7116




DDGS
WP_022606420

Rubidibacter lacunae




SBOR_4234
ESZ95378.1

Sclerotinia borealis F-4157




SS1G_08336
EDN92473.1

Sclerotinia sclerotiorum 1980 UF-70




DDGS
WP_017743132.1

Scytonema hofmanni




SETTUDRAFT_100700
EOA81028.1

Setosphaeria turcica Et28A




SEPMUDRAFT_151827
EMF08929.1

Sphaerulina musiva SO2202




sr12669
CBQ71813.1

Sporisorium reilianum SRZ2




DDGS
YP_007132170.1

Stanieria cyanosphaera PCC 7437




STEHIDRAFT_146260
EIM88185.1

Stereum hirsutum FP-91666 SS1




UCRPA7_3232
EOO01292.1

Togninia minima UCRPA7




UHOR_02376
CCF53523.1

Ustilago hordei




VDBG_08620
EEY22510.1

Verticillium alfalfae VaMs.102




VDAG_08289
EGY17125.1

Verticillium dahliae VdLs.17




DDGS
WP_006509782

Xenococcus sp. PCC 7305




MYCGRDRAFT_76728
XP_003848682.1

Zymoseptoria tritici IPO323



DHQS-like
Npun_5231***
ACC83559.1

Nostoc punctiforme PCC 73102 (ATCC 29133)




Npun_1267***
ACC79988.1

Nostoc punctiforme PCC 73102 (ATCC 29133)



aDHQS
Amir_3296*****
ACU37202.1

Actinosynnema mirum DSM 43827




Asm47
AAC14006.1

Actinosynnema pretiosum subsp. auranticum




GdmO
AAO06928.1

Streptomyces hygroscopicus




MitP
AAD28456.1

Streptomyces lavendulae




RifG
AAC01717.1

Amycolatopsis mediterranei S699



DOIS
TbmA
CAE22471.1

Streptoalloteichus tenebrarius




KanA
BAD20759.1

Streptomyces kanamyceticus




RbmA
CAG34037.1

Streptomyces ribosidificus




NemA
BAD95820.1

Streptornyces fradiae




GntB
AAR98548.1

Micromonospora echinospora




BtrC
BAA83344.1

Bacillus circulans










MT-OX Proteins


Table 10 provides examples of MT-Ox proteins and lists a gene symbol, accession number, and source organism for each protein.









TABLE 3







MT-Ox proteins










Family
Gene symbol
Accession No.
Organism





MT-Ox
LOC102560707
XP_006270840.1

Alligator mississippiensis




LOC101799721
XP_005011274

Anas platyrhynchos




LOC100554218
XP_008103594

Anolis carolinensis




LOC103021811
XP_007241788.1 2

Astyanax mexicanus




LOC101935589
XP_005282176.1

Chrysemys picta bellii




LOC102090989
XP_005514955.1

Columba livia




zgc:113054
NP_001013468.1

Danio rerio




DLA_It04000
CBN80975.1

Dicentrarchus labrax




LOC102050380
XP_005432703

Falco cherrug




LOC101919857
XP_005230086

Falco peregrinus




LOC101811274
XP_005053424

Ficedula albicollis




ENSGMOG00000007404
ENSGMOP00000007916

Gadus morhua




LOC427595
XP_425168.3

Gallus gallus




ENSGACG00000011845
ENSGACP00000015696

Gasterosteus aculeatus




LOC102035220
XP_005420281.1

Geospiza fortis




LOC102308870
XP_005943916

Haplochromis burtoni




LOC102695979
XP_006630675.1

Lepisosteus oculatus




LOC101474366
XP_004567458.1

Maylandia zebra




LOC100539521
XP_003210236

Meleagris gallopavo




LOC101868426
XP_005149535

Melopsittacus undulatus




LOC102782600
XP_006784804.1

Neolamprologus brichardi




GSONMT00065609001
CDQ61677.1

Oncorhynchus mykiss




LOC100697673
XP_005450406.1

Oreochromis niloticus




LOC101163242
XP_004068646.1

Oryzias latipes




LOC102457357
XP_006120117.1

Pelodiscus sinensis




LOC103129385
XP_007540514.1

Poecilia formosa




LOC102106494
XP_005522288

Pseudopodoces humilis




LOC102205957
XP_005726666.1

Pundamilia nyererei




LOC100220728
XP_002188799

Taeniopygia guttata




MGC147226
NP_001072630

Xenopus (Silttrana) tropicalis




LOC102222561
XP_005814009.1

Xiphophorus maculatus




LOC102064640
XP_005491459

Zonotrichia albicollis










Primers


Table 11 lists primers useful in making or using the various embodiments of the disclosure disclosed herein. The function for each primer is also disclosed.









TABLE 11







Primers used










SEQ





ID





NO.
Primer
Sequence (5′→3′)a
Function





23
TRP1DisURA3UP
TATAGGAAGCATTTAATAGAACAGCATCGTA
TRP1




ATATATGTGTACTTTGAGTTATGACGCCGAA
deletion




ATTGAGGCTACTGCGCC






24
TRP1DisURA3LO
CCTGTGAACATTCTCTTCAACAAGTTTGATT
TRP1




CCATTGCGGTGAAATGGTAAAAGTCAACCGG
deletion




CAGCGTTTTGTTCTTGGA






25
RAD1DisLEU2UP
GAGCATTTGCTAAATGTGTAAAAATAATATT
RAD1




GCACTATCCTGTTGAAAATATCTTTCCAGCA
deletion




CTGTTCACGTCGCACCTA






26
RAD1DisLEU2LO
CTATAGTTAATCGCATTTTATACTGATGTTT
RAD1




TAACAGGGTTCGTTAAATTAAACAATATTGC
deletion




TGCATTAATGAATCGGCCA






27
TRP1DisUP
CTCACCCGCACGGCAGAGAC
Confirmation





28
TRP1DisLO
TGCCGGCGGTTGTTTGCAAG
Confirmation





29
URA3DisUp
GTGGCTGTGGTTTCAGGGTCCA
Confirmation





30
RAD1UP
CCTGAAGTGTTCTCTGTTTGCC
Confirmation





31
RAD1LO
GCTCAGATTCCACCAAATACGG
Confirmation





32
DEEVSUP
AGATCCACTAGTATGGAACGTCCGGGCGAAA
EEVS




C
cloning





33
DEEVSLO
TAGCCACTCGAGTCACTGCGGTGAGCCGGT
EEVS





cloning





34
MTOXUP
AGATCCACTAGTATGCAAACGGCAAAAGTCT
MTOX




C
cloning





35
MTOXLO
TAGCCACTCGAGTCACCACAGAGACTGACCG
MTOX





cloning





36
DEEVS-q-F
CCATCTGTTCACCGGGACAA
qPCR EEVS





37
DEEVS-q-R
TGCTGGGGTCAAGAAGGTTT
qPCR EEVS





38
MTOX-q-F
AGTAGAGCAGGTCATCATCCCT
qPCR





MTOX





39
MTOX-q-R
CTATGATGGCGACTTTGGCTC
qPCR





MTOX






aSpeI and XhoI restriction sites are underlined







Plasmids


Table 12 lists plasmids that may be useful in making or using the various embodiments of the disclosure disclosed herein. The source of each plasmid is listed. For cases in which the plasmid was newly generated to carry out the work described in this disclosure, the source is listed an “N/A.”









TABLE 12







Plasmids used











Plasmid
Insert
Source/reference






pUC57-EEVS
EEVS (EcoRV)
GeneScript USA Inc.



pUC57-MTOX
MT-Ox (EcoRV )
GeneScript USA Inc.



pRSETB-EEVS
EEVS (Bg/II)
This study



pRSETB-MTOX
MT-Ox (Bg/II)
This study



pXP416
none
Fang et al. 20111; Addgene,





Cambridge, MA



pXP416-MTOX
MT-OX (SpeI/XhoI)
This study



pXP20
none
Fang et al. 20111; Addgene,





Cambridge, MA



pXP420-EEVS
EEVS (SpeI/XhoI)
This study









Sequences

DNA sequences of EEVS and MT-Ox genes, and vectors pUC57-Kan, pRSET-B, pXP416, pXP420.










Danio rerio EEVS cDNA (accession no. LOC100003999)



SEQ ID NO. 1


atggagcgacccggggagacatttacagtgagttcacctgaagaagttcg





cctgccatctgttcaccgggacaactcgacgatggagaaccacaacaagc





aggagactgtcttcagcctggtgcaggtgaaggggacgtggaaacgcaaa





gcagggcaaaatgccaagcaaggaatgaaaggacgagtttcaccggctaa





aatttacgaaagcagctcctctagtggcactacctggacagtggtcaccc





ccatcaccttcacatatactgttactcagaccaaaaaccttcttgacccc





agcaatgacactctgcttttgggccacatcattgacactcagcagcttga





ggccgtacggtccaacaccaaacccttaaaacgcttcatagtcatggatg





aggtagtgtacaatatctatggttctcaggtcaccgaatacctcgaggcc





agaaatgtcctgtaccggatcctgcccctgcccacgacagaggagaacaa





gtccatggatatggccctgaagatcctggaggaggtgcaccagtttggga





tcgaccggcgcacggagcccattatcgccattggagggggcgtctgcctg





gatatcgtgggtctggcggcgtcgctttacagaagacgcactccatacat





tcgtgttcccaccactctactgtcctacattgacgccagtgtcggagcca





aaacaggtgtcaatttcgccaattgtaagaacaaacttggcacctacatc





gcacctgttgctgcattcctggaccggtcgtttatacagagcattcctcg





caggcacatagctaacggtcttgcagaaatgctgaagatggctcttatga





agcacagagggctgtttgaactcctggaagtgcacggacagttcctctta





gactccaagttccagtctgcttcagtcctagagaacgaccgcattgaccc





tgcttctgtctctacacgtgtcgcaatagaaaccatgctagaagagttag





ccccaaacctgtgggaggatgatcttgacagactggttgactttgggcac





ctcataagccctcaactagagatgaaagtcctaccagctcttctccacgg





tgaagcggtgaatattgatatggcctacatggtgtatgtgtcttgtgaaa





ttggattgctgacagaggaggagaaattcaggatcatctgttgcatgatg





ggactggagctgccggtgtggcatcaagacttcacatttgctttggtgca





gaagtctctgtgtgacagacttcagcattctggaggcctcgtgagaatgc





ctttaccaacaggcctcggaagagcagaaatcttcaatgacactgatgaa





ggctctctgtttagggcgtacgagaagtggtgtgatgagctcagcactgg





gtcacctcaa





EEVS optimized for E. coli


SEQ ID NO. 2


ATGGAACGTCCGGGCGAAACCTTTACCGTCAGCTCCCCGGAAGAAGTGCG





TCTGCCGTCTGTTCACCGCGATAACTCAACGATGGAAAACCATAATAAAC





AGGAAACGGTGTTTTCTCTGGTTCAAGTCAAGGGTACCTGGAAGCGTAAG





GCGGGCCAGAACGCCAAACAGGGTATGAAGGGCCGCGTTAGTCCGGCCAA





AATTTATGAAAGCTCTAGTTCCTCAGGTACCACGTGGACGGTGGTTACCC





CGATCACCTTTACGTACACCGTGACGCAGACCAAAAACCTGCTGGACCCG





TCGAACGACACGCTGCTGCTGGGCCATATTATCGATACCCAGCAACTGGA





AGCTGTCCGCAGCAATACGAAACCGCTGAAGCGTTTCATTGTGATGGACG





AAGTCGTGTATAATATCTACGGTTCCCAAGTCACCGAATATCTGGAAGCG





CGCAACGTGCTGTACCGTATTCTGCCGCTGCCGACCACGGAAGAAAATAA





ATCAATGGATATGGCTCTGAAGATTCTGGAAGAAGTGCACCAGTTTGGTA





TCGACCGTCGCACCGAACCGATTATCGCGATTGGCGGTGGCGTTTGCCTG





GATATCGTCGGTCTGGCAGCCTCTCTGTATCGTCGCCGTACCCCGTACAT





TCGTGTGCCGACCACGCTGCTGTCTTATATCGACGCAAGTGTGGGTGCTA





AAACGGGCGTTAACTTTGCTAATTGTAAAAACAAGCTGGGTACCTACATT





GCGCCGGTTGCAGCTTTTCTGGATCGTTCGTTCATTCAGAGCATCCCGCG





CCGTCACATCGCAAACGGTCTGGCCGAAATGCTGAAAATGGCCCTGATGA





AGCATCGCGGTCTGTTCGAACTGCTGGAAGTTCACGGCCAGTTTCTGCTG





GATAGTAAATTCCAATCGGCAAGCGTCCTGGAAAACGATCGCATTGACCC





GGCCTCTGTCAGTACGCGTGTGGCAATCGAAACCATGCTGGAAGAACTGG





CCCCGAATCTGTGGGAAGATGACCTGGATCGTCTGGTGGACTTTGGTCAT





CTGATTTCGCCGCAGCTGGAAATGAAAGTTCTGCCGGCACTGCTGCACGG





CGAAGCTGTCAACATTGATATGGCGTATATGGTGTACGTTTCATGCGAAA





TCGGTCTGCTGACCGAAGAAGAAAAATTCCGCATTATCTGCTGTATGATG





GGCCTGGAACTGCCGGTGTGGCATCAGGATTTTACCTTCGCACTGGTTCA





AAAGTCCCTGTGTGACCGCCTGCAGCACTCAGGTGGCCTGGTTCGTATGC





CGCTGCCGACGGGTCTGGGTCGTGCAGAAATTTTTAATGATACCGACGAA





GGTAGCCTGTTCCGCGCGTATGAAAAATGGTGCGATGAACTGTCCACCGG





CTCACCGCAG






S. cerevisiae-optimized EEVS sequence #1



SEQ ID NO. 3


ATGGAAAGACCAGGTGAAACTTTCACCGTCTCCTCTCCAGAAGAAGTCAG





ATTACCTTCCGTCCACAGAGATAATTCTACCATGGAAAACCACAACAAGC





AAGAAACCGTTTTCTCTTTGGTCCAAGTTAAGGGTACTTGGAAGCGTAAG





GCTGGTCAAAACGCTAAGCAAGGTATGAAAGGTAGAGTTTCTCCAGCTAA





GATTTATGAATCCTCTTCCTCTTCCGGTACCACCTGGACCGTCGTTACTC





CAATTACCTTCACTTACACTGTTACCCAAACCAAAAACTTGTTGGATCCA





TCTAACGACACTTTGTTGTTGGGTCATATCATCGATACCCAACAATTGGA





GGCTGTTAGATCTAACACCAAGCCTTTGAAGCGTTTCATTGTCATGGATG





AAGTCGTTTATAACATTTACGGTTCTCAAGTTACCGAATACTTGGAAGCT





AGAAACGTTTTGTACAGAATCTTGCCATTGCCAACTACTGAAGAGAATAA





GTCTATGGATATGGCCTTGAAGATCTTGGAAGAGGTCCACCAATTCGGTA





TTGATAGAAGAACCGAACCTATTATTGCTATTGGTGGTGGTGTTTGTTTG





GACATCGTTGGTTTGGCTGCCTCCTTGTACCGTAGAAGAACTCCATATAT





TAGAGTTCCAACTACCTTATTGTCTTATATTGATGCTTCCGTCGGTGCTA





AGACCGGTGTCAACTTTGCTAACTGTAAGAATAAGTTAGGTACTTATATC





GCTCCAGTCGCCGCCTTCTTAGATAGATCTTTTATCCAATCCATCCCACG





TAGACACATTGCTAATGGTTTAGCTGAAATGTTGAAGATGGCTTTGATGA





AGCATAGAGGTTTATTTGAATTATTGGAAGTCCACGGTCAATTTTTGTTG





GATTCTAAGTTTCAATCCGCTTCTGTTTTAGAAAACGATAGAATTGATCC





AGCTTCTGTCTCCACCAGAGTTGCCATTGAAACTATGTTAGAAGAATTAG





CTCCAAACTTGTGGGAGGACGACTTGGACCGTTTAGTCGACTTCGGTCAC





TTAATTTCTCCACAATTGGAAATGAAGGTTTTACCAGCCTTATTGCATGG





TGAAGCTGTTAACATTGATATGGCTTACATGGTTTACGTCTCTTGTGAAA





TCGGTTTATTGACTGAAGAAGAAAAGTTTCGTATCATCTGTTGTATGATG





GGTTTGGAATTGCCTGTCTGGCATCAAGATTTCACTTTCGCTTTGGTTCA





AAAGTCCTTATGTGATAGATTGCAACACTCTGGTGGTTTGGTCAGAATGC





CATTGCCTACCGGTTTGGGTAGAGCCGAAATTTTCAACGATACTGACGAG





GGTTCTTTATTCAGAGCTTATGAAAAATGGTGTGACGAATTGTCTACTGG





TTCTCCACAA






S. cerevisiae-optimized EEVS sequence #2



SEQ ID NO. 4


ATGGAAAGACCAGGTGAAACTTTTACTGTTTCCTCCCCAGAAGAAGTCAG





ATTGCCTTCTGTTCACAGAGACAATTCTACTATGGAAAACCATAACAAGC





AAGAAACTGTCTTCTCTTTAGTTCAAGTCAAGGGTACCTGGAAAAGAAAG





GCTGGTCAAAACGCTAAACAAGGTATGAAGGGTAGAGTCTCCCCAGCTAA





GATTTATGAATCCTCTTCCTCTTCTGGTACTACCTGGACCGTCGTCACTC





CTATTACCTTCACCTACACTGTCACCCAAACTAAGAATTTGTTAGATCCA





TCTAACGATACCTTGTTGTTAGGTCACATTATTGATACTCAACAATTAGA





AGCTGTCCGTTCCAACACTAAGCCATTGAAAAGATTCATCGTTATGGATG





AAGTTGTTTACAATATTTACGGTTCCCAAGTCACTGAATACTTGGAAGCT





AGAAATGTTTTGTACAGAATTTTGCCTTTGCCTACCACTGAAGAAAATAA





GTCTATGGACATGGCTTTAAAGATTTTAGAGGAAGTCCATCAATTCGGTA





TCGATAGAAGAACTGAACCAATTATTGCTATCGGTGGTGGTGTCTGTTTG





GATATCGTCGGTTTGGCTGCTTCTTTGTACAGAAGAAGAACTCCATACAT





CAGAGTCCCAACCACTTTGTTGTCTTACATCGACGCTTCCGTTGGTGCTA





AGACTGGTGTTAACTTCGCTAACTGTAAAAACAAGTTGGGTACCTACATC





GCCCCAGTCGCCGCTTTCTTGGATAGATCTTTCATCCAATCTATCCCACG





TCGTCATATTGCTAACGGTTTGGCCGAAATGTTGAAGATGGCCTTGATGA





AACATAGAGGTTTATTCGAATTGTTAGAAGTTCATGGTCAATTCTTGTTG





GATTCTAAGTTCCAATCCGCTTCCGTTTTGGAAAACGATCGTATCGATCC





AGCCTCCGTCTCTACTAGAGTCGCTATCGAAACCATGTTAGAAGAATTGG





CCCCAAACTTATGGGAAGACGACTTGGACAGATTAGTCGATTTCGGTCAT





TTGATCTCTCCACAATTGGAAATGAAGGTCTTGCCAGCCTTGTTGCACGG





TGAAGCTGTTAACATCGATATGGCTTACATGGTCTACGTTTCTTGTGAAA





TTGGTTTATTAACCGAAGAAGAAAAATTCAGAATCATTTGTTGTATGATG





GGTTTAGAATTGCCAGTCTGGCACCAAGACTTCACTTTCGCCTTGGTTCA





AAAGTCTTTGTGTGACAGATTACAACACTCTGGTGGTTTGGTCAGAATGC





CTTTGCCTACTGGTTTGGGTAGAGCTGAAATTTTCAACGATACTGACGAA





GGTTCTTTGTTCCGTGCCTATGAAAAGTGGTGTGATGAGTTGTCCACTGG





TTCTCCACAA






S. cerevisiae-optimized EEVS sequence #3



SEQ ID NO. 5


ATGGAACGTCCAGGTGAAACTTTTACCGTCTCTTCTCCAGAAGAAGTCAG





ATTACCATCCGTTCACAGAGACAATTCTACTATGGAAAATCACAATAAGC





AAGAAACCGTCTTTTCTTTGGTCCAAGTCAAGGGTACTTGGAAGCGTAAA





GCCGGTCAAAACGCTAAGCAAGGTATGAAGGGTCGTGTTTCTCCTGCCAA





GATTTATGAATCCTCCTCTTCCTCTGGTACTACTTGGACCGTTGTCACCC





CAATTACCTTTACCTACACTGTCACCCAAACTAAAAATTTGTTAGATCCA





TCCAATGACACCTTGTTGTTGGGTCATATTATTGACACCCAACAATTGGA





AGCCGTTAGATCTAATACTAAGCCATTGAAGAGATTCATTGTTATGGATG





AAGTCGTCTACAACATCTACGGTTCTCAAGTCACTGAATACTTGGAAGCT





AGAAACGTCTTGTACCGTATCTTGCCATTGCCAACTACTGAAGAAAACAA





ATCCATGGATATGGCCTTGAAGATTTTGGAAGAAGTCCACCAATTTGGTA





TCGATAGAAGAACCGAACCAATCATTGCCATTGGTGGTGGTGTTTGTTTA





GACATTGTTGGTTTGGCTGCCTCCTTGTATAGAAGAAGAACTCCATACAT





TAGAGTCCCAACTACCTTGTTGTCTTACATCGATGCTTCTGTTGGTGCCA





AGACTGGTGTTAACTTCGCTAACTGCAAGAACAAGTTGGGTACCTACATC





GCCCCTGTCGCCGCTTTCTTGGACAGATCCTTCATCCAATCTATCCCTAG





ACGTCATATTGCCAACGGTTTGGCTGAAATGTTGAAGATGGCTTTGATGA





AGCATAGAGGTTTGTTCGAGTTGTTAGAAGTTCACGGTCAATTCTTATTA





GATTCTAAGTTCCAATCTGCTTCTGTCTTAGAAAACGACCGTATTGACCC





AGCTTCCGTTTCTACTAGAGTTGCTATTGAAACCATGTTGGAAGAATTAG





CCCCAAACTTGTGGGAAGATGATTTGGACAGATTGGTTGACTTCGGTCAT





TTAATCTCCCCACAATTGGAAATGAAGGTTTTGCCAGCTTTATTGCATGG





TGAAGCCGTCAACATCGACATGGCTTACATGGTTTACGTCTCCTGTGAAA





TCGGTTTGTTAACCGAAGAAGAAAAATTCAGAATCATCTGCTGTATGATG





GGTTTGGAATTGCCAGTTTGGCACCAAGACTTCACTTTTGCTTTGGTTCA





AAAGTCCTTGTGTGATAGATTGCAACACTCCGGTGGTTTAGTCAGAATGC





CTTTACCAACTGGTTTAGGTCGTGCTGAAATCTTCAACGATACTGATGAA





GGTTCCTTATTCAGAGCCTATGAAAAGTGGTGTGACGAATTATCTACTGG





TTCTCCTCAA






S. cerevisiae-optimized EEVS sequence #4



SEQ ID NO. 6


ATGGAACGTCCAGGTGAAACTTTCACCGTCTCTTCCCCTGAAGAGGTTAG





ATTGCCTTCTGTCCACAGAGACAACTCTACCATGGAAAACCATAACAAGC





AAGAAACCGTCTTCTCCTTGGTTCAAGTCAAGGGTACTTGGAAGAGAAAG





GCTGGTCAAAATGCTAAACAAGGTATGAAGGGTCGTGTTTCCCCAGCTAA





GATTTACGAATCTTCCTCCTCTTCTGGTACTACCTGGACCGTTGTTACCC





CAATCACCTTCACCTACACTGTCACCCAAACTAAGAATTTATTGGACCCA





TCTAACGACACTTTGTTGTTGGGTCACATCATTGATACTCAACAATTGGA





AGCTGTTAGATCTAACACTAAACCATTGAAAAGATTCATTGTTATGGATG





AGGTTGTTTACAACATTTACGGTTCTCAAGTTACCGAATACTTAGAAGCC





AGAAATGTTTTGTACAGAATTTTACCTTTGCCAACCACCGAAGAAAATAA





GTCTATGGATATGGCTTTGAAAATCTTGGAAGAAGTCCATCAATTCGGTA





TCGACAGAAGAACTGAACCAATCATCGCTATTGGTGGTGGTGTTTGTTTG





GACATTGTCGGTTTGGCTGCTTCTTTGTACAGAAGAAGAACTCCATACAT





CAGAGTCCCAACCACTTTGTTGTCCTACATTGATGCTTCTGTCGGTGCTA





AGACTGGTGTTAACTTTGCTAACTGTAAGAACAAGTTAGGTACTTACATT





GCCCCTGTTGCTGCCTTCTTGGACAGATCTTTCATCCAATCTATCCCAAG





AAGACATATCGCTAACGGTTTAGCCGAAATGTTGAAAATGGCTTTAATGA





AGCACAGAGGTTTGTTTGAATTGTTGGAAGTCCACGGTCAATTTTTGTTA





GACTCTAAGTTCCAATCTGCCTCCGTTTTAGAAAACGATAGAATTGACCC





AGCTTCTGTTTCCACCCGTGTTGCTATTGAGACCATGTTGGAAGAATTGG





CCCCAAACTTGTGGGAAGACGACTTGGACCGTTTGGTCGATTTCGGTCAC





TTAATCTCCCCACAATTGGAAATGAAGGTCTTGCCAGCTTTGTTGCATGG





TGAAGCCGTTAACATTGATATGGCCTATATGGTCTACGTTTCTTGTGAAA





TCGGTTTGTTGACCGAAGAGGAAAAGTTCAGAATTATCTGTTGTATGATG





GGTTTGGAATTGCCAGTTTGGCATCAAGATTTTACCTTTGCTTTGGTTCA





AAAGTCTTTGTGTGACAGATTGCAACATTCTGGTGGTTTGGTCAGAATGC





CTTTGCCAACTGGTTTGGGTAGAGCTGAAATTTTCAACGACACTGATGAA





GGTTCTTTGTTCAGAGCCTACGAAAAATGGTGCGATGAATTGTCTACCGG





TTCCCCACAA






S. cerevisiae-optimized EEVS sequence #5



SEQ ID NO. 7


ATGGAAAGACCTGGTGAAACTTTTACTGTTTCTTCTCCTGAAGAAGTTAG





ATTGCCATCTGTTCATAGAGACAACTCTACCATGGAAAATCATAACAAGC





AAGAAACCGTCTTCTCTTTGGTCCAAGTCAAGGGTACCTGGAAGAGAAAG





GCTGGTCAAAACGCCAAGCAAGGTATGAAGGGTAGAGTCTCCCCAGCCAA





GATCTACGAATCCTCCTCTTCTTCCGGTACCACCTGGACTGTTGTCACCC





CAATTACTTTCACTTACACTGTCACTCAAACTAAAAACTTGTTGGACCCA





TCTAACGATACTTTGTTATTGGGTCACATTATTGACACCCAACAATTGGA





AGCTGTCAGATCTAACACCAAGCCATTAAAGAGATTCATTGTCATGGATG





AAGTTGTTTACAACATCTACGGTTCTCAAGTCACCGAATACTTGGAAGCT





AGAAATGTTTTGTATCGTATTTTGCCATTGCCAACTACCGAGGAAAACAA





GTCCATGGATATGGCCTTGAAGATTTTGGAAGAAGTCCATCAATTCGGTA





TTGATAGAAGAACTGAACCAATTATCGCCATCGGTGGTGGTGTCTGCTTG





GATATTGTTGGTTTAGCTGCTTCTTTGTATAGACGTAGAACTCCTTACAT





TAGAGTTCCAACCACTTTATTATCCTACATCGACGCCTCCGTTGGTGCCA





AAACTGGTGTTAACTTCGCTAACTGTAAGAACAAGTTGGGTACTTACATC





GCTCCAGTTGCTGCCTTCTTGGACCGTTCTTTCATTCAATCTATCCCTCG





TCGTCACATTGCCAATGGTTTAGCTGAAATGTTGAAAATGGCTTTGATGA





AACATAGAGGTTTGTTCGAATTATTGGAAGTCCACGGTCAATTTTTGTTG





GACTCTAAATTCCAATCCGCTTCTGTCTTGGAAAACGATAGAATTGACCC





AGCTTCCGTTTCTACCAGAGTCGCTATCGAAACCATGTTGGAAGAATTGG





CTCCAAACTTATGGGAAGATGATTTGGATAGATTGGTTGATTTCGGTCAC





TTGATTTCCCCACAATTGGAAATGAAGGTTTTACCAGCCTTGTTGCACGG





TGAAGCTGTTAATATTGATATGGCTTACATGGTCTATGTCTCTTGTGAAA





TCGGTTTGTTGACTGAAGAAGAAAAGTTCAGAATCATTTGTTGTATGATG





GGTTTGGAATTGCCAGTCTGGCATCAAGACTTCACTTTCGCTTTGGTTCA





AAAGTCCTTATGTGACAGATTGCAACATTCCGGTGGTTTGGTCAGAATGC





CATTGCCAACCGGTTTGGGTAGAGCTGAAATTTTCAACGACACTGACGAA





GGTTCCTTGTTCCGTGCTTACGAAAAGTGGTGCGATGAATTGTCTACCGG





TTCCCCACAA






S. cerevisiae-optimized EEVS sequence #6



SEQ ID NO. 8


ATGGAAAGACCAGGTGAAACTTTCACTGTTTCTTCTCCAGAAGAAGTTAG





ATTGCCATCTGTTCACAGAGACAACTCTACTATGGAAAACCACAACAAGC





AAGAAACTGTTTTCTCTTTGGTTCAAGTTAAGGGTACTTGGAAGAGAAAG





GCTGGTCAAAACGCTAAGCAAGGTATGAAGGGTAGAGTTTCTCCAGCTAA





GATCTACGAATCTTCTTCTTCTTCTGGTACTACTTGGACTGTTGTTACTC





CAATCACTTTCACTTACACTGTTACTCAAACTAAGAACTTGTTGGACCCA





TCTAACGACACTTTGTTGTTGGGTCACATCATCGACACTCAACAATTGGA





AGCTGTTAGATCTAACACTAAGCCATTGAAGAGATTCATCGTTATGGACG





AAGTTGTTTACAACATCTACGGTTCTCAAGTTACTGAATACTTGGAAGCT





AGAAACGTTTTGTACAGAATCTTGCCATTGCCAACTACTGAAGAAAACAA





GTCTATGGACATGGCTTTGAAGATCTTGGAAGAAGTTCACCAATTCGGTA





TCGACAGAAGAACTGAACCAATCATCGCTATCGGTGGTGGTGTTTGTTTG





GACATCGTTGGTTTGGCTGCTTCTTTGTACAGAAGAAGAACTCCATACAT





CAGAGTTCCAACTACTTTGTTGTCTTACATCGACGCTTCTGTTGGTGCTA





AGACTGGTGTTAACTTCGCTAACTGTAAGAACAAGTTGGGTACTTACATC





GCTCCAGTTGCTGCTTTCTTGGACAGATCTTTCATCCAATCTATCCCAAG





AAGACACATCGCTAACGGTTTGGCTGAAATGTTGAAGATGGCTTTGATGA





AGCACAGAGGTTTGTTCGAATTGTTGGAAGTTCACGGTCAATTCTTGTTG





GACTCTAAGTTCCAATCTGCTTCTGTTTTGGAAAACGACAGAATCGACCC





AGCTTCTGTTTCTACTAGAGTTGCTATCGAAACTATGTTGGAAGAATTGG





CTCCAAACTTGTGGGAAGACGACTTGGACAGATTGGTTGACTTCGGTCAC





TTGATCTCTCCACAATTGGAAATGAAGGTTTTGCCAGCTTTGTTGCACGG





TGAAGCTGTTAACATCGACATGGCTTACATGGTTTACGTTTCTTGTGAAA





TCGGTTTGTTGACTGAAGAAGAAAAGTTCAGAATCATCTGTTGTATGATG





GGTTTGGAATTGCCAGTTTGGCACCAAGACTTCACTTTCGCTTTGGTTCA





AAAGTCTTTGTGTGACAGATTGCAACACTCTGGTGGTTTGGTTAGAATGC





CATTGCCAACTGGTTTGGGTAGAGCTGAAATCTTCAACGACACTGACGAA





GGTTCTTTGTTCAGAGCTTACGAAAAGTGGTGTGACGAATTGTCTACTGG





TTCTCCACAA





MT-OX cDNA from Danio rerio (accession no.


zgc: 113054)


SEQ ID NO. 9


atgcagacagcaaaagtttcagacactcctgtggagttcatcgttgaaca





cctgctgaaggcaaaagagatcgcagagaatcatgcaagtattccagtcg





aacttcgggataatcttcagaaggctttggacattgctagtggactagac





gaataccttgaacaaatgagcagcaaggagagtgaaccgttgactgagtt





gtataggaaatcagtttctcatgactggaataaggtgcatgcggacggaa





aaaccttatttaggcttcctgttacatgcatcaccggacaggtagaaggt





caagtattgaagatgctggtgcatatgagcaaagcaaagagggtcttaga





gataggaatgttcacagggtatggggccttgtcaatggcggaggccttac





cagaaaatggccagcttatcgcctgtgagcttgagccttacctcaaagac





tttgcacagcctatatttgataaatctcctcatgggaaaaagataactgt





gaagactgggcctgctatggataccctgaaggaattggctgccacaggag





agcagtttgacatggtatttattgacgcggacaagcagaactacatcaac





tattataagttcctcctggaccataaccttctgcggatcgatggtgttat





atgtgtcgacaacacactgtttaaaggcagagtttacctcaaggactctg





tggatgaaatgggaaaagcattgcgggattttaatcagtttgtcacagct





gatcctcgagtagagcaggtcatcatccctctgagagatggactcactat





aatacgaagagtgccctatacacctcagccaaactcacagagtggtacag





taacctatgatgaggtgtttagaggagtccaaggaaagccagttctggac





aggttacgtttggatgggaaagtggcctatgtgaccggggccggtcaggg





tattggcagggctttcgcacatgctctcggagaggctggagccaaagtcg





ccatcatagacatggacagaggaaaggctgaggatgtggcgcatgaactg





actttaaaaggcatttcaagcatggctgtagtggcagacattagcaaacc





agacgacgtccagaagatgattgacgacatcgttacgaaatggggcacac





ttcacattgcttgtaacaatgctggcatcaacaaaaactcagcaagtgag





gagaccagtctagaagaatgggaccaaacctttaacgtgaacctcagagg





cactttcatgtgctgccaggcggccggtcgtgtcatgctgaagcaaggat





acggcaagataatcaacacagcttccatggccagtttaatagtgccgcat





ccacagaagcagctgtcctataacacatccaaagctggagtagtgaaact





cactcaaaccctgggcacagaatggattgaccgaggtgttcgagtcaatt





gcatctcacctggtattgttgacacccctctcatccattcagagagtctg





gagcctctagttcagcgctggctgtcagatatcccagccggacgactggc





tcaagtgacagacctccaagctgcagtggtatacttggcatctgacgcct





ctgactacatgacagggcataacttagtcatagagggtggtcagagtcta





tgg





Optimized MT-Ox for E. coli


SEQ ID NO. 10


ATGCAAACGGCAAAAGTCTCGGACACCCCGGTTGAATTTATTGTGGAACA





TCTGCTGAAGGCTAAGGAAATCGCTGAAAATCACGCTTCCATTCCGGTGG





AACTGCGCGATAACCTGCAGAAAGCTCTGGATATCGCGAGCGGCCTGGAC





GAATATCTGGAACAAATGAGCTCTAAAGAATCTGAACCGCTGACGGAACT





GTACCGCAAGTCAGTCTCGCATGATTGGAATAAAGTGCACGCGGACGGCA





AGACCCTGTTTCGTCTGCCGGTGACCTGCATTACGGGCCAGGTCGAAGGT





CAAGTGCTGAAAATGCTGGTTCACATGAGTAAAGCGAAGCGTGTCCTGGA





AATTGGCATGTTTACCGGCTATGGTGCCCTGTCCATGGCAGAAGCTCTGC





CGGAAAACGGTCAGCTGATCGCTTGTGAACTGGAACCGTACCTGAAAGAT





TTTGCACAACCGATTTTCGACAAGAGTCCGCATGGCAAAAAGATCACCGT





GAAAACGGGTCCGGCAATGGATACCCTGAAGGAACTGGCGGCCACGGGCG





AACAGTTTGACATGGTTTTCATTGATGCGGACAAGCAAAACTACATCAAC





TACTACAAGTTCCTGCTGGATCACAACCTGCTGCGTATTGATGGCGTCAT





CTGCGTGGACAATACGCTGTTCAAAGGTCGCGTGTACCTGAAGGATAGCG





TTGACGAAATGGGTAAAGCCCTGCGTGATTTTAACCAGTTCGTGACCGCA





GACCCGCGTGTTGAACAAGTCATTATCCCGCTGCGCGATGGCCTGACCAT





TATCCGTCGCGTCCCGTATACGCCGCAGCCGAATAGCCAATCTGGTACCG





TGACGTACGATGAAGTTTTTCGCGGCGTCCAGGGTAAACCGGTTCTGGAT





CGTCTGCGCCTGGACGGCAAAGTGGCTTATGTTACCGGTGCCGGTCAGGG





TATTGGTCGTGCATTCGCCCATGCACTGGGCGAAGCTGGTGCGAAAGTTG





CCATTATCGATATGGACCGTGGCAAGGCCGAAGATGTCGCACACGAACTG





ACCCTGAAAGGTATTAGTTCCATGGCCGTGGTTGCAGATATCAGCAAACC





GGATGACGTGCAGAAGATGATTGATGACATCGTTACCAAATGGGGCACGC





TGCATATTGCTTGCAACAATGCGGGTATCAACAAAAATAGTGCGTCCGAA





GAAACCTCTCTGGAAGAATGGGATCAGACGTTTAACGTCAATCTGCGTGG





CACCTTCATGTGCTGTCAGGCAGCTGGTCGCGTTATGCTGAAACAAGGCT





ATGGCAAGATTATCAACACCGCTAGCATGGCGTCTCTGATTGTGCCGCAC





CCGCAGAAACAACTGTCATACAATACGTCGAAAGCCGGCGTCGTGAAGCT





GACCCAGACGCTGGGCACCGAATGGATCGATCGTGGTGTGCGCGTTAACT





GTATTTCACCGGGTATCGTGGATACCCCGCTGATTCATTCAGAATCGCTG





GAACCGCTGGTTCAGCGTTGGCTGTCGGATATCCCGGCAGGTCGTCTGGC





ACAGGTGACGGACCTGCAAGCGGCCGTTGTCTATCTGGCCAGTGATGCAT





CCGACTACATGACCGGTCACAATCTGGTTATTGAAGGCGGTCAGTCTCTG





TGG






S. cerevisiae-optimized MT-Ox sequence #1



SEQ ID NO. 11


ATGCAAACCGCTAAAGTTTCTGATACTCCAGTCGAATTCATCGTTGAACA





CTTGTTGAAAGCTAAAGAAATTGCTGAAAACCACGCCTCCATCCCAGTTG





AATTGCGTGACAACTTGCAAAAGGCTTTGGACATTGCTTCTGGTTTGGAC





GAATACTTAGAACAAATGTCTTCCAAGGAGTCTGAACCTTTGACCGAATT





ATACAGAAAATCCGTCTCCCATGACTGGAACAAGGTTCATGCTGACGGTA





AAACTTTGTTCAGATTGCCAGTTACTTGTATTACTGGTCAAGTTGAAGGT





CAAGTCTTGAAGATGTTGGTTCACATGTCTAAGGCTAAGAGAGTTTTGGA





AATTGGTATGTTCACCGGTTACGGTGCCTTATCCATGGCTGAAGCCTTGC





CAGAGAACGGTCAATTAATTGCCTGTGAATTGGAGCCATATTTGAAGGAC





TTTGCTCAACCAATTTTCGACAAGTCTCCACACGGTAAAAAAATTACTGT





TAAGACCGGTCCAGCTATGGACACTTTAAAGGAATTGGCCGCTACTGGTG





AACAATTCGACATGGTTTTCATTGATGCCGACAAGCAAAACTACATCAAC





TACTACAAGTTCTTGTTGGATCACAACTTATTGAGAATCGATGGTGTTAT





CTGTGTCGATAACACCTTGTTCAAGGGTAGAGTTTACTTGAAAGACTCTG





TCGATGAGATGGGTAAGGCTTTGAGAGATTTCAACCAATTCGTTACTGCT





GATCCACGTGTCGAACAAGTCATTATCCCATTGAGAGACGGTTTGACTAT





CATTAGACGTGTTCCATACACCCCACAACCAAACTCTCAATCTGGTACTG





TCACCTACGATGAAGTTTTCAGAGGTGTTCAAGGTAAGCCTGTTTTGGAC





AGATTGCGTTTAGATGGTAAGGTTGCTTACGTTACTGGTGCTGGTCAAGG





TATTGGTCGTGCTTTCGCTCACGCCTTGGGTGAAGCCGGTGCCAAAGTCG





CTATTATCGATATGGACAGAGGTAAGGCCGAAGACGTTGCTCACGAATTG





ACCTTGAAAGGTATCTCCTCCATGGCTGTCGTCGCCGATATCTCCAAGCC





AGATGACGTTCAAAAGATGATTGACGATATTGTTACTAAGTGGGGTACCT





TGCATATCGCTTGTAATAACGCTGGTATCAACAAGAACTCTGCTTCCGAA





GAAACCTCTTTGGAAGAATGGGATCAAACTTTCAACGTCAATTTGAGAGG





TACTTTCATGTGTTGTCAAGCTGCCGGTAGAGTTATGTTGAAACAAGGTT





ACGGTAAGATTATTAATACCGCTTCTATGGCTTCCTTGATTGTCCCACAT





CCACAAAAACAATTGTCTTATAATACTTCCAAGGCTGGTGTTGTTAAGTT





GACTCAAACCTTAGGTACTGAATGGATCGACAGAGGTGTTAGAGTCAACT





GTATCTCTCCAGGTATTGTCGATACCCCATTGATCCACTCTGAATCTTTA





GAACCATTGGTCCAAAGATGGTTATCTGACATCCCAGCCGGTAGATTGGC





TCAAGTTACTGATTTGCAAGCTGCTGTCGTCTACTTGGCTTCTGATGCTT





CTGACTACATGACCGGTCACAACTTAGTCATCGAAGGTGGTCAATCTTTG





TGG






S. cerevisiae-optimized MT-Ox sequence #2



SEQ ID NO. 12


ATGCAAACCGCTAAGGTTTCCGACACTCCAGTTGAATTTATCGTCGAACA





CTTATTGAAAGCTAAGGAAATTGCCGAAAACCATGCCTCCATTCCAGTCG





AATTGCGTGACAACTTGCAAAAGGCTTTGGACATTGCTTCTGGTTTGGAC





GAATACTTGGAGCAAATGTCCTCTAAGGAATCTGAACCATTGACCGAATT





GTATCGTAAATCCGTCTCCCATGATTGGAATAAGGTTCACGCCGACGGTA





AGACTTTGTTTAGATTGCCAGTCACTTGTATCACCGGTCAAGTTGAAGGT





CAAGTTTTAAAGATGTTGGTTCACATGTCCAAGGCTAAGAGAGTCTTGGA





AATTGGTATGTTCACTGGTTATGGTGCCTTATCCATGGCCGAAGCTTTGC





CAGAAAACGGTCAATTGATTGCTTGCGAATTGGAACCATATTTGAAGGAT





TTCGCTCAACCAATTTTCGATAAATCTCCACACGGTAAGAAAATTACTGT





CAAGACTGGTCCTGCTATGGACACTTTAAAAGAATTGGCCGCTACTGGTG





AGCAATTCGACATGGTTTTCATCGATGCCGATAAACAAAACTATATTAAC





TACTATAAATTCTTGTTGGACCACAACTTGTTGAGAATTGATGGTGTCAT





CTGTGTCGATAACACCTTGTTCAAGGGTAGAGTCTACTTAAAGGACTCTG





TCGATGAAATGGGTAAGGCTTTAAGAGACTTCAACCAATTCGTTACCGCT





GATCCAAGAGTTGAACAAGTCATTATTCCATTGAGAGATGGTTTGACTAT





TATTCGTAGAGTTCCTTACACTCCACAACCAAACTCTCAATCTGGTACCG





TCACCTACGATGAAGTTTTCAGAGGTGTTCAAGGTAAACCAGTCTTGGAT





AGATTGAGATTAGATGGTAAGGTTGCCTACGTTACCGGTGCTGGTCAAGG





TATCGGTAGAGCTTTCGCCCACGCTTTGGGTGAAGCTGGTGCCAAGGTCG





CTATCATCGATATGGATAGAGGTAAGGCCGAAGATGTTGCCCACGAATTG





ACCTTAAAAGGTATCTCCTCCATGGCTGTCGTCGCTGATATCTCTAAACC





TGACGATGTTCAAAAAATGATTGACGACATCGTCACCAAGTGGGGTACTT





TGCATATTGCTTGTAATAACGCTGGTATTAACAAGAACTCTGCTTCTGAA





GAAACTTCTTTGGAAGAATGGGATCAAACTTTCAACGTTAACTTGAGAGG





TACTTTCATGTGTTGTCAAGCTGCCGGTAGAGTCATGTTGAAGCAAGGTT





ACGGTAAGATTATCAACACTGCCTCCATGGCCTCCTTGATTGTTCCACAT





CCACAAAAACAATTGTCTTACAACACCTCCAAGGCCGGTGTTGTCAAGTT





GACCCAAACCTTGGGTACTGAGTGGATTGATAGAGGTGTCAGAGTCAACT





GTATCTCTCCAGGTATTGTTGATACTCCTTTGATTCACTCCGAGTCCTTG





GAACCATTGGTTCAAAGATGGTTATCCGACATCCCAGCTGGTAGATTGGC





TCAAGTTACCGATTTGCAAGCTGCTGTTGTTTACTTGGCCTCCGATGCCT





CCGATTACATGACTGGTCATAACTTGGTCATTGAAGGTGGTCAATCCTTG





TGG






S. cerevisiae-optimized MT-Ox sequence #3



SEQ ID NO. 13


ATGCAAACTGCCAAGGTCTCCGACACCCCAGTCGAATTCATTGTTGAACA





CTTGTTGAAGGCTAAAGAAATCGCTGAAAATCACGCTTCTATTCCTGTTG





AATTAAGAGACAACTTGCAAAAAGCCTTGGACATTGCTTCTGGTTTAGAC





GAATACTTGGAACAAATGTCTTCTAAAGAATCCGAGCCATTGACTGAATT





GTACAGAAAGTCTGTCTCCCACGACTGGAACAAGGTTCACGCTGACGGTA





AGACCTTGTTCCGTTTACCTGTTACCTGTATCACCGGTCAAGTCGAAGGT





CAAGTTTTGAAAATGTTGGTTCATATGTCCAAGGCTAAGAGAGTCTTGGA





GATCGGTATGTTTACCGGTTACGGTGCCTTGTCTATGGCCGAAGCCTTGC





CAGAAAACGGTCAATTGATCGCTTGTGAATTGGAACCATATTTGAAGGAC





TTCGCTCAACCTATCTTCGACAAGTCCCCACACGGTAAGAAGATCACCGT





CAAGACCGGTCCAGCCATGGATACTTTGAAAGAATTGGCCGCTACTGGTG





AACAATTCGATATGGTTTTCATCGATGCTGATAAACAAAACTATATCAAT





TACTACAAGTTCTTGTTGGATCACAACTTGTTAAGAATCGATGGTGTTAT





CTGTGTTGATAACACCTTGTTCAAGGGTAGAGTTTACTTGAAGGACTCTG





TCGACGAAATGGGTAAAGCTTTGAGAGACTTTAACCAATTCGTTACCGCT





GACCCAAGAGTTGAACAAGTTATCATTCCATTAAGAGATGGTTTGACCAT





TATTCGTAGAGTTCCATATACTCCTCAACCAAACTCTCAATCTGGTACTG





TCACTTACGACGAAGTCTTCAGAGGTGTTCAAGGTAAGCCTGTCTTGGAC





CGTTTACGTTTGGATGGTAAGGTCGCTTACGTCACCGGTGCTGGTCAAGG





TATTGGTAGAGCTTTCGCTCACGCTTTGGGTGAAGCTGGTGCCAAGGTCG





CTATTATCGACATGGATAGAGGTAAGGCTGAAGATGTCGCTCATGAATTG





ACTTTGAAGGGTATCTCTTCCATGGCTGTTGTTGCTGATATTTCTAAGCC





AGATGACGTTCAAAAAATGATCGATGACATCGTTACTAAGTGGGGTACTT





TGCACATCGCCTGTAATAACGCTGGTATTAATAAAAACTCCGCTTCTGAA





GAGACTTCTTTGGAAGAATGGGATCAAACCTTCAACGTTAACTTAAGAGG





TACTTTCATGTGTTGTCAAGCTGCTGGTAGAGTCATGTTGAAGCAAGGTT





ACGGTAAGATTATTAACACCGCTTCCATGGCTTCTTTGATTGTTCCACAC





CCACAAAAACAATTGTCCTACAACACCTCCAAAGCTGGTGTCGTTAAATT





GACCCAAACTTTGGGTACTGAATGGATTGATAGAGGTGTCCGTGTTAACT





GTATTTCTCCAGGTATCGTCGACACCCCTTTGATTCATTCTGAGTCCTTG





GAACCATTGGTCCAAAGATGGTTATCCGACATTCCAGCCGGTAGATTGGC





TCAAGTCACCGACTTGCAAGCCGCCGTCGTCTACTTGGCTTCCGACGCTT





CCGACTACATGACTGGTCATAATTTGGTCATTGAAGGTGGTCAATCTTTA





TGG






S. cerevisiae-optimized MT-Ox sequence #4



SEQ ID NO. 14


ATGCAAACTGCTAAAGTTTCTGATACTCCTGTCGAATTCATCGTCGAACA





TTTGTTAAAGGCTAAGGAAATCGCCGAAAACCACGCCTCTATCCCTGTTG





AATTAAGAGATAACTTGCAAAAGGCTTTGGATATTGCTTCTGGTTTGGAC





GAATACTTAGAACAAATGTCTTCTAAGGAATCTGAACCATTGACCGAATT





GTACCGTAAATCCGTTTCTCACGACTGGAACAAAGTCCATGCTGACGGTA





AAACCTTGTTTAGATTGCCAGTTACCTGTATCACTGGTCAAGTTGAAGGT





CAAGTCTTAAAAATGTTGGTTCACATGTCTAAGGCCAAGCGTGTCTTGGA





AATTGGTATGTTTACTGGTTATGGTGCTTTATCTATGGCTGAAGCTTTGC





CAGAAAACGGTCAATTGATTGCTTGTGAATTGGAACCTTACTTGAAGGAC





TTCGCTCAACCTATCTTCGACAAGTCCCCACACGGTAAAAAGATCACCGT





TAAGACTGGTCCAGCTATGGATACTTTGAAAGAATTAGCTGCTACTGGTG





AGCAATTCGACATGGTTTTCATCGATGCTGACAAACAAAACTACATCAAC





TATTACAAGTTTTTGTTGGACCATAACTTGTTGAGAATCGATGGTGTCAT





TTGTGTTGATAACACCTTATTCAAAGGTAGAGTCTACTTAAAAGACTCTG





TCGACGAAATGGGTAAGGCTTTAAGAGACTTCAACCAATTTGTTACTGCT





GACCCAAGAGTTGAACAAGTTATTATCCCATTGAGAGATGGTTTGACTAT





TATCCGTAGAGTTCCATACACTCCACAACCAAACTCTCAATCCGGTACCG





TTACTTATGATGAAGTCTTCCGTGGTGTCCAAGGTAAACCAGTCTTGGAC





AGATTGAGATTGGATGGTAAGGTCGCCTATGTTACCGGTGCTGGTCAAGG





TATCGGTAGAGCTTTCGCTCACGCCTTGGGTGAGGCCGGTGCCAAAGTTG





CTATTATTGATATGGACAGAGGTAAGGCTGAAGACGTTGCCCACGAATTG





ACCTTGAAGGGTATTTCTTCCATGGCCGTCGTTGCCGATATTTCTAAGCC





AGACGACGTTCAAAAGATGATTGACGATATCGTTACTAAATGGGGTACTT





TACACATCGCTTGTAACAATGCTGGTATTAATAAGAACTCTGCTTCCGAG





GAAACCTCTTTGGAAGAATGGGATCAAACTTTTAATGTCAATTTGAGAGG





TACCTTCATGTGTTGTCAAGCTGCTGGTAGAGTTATGTTGAAGCAAGGTT





ACGGTAAGATTATTAACACCGCTTCCATGGCTTCTTTGATCGTCCCTCAC





CCACAAAAGCAATTGTCTTACAACACCTCCAAGGCCGGTGTTGTCAAGTT





AACTCAAACTTTAGGTACTGAGTGGATCGACAGAGGTGTCAGAGTTAACT





GCATTTCTCCAGGTATTGTTGACACCCCATTGATCCATTCCGAATCCTTG





GAACCATTAGTCCAAAGATGGTTGTCCGACATTCCTGCCGGTAGATTGGC





TCAAGTCACTGACTTGCAAGCCGCTGTCGTTTATTTGGCCTCTGACGCTT





CCGATTATATGACCGGTCACAACTTGGTCATCGAAGGTGGTCAATCTTTA





TGG






S. cerevisiae-optimized MT-Ox sequence #5



SEQ ID NO. 15


ATGCAAACTGCTAAGGTCTCCGACACTCCTGTTGAATTTATCGTTGAACA





TTTGTTGAAGGCTAAAGAAATCGCCGAAAACCACGCTTCCATCCCAGTCG





AATTGAGAGATAATTTACAAAAGGCTTTAGATATTGCTTCTGGTTTGGAC





GAATACTTGGAACAAATGTCTTCCAAGGAATCTGAACCATTGACTGAGTT





GTACAGAAAGTCCGTTTCTCATGATTGGAACAAAGTTCACGCTGACGGTA





AGACCTTGTTCCGTTTGCCAGTTACTTGTATTACTGGTCAAGTTGAAGGT





CAAGTCTTGAAGATGTTGGTCCACATGTCTAAAGCTAAGAGAGTTTTGGA





AATCGGTATGTTTACCGGTTACGGTGCCTTGTCCATGGCCGAAGCTTTGC





CAGAAAACGGTCAATTGATTGCTTGTGAATTGGAACCATACTTAAAGGAT





TTTGCTCAACCAATTTTTGACAAATCCCCTCATGGTAAGAAGATCACTGT





TAAGACTGGTCCAGCTATGGATACCTTGAAGGAATTGGCTGCTACTGGTG





AACAATTCGACATGGTCTTCATTGATGCCGATAAGCAAAACTACATTAAC





TACTACAAGTTTTTGTTGGATCATAACTTGTTAAGAATTGATGGTGTTAT





CTGTGTTGACAACACCTTGTTCAAAGGTAGAGTTTATTTGAAAGATTCCG





TCGATGAAATGGGTAAGGCTTTAAGAGACTTCAACCAATTTGTCACTGCT





GACCCAAGAGTTGAACAAGTCATTATCCCATTGCGTGATGGTTTGACTAT





CATCCGTAGAGTTCCTTACACTCCACAACCAAACTCTCAATCTGGTACTG





TTACTTACGACGAAGTCTTCAGAGGTGTTCAAGGTAAGCCAGTTTTGGAC





AGATTGAGATTGGACGGTAAGGTTGCTTACGTCACCGGTGCTGGTCAAGG





TATTGGTAGAGCTTTCGCTCACGCTTTGGGTGAAGCTGGTGCTAAGGTTG





CTATCATCGACATGGATAGAGGTAAGGCTGAAGATGTCGCTCACGAATTG





ACCTTGAAGGGTATTTCTTCTATGGCTGTTGTTGCTGATATTTCTAAGCC





AGACGATGTCCAAAAGATGATTGATGACATCGTCACTAAGTGGGGTACCT





TGCATATCGCCTGTAACAACGCTGGTATCAACAAGAATTCTGCTTCTGAA





GAAACTTCTTTGGAAGAATGGGACCAAACTTTCAACGTTAACTTGCGTGG





TACTTTCATGTGTTGTCAAGCTGCTGGTCGTGTCATGTTGAAGCAAGGTT





ACGGTAAGATTATTAACACTGCTTCTATGGCTTCCTTGATCGTTCCTCAC





CCACAAAAGCAATTGTCTTACAACACTTCTAAGGCTGGTGTCGTCAAGTT





GACTCAAACCTTGGGTACCGAATGGATCGATAGAGGTGTCCGTGTTAACT





GCATCTCCCCAGGTATCGTCGATACCCCATTGATTCACTCTGAGTCTTTG





GAGCCATTGGTTCAAAGATGGTTGTCTGACATTCCAGCCGGTAGATTAGC





TCAAGTTACTGATTTGCAAGCTGCCGTCGTCTACTTGGCTTCCGACGCCT





CTGATTACATGACTGGTCATAACTTGGTCATTGAAGGTGGTCAATCTTTA





TGG






S. cerevisiae-optimized MT-Ox sequence #6



SEQ ID NO. 16


ATGCAAACTGCTAAGGTTTCTGACACTCCAGTTGAATTCATCGTTGAACA





CTTGTTGAAGGCTAAGGAAATCGCTGAAAACCACGCTTCTATCCCAGTTG





AATTGAGAGACAACTTGCAAAAGGCTTTGGACATCGCTTCTGGTTTGGAC





GAATACTTGGAACAAATGTCTTCTAAGGAATCTGAACCATTGACTGAATT





GTACAGAAAGTCTGTTTCTCACGACTGGAACAAGGTTCACGCTGACGGTA





AGACTTTGTTCAGATTGCCAGTTACTTGTATCACTGGTCAAGTTGAAGGT





CAAGTTTTGAAGATGTTGGTTCACATGTCTAAGGCTAAGAGAGTTTTGGA





AATCGGTATGTTCACTGGTTACGGTGCTTTGTCTATGGCTGAAGCTTTGC





CAGAAAACGGTCAATTGATCGCTTGTGAATTGGAACCATACTTGAAGGAC





TTCGCTCAACCAATCTTCGACAAGTCTCCACACGGTAAGAAGATCACTGT





TAAGACTGGTCCAGCTATGGACACTTTGAAGGAATTGGCTGCTACTGGTG





AACAATTCGACATGGTTTTCATCGACGCTGACAAGCAAAACTACATCAAC





TACTACAAGTTCTTGTTGGACCACAACTTGTTGAGAATCGACGGTGTTAT





CTGTGTTGACAACACTTTGTTCAAGGGTAGAGTTTACTTGAAGGACTCTG





TTGACGAAATGGGTAAGGCTTTGAGAGACTTCAACCAATTCGTTACTGCT





GACCCAAGAGTTGAACAAGTTATCATCCCATTGAGAGACGGTTTGACTAT





CATCAGAAGAGTTCCATACACTCCACAACCAAACTCTCAATCTGGTACTG





TTACTTACGACGAAGTTTTCAGAGGTGTTCAAGGTAAGCCAGTTTTGGAC





AGATTGAGATTGGACGGTAAGGTTGCTTACGTTACTGGTGCTGGTCAAGG





TATCGGTAGAGCTTTCGCTCACGCTTTGGGTGAAGCTGGTGCTAAGGTTG





CTATCATCGACATGGACAGAGGTAAGGCTGAAGACGTTGCTCACGAATTG





ACTTTGAAGGGTATCTCTTCTATGGCTGTTGTTGCTGACATCTCTAAGCC





AGACGACGTTCAAAAGATGATCGACGACATCGTTACTAAGTGGGGTACTT





TGCACATCGCTTGTAACAACGCTGGTATCAACAAGAACTCTGCTTCTGAA





GAAACTTCTTTGGAAGAATGGGACCAAACTTTCAACGTTAACTTGAGAGG





TACTTTCATGTGTTGTCAAGCTGCTGGTAGAGTTATGTTGAAGCAAGGTT





ACGGTAAGATCATCAACACTGCTTCTATGGCTTCTTTGATCGTTCCACAC





CCACAAAAGCAATTGTCTTACAACACTTCTAAGGCTGGTGTTGTTAAGTT





GACTCAAACTTTGGGTACTGAATGGATCGACAGAGGTGTTAGAGTTAACT





GTATCTCTCCAGGTATCGTTGACACTCCATTGATCCACTCTGAATCTTTG





GAACCATTGGTTCAAAGATGGTTGTCTGACATCCCAGCTGGTAGATTGGC





TCAAGTTACTGACTTGCAAGCTGCTGTTGTTTACTTGGCTTCTGACGCTT





CTGACTACATGACTGGTCACAACTTGGTTATCGAAGGTGGTCAATCTTTG





TGG





pUC57-Kan (Addgene)


SEQ ID NO. 17


tcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccg





gagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccg





tcagggcgcgtcagcgggtgttggcgggtgtcggggctggcttaactatg





cggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaata





ccgcacagatgcgtaaggagaaaataccgcatcaggcgccattcgccatt





caggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctat





tacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggta





acgccagggttttcccagtcacgacgttgtaaaacgacggccagtgaatt





cgagctcggtacctcgcgaatgcatctagatatcggatcccgggcccgtc





gactgcagaggcctgcatgcaagcttggcgtaatcatggtcatagctgtt





tcctgtgtgaaattgttatccgctcacaattccacacaacatacgagccg





gaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcaca





ttaattgcgttgcgctcactgcccgctttccagtcgggaaacctgtcgtg





ccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgta





ttgggcgctcttccgcttcctcgctcactgactcgctgcgctcggtcgtt





cggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatc





cacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagc





aaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccatagg





ctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtg





gcgaaacccgacaggactataaagataccaggcgtttccccctggaagct





ccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtcc





gcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtag





gtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacg





aaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtctt





gagtccaacccggtaagacacgacttatcgccactggcagcagccactgg





taacaggattagcagagcgaggtatgtaggcggtgctacagagttcttga





agtggtggcctaactacggctacactagaagaacagtatttggtatctgc





gctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatc





cggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagc





agattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttct





acggggtctgacgctcagtggaacgaaaactcacgttaagggattttggt





catgagattatcaaaaaggatcttcacctagatccttttaaattaaaaat





gaagttttaaatcaagcccaatctgaataatgttacaaccaattaaccaa





ttctgattagaaaaactcatcgagcatcaaatgaaactgcaatttattca





tatcaggattatcaataccatatttttgaaaaagccgtttctgtaatgaa





ggagaaaactcaccgaggcagttccataggatggcaagatcctggtatcg





gtctgcgattccgactcgtccaacatcaatacaacctattaatttcccct





cgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaa





tccggtgagaatggcaaaagtttatgcatttctttccagacttgttcaac





aggccagccattacgctcgtcatcaaaatcactcgcatcaaccaaaccgt





tattcattcgtgattgcgcctgagcgagacgaaatacgcgatcgctgtta





aaaggacaattacaaacaggaatcgaatgcaaccggcgcaggaacactgc





cagcgcatcaacaatattttcacctgaatcaggatattcttctaatacct





ggaatgctgtttttccggggatcgcagtggtgagtaaccatgcatcatca





ggagtacggataaaatgcttgatggtcggaagaggcataaattccgtcag





ccagtttagtctgaccatctcatctgtaacatcattggcaacgctacctt





tgccatgtttcagaaacaactctggcgcatcgggcttcccatacaagcga





tagattgtcgcacctgattgcccgacattatcgcgagcccatttataccc





atataaatcagcatccatgttggaatttaatcgcggcctcgacgtttccc





gttgaatatggctcataacaccccttgtattactgtttatgtaagcagac





agttttattgttcatgatgatatatttttatcttgtgcaatgtaacatca





gagattttgagacacgggccagagctgca





pRSETB (see the world wide web; tools.


lifetechnologies.com/content/sfs/vectors/


prsetb_seq.txt)


>pRSETB


SEQ ID NO. 18


GATCTCGATCCCGCGAAATTAATACGACTCACTATAGGGAGACCACAACG





GTTTCCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACATA





TGCGGGGTTCTCATCATCATCATCATCATGGTATGGCTAGCATGACTGGT





GGACAGCAAATGGGTCGGGATCTGTACGACGATGACGATAAGGATCCGAG





CTCGAGATCTGCAGCTGGTACCATGGAATTCGAAGCTTGATCCGGCTGCT





AACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATA





ACTAGCATAACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGC





TGAAAGGAGGAACTATATCCGGATCTGGCGTAATAGCGAAGAGGCCCGCA





CCGATCGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGGACGCG





CCCTGTAGCGGCGCATTAAGCGCGGCGGGTGTGGTGGTTACGCGCAGCGT





GACCGCTACACTTGCCAGCGCCCTAGCGCCCGCTCCTTTCGCTTTCTTCC





CTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGG





GGGCTCCCTTTAGGGTTCCGATTTAGTGCTTTACGGCACCTCGACCCCAA





AAAACTTGATTAGGGTGATGGTTCACGTAGTGGGCCATCGCCCTGATAGA





CGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTC





TTGTTCCAAACTGGAACAACACTCAACCCTATCTCGGTCTATTCTTTTGA





TTTATAAGGGATTTTGCCGATTTCGGCCTATTGGTTAAAAAATGAGCTGA





TTTAACAAAAATTTAACGCGAATTTTAACAAAATATTAACGCTTACAATT





TAGGTGGCACTTTTCGGGGAAATGTGCGCGGAACCCCTATTTGTTTATTT





TTCTAAATACATTCAAATATGTATCCGCTCATGAGACAATAACCCTGATA





AATGCTTCAATAATATTGAAAAAGGAAGAGTATGAGTATTCAACATTTCC





GTGTCGCCCTTATTCCCTTTTTTGCGGCATTTTGCCTTCCTGTTTTTGCT





CACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGC





ACGAGTGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGA





GTTTTCGCCCCGAAGAACGTTTTCCAATGATGAGCACTTTTAAAGTTCTG





CTATGTGGCGCGGTATTATCCCGTATTGACGCCGGGCAAGAGCAACTCGG





TCGCCGCATACACTATTCTCAGAATGACTTGGTTGAGTACTCACCAGTCA





CAGAAAAGCATCTTACGGATGGCATGACAGTAAGAGAATTATGCAGTGCT





GCCATAACCATGAGTGATAACACTGCGGCCAACTTACTTCTGACAACGAT





CGGAGGACCGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATG





TAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAAC





GACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAA





ACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAATAG





ACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCGGCCCTT





CCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAGCGTGGGTC





TCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCCCTCCCGTATCG





TAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGA





CAGATCGCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGA





CCAAGTTTACTCATATATACTTTAGATTGATTTAAAACTTCATTTTTAAT





TTAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATGACCAAAATC





CCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGAT





CAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTAATCTGCTGCTTGC





AAACAAAAAAACCACCGCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAG





CTACCAACTCTTTTTCCGAAGGTAACTGGCTTCAGCAGAGCGCAGATACC





AAATACTGTTCTTCTAGTGTAGCCGTAGTTAGGCCACCACTTCAAGAACT





CTGTAGCACCGCCTACATACCTCGCTCTGCTAATCCTGTTACCAGTGGCT





GCTGCCAGTGGCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATA





GTTACCGGATAAGGCGCAGCGGTCGGGCTGAACGGGGGGTTCGTGCACAC





AGCCCAGCTTGGAGCGAACGACCTACACCGAACTGAGATACCTACAGCGT





GAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTA





TCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAG





GGGGAAACGCCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGA





CTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAA





AAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTT





TTGCTCACATGTTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGT





ATTACCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGA





GCGCAGCGAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAAC





CGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAG





pXP416 (www.addgene.org/26842/sequences/)


>p416


SEQ ID NO. 19


TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCG





GAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCG





TCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATG





CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATA





CCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATT





CAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTAT





TACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTA





ACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAA





GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGATAACTTCGTA





TAGCATACATTATACGAAGTTATAACGACATTACTATATATATAATATAG





GAAGCATTTAATAGAACAGCATCGTAATATATGTGTACTTTGCAGTTATG





ACGCCAGATGGCAGTAGTGGAAGATATTCTTTATTGAAAAATAGCTTGTC





ACCTTACGTACAATCTTGATCCGGAGCTTTTCTTTTTTTGCCGATTAAGA





ATTAATTCGGTCGAAAAAAGAAAAGGAGAGGGCCAAGAGGGAGGGCATTG





GTGACTATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGGCAGCTT





GGAGTATGTCTGTTATTAATTTCACAGGTAGTTCTGGTCCATTGGTGAAA





GTTTGCGGCTTGCAGAGCACAGAGGCCGCAGAATGTGCTCTAGATTCCGA





TGCTGACTTGCTGGGTATTATATGTGTGCCCAATAGAAAGAGAACAATTG





ACCCGGTTATTGCAAGGAAAATTTCAAGTCTTGTAAAAGCATATAAAAAT





AGTTCAGGCACTCCGAAATACTTGGTTGGCGTGTTTCGTAATCAACCTAA





GGAGGATGTTTTGGCTCTGGTCAATGATTACGGCATTGATATCGTCCAAC





TGCATGGAGATGAGTCGTGGCAAGAATACCAAGAGTTCCTCGGTTTGCCA





GTTATTAAAAGACTCGTATTTCCAAAAGACTGCAACATACTACTCAGTGC





AGCTTCACAGAAACCTCATTCGTTTATTCCCTTGTTTGATTCAGAAGCAG





GTGGGACAGGTGAACTTTTGGATTGGAACTCGATTTCTGACTGGGTTGGA





AGGCAAGAGAGCCCCGAAAGCTTACATTTTATGTTAGCTGGTGGACTGAC





GCCAGAAAATGTTGGTGATGCGCTTAGATTAAATGGCGTTATTGGTGTTG





ATGTAAGCGGAGGTGTGGAGACAAATGGTGTAAAAGACTCTAACAAAATA





GCAAATTTCGTCAAAAATGCTAAGAAATAGGTTATTACTGAGTAGTATTT





ATTTAAGTATTGTTTGTGCACTTGCCTGATAACTTCGTATAGCATACATT





ATACGAAGTTATCCCGGGTACCGAGCTCGAATTCAACGAAGCATCTGTGC





TTCATTTTGTAGAACAAAAATGCAACGCGAGAGCGCTAATTTTTCAAACA





AAGAATCTGAGCTGCATTTTTACAGAACAGAAATGCAACGCGAAAGCGCT





ATTTTACCAACGAAGAATCTGTGCTTCATTTTTGTAAAACAAAAATGCAA





CGCGAGAGCGCTAATTTTTCAAACAAAGAATCTGAGCTGCATTTTTACAG





AACAGAAATGCAACGCGAGAGCGCTATTTTACCAACAAAGAATCTATACT





TCTTTTTTGTTCTACAAAAATGCATCCCGAGAGCGCTATTTTTCTAACAA





AGCATCTTAGATTACTTTTTTTCTCCTTTGTGCGCTCTATAATGCAGTCT





CTTGATAACTTTTTGCACTGTAGGTCCGTTAAGGTTAGAAGAAGGCTACT





TTGGTGTCTATTTTCTCTTCCATAAAAAAAGCCTGACTCCACTTCCCGCG





TTTACTGATTACTAGCGAAGCTGCGGGTGCATTTTTTCAAGATAAAGGCA





TCCCCGATTATATTCTATACCGATGTGGATTGCGCATACTTTGTGAACAG





AAAGTGATAGCGTTGATGATTCTTCATTGGTCAGAAAATTATGAACGGTT





TCTTCTATTTTGTCTCTATATACTACGTATAGGAAATGTTTACATTTTCG





TATTGTTTTCGATTCACTCTATGAATAGTTCTTACTACAATTTTTTTGTC





TAAAGAGTAATACTAGAGATAAACATAAAAAATGTAGAGGTCGAGTTTAG





ATGCAAGTTCAAGGAGCGAAAGGTGGATGGGTAGGTTATATAGGGATATA





GCACAGAGATATATAGCAAAGAGATACTTTTGAGCAATGTTTGTGGAAGC





GGTATTCGCAATATTTTAGTAGCTCGTTACAGTCCGGTGCGTTTTTGGTT





TTTTGAAAGTGCGTCTTCAGAGCGCTTTTGGTTTTCAAAAGCGCTCTGAA





GTTCCTATACTTTCTAGAGAATAGGAACTTCGGAATAGGAACTTCAAAGC





GTTTCCGAAAACGAGCGCTTCCGAAAATGCAACGCGAGCTGCGCACATAC





AGCTCACTGTTCACGTCGCACCTATATCTGCGTGTTGCCTGTATATATAT





ATACATGAGAAGAACGGCATAGTGCGTGTTTATGCTTAAATGCGTACTTA





TATGCGTCTATTTATGTAGGATGAAAGGTAGTCTAGTACCTCCTGTGATA





TTATCCCATTCCATGCGGGGTATCGTATGCTTCCTTCAGCACTACCCTTT





AGCTGTTCTATATGCTGCCACTCCTCAATTGGATTAGTCTCATCCTTCAA





TGCTATCATTTCCTTTGATATTGGATCATACGAATTCGTAATCATGGTCA





TAGCTGTTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCACACAACAT





ACGAGCCGGAAGCATAAAGTGTAAAGCCTGGGGTGCCTAATGAGTGAGCT





AACTCACATTAATTGCGTTGCGCTCACTGCCCGCTTTCCAGTCGGGAAAC





CTGTCGTGCCAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGG





TTTGCGTATTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCT





CGGTCGTTCGGCTGCGGCGAGCGGTATCAGCTCACTCAAAGGCGGTAATA





CGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAA





AGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTT





TCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGT





CAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCC





TGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGAT





ACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCA





CGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTG





TGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACT





ATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCA





GCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGA





GTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGACAGTATTTG





GTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGC





TCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTG





CAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGA





TCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGG





ATTTTGGTCATGAGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAA





TTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGAGTAAACTTGGT





CTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGT





CTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTAC





GATACGGGAGGGCTTACCATCTGGCCCCAGTGCTGCAATGATACCGCGAG





ACCCACGCTCACCGGCTCCAGATTTATCAGCAATAAACCAGCCAGCCGGA





AGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTATCCGCCTCCATCCAGTC





TATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAGTT





TGCGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTCACGCTCGTCG





TTTGGTATGGCTTCATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTAC





ATGATCCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCTTCGGTCCTCCGA





TCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGGTTATGGCA





GCACTGCATAATTCTCTTACTGTCATGCCATCCGTAAGATGCTTTTCTGT





GACTGGTGAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGAC





CGAGTTGCTCTTGCCCGGCGTCAATACGGGATAATACCGCGCCACATAGC





AGAACTTTAAAAGTGCTCATCATTGGAAAACGTTCTTCGGGGCGAAAACT





CTCAAGGATCTTACCGCTGTTGAGATCCAGTTCGATGTAACCCACTCGTG





CACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGA





GCAAAAACAGGAAGGCAAAATGCCGCAAAAAAGGGAATAAGGGCGACACG





GAAATGTTGAATACTCATACTCTTCCTTTTTCAATATTACCGCGAATCCT





TACATCACACCCAATCCCCCACAAGTGATCCCCCACACACCATAGCTTCA





AAATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGC





ATCGCCGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTCCCCT





CTTTCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAA





GAAAAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAA





AATTTTTATCACGTTTCTTTTTCTTGAAAATTTTTTTTTTTGATTTTTTT





CTCTTTCGATGACCTCCCATTGATATTTAAGTTAATAAACGGTCTTCAAT





TTCTCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACT





TCTTGCTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGTTTTAATTAC





AAAACTAGTGATATCTGCGCACTCGAGTCATGTAATTAGTTATGTCACGC





TTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGT





TAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAG





TATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGA





CGCGTGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTT





GGGACGCTCGAAGGCTTTAATTTGCGGCCAATATTATTGAAGCATTTATC





AGGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAAT





AAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGT





CTAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCA





CGAGGCCCTTTCGTC





pXP420 (www.addgene.org/26844/sequences/)


>pXP420


SEQ ID NO. 20


TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCG





GAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCG





TCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCTGGCTTAACTATG





CGGCATCAGAGCAGATTGTACTGAGAGTGCACCATATGCGGTGTGAAATA





CCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTCGCCATT





CAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTTCGCTAT





TACGCCAGCTGGCGAAAGGGGGATGTGCTGCAAGGCGATTAAGTTGGGTA





ACGCCAGGGTTTTCCCAGTCACGACGTTGTAAAACGACGGCCAGTGCCAA





GCTTGCATGCCTGCAGGTCGACTCTAGAGGATCCCCGGGATAACTTCGTA





TAGCATACATTATACGAAGTTATCGTTTTAAGAGCTTGGTGAGCGCTAGG





AGTCACTGCCAGGTATCGTTTGAACACGGCATTAGTCAGGGAAGTCATAA





CACAGTCCTTTCCCGCAATTTTCTTTTTCTATTACTCTTGGCCTCCTCTA





GTACACTCTATATTTTTTTATGCCTCGGTAATGATTTTCATTTTTTTTTT





TCCACCTAGCGGATGACTCTTTTTTTTTCTTAGCGATTGGCATTATCACA





TAATGAATTATACATTATATAAAGTAATGTGATTTCTTCGAAGAATATAC





TAAAAAATGAGCAGGCAAGATAAACGAAGGCAAAGATGACAGAGCAGAAA





GCCCTAGTAAAGCGTATTACAAATGAAACCAAGATTCAGATTGCGATCTC





TTTAAAGGGTGGTCCCCTAGCGATAGAGCACTCGATCTTCCCAGAAAAAG





AGGCAGAAGCAGTAGCAGAACAGGCCACACAATCGCAAGTGATTAACGTC





CACACAGGTATAGGGTTTCTGGACCATATGATACATGCTCTGGCCAAGCA





TTCCGGCTGGTCGCTAATCGTTGAGTGCATTGGTGACTTACACATAGACG





ACCATCACACCACTGAAGACTGCGGGATTGCTCTCGGTCAAGCTTTTAAA





GAGGCCCTAGGGGCCGTGCGTGGAGTAAAAAGGTTTGGATCAGGATTTGC





GCCTTTGGATGAGGCACTTTCCAGAGCGGTGGTAGATCTTTCGAACAGGC





CGTACGCAGTTGTCGAACTTGGTTTGCAAAGGGAGAAAGTAGGAGATCTC





TCTTGCGAGATGATCCCGCATTTTCTTGAAAGCTTTGCAGAGGCTAGCAG





AATTACCCTCCACGTTGATTGTCTGCGAGGCAAGAATGATCATCACCGTA





GTGAGAGTGCGTTCAAGGCTCTTGCGGTTGCCATAAGAGAAGCCACCTCG





CCCAATGGTACCAACGATGTTCCCTCCACCAAAGGTGTTCTTATGTAGTG





ACACCGATTATTTAAAGCTGCAGCATACGATATATATACATGTGTATATA





TGTATACCTATGAATGTCAGTAAGTATGTATACGAACAGTATGATACTGA





AGATGACAAGGTAATGCATCATTCTATACGTGTCATTCTGAACGAGGCGC





GCTTTCCTTTTTTCTTTTTGCTTTTTCTTTTTTTTTCTCTTGAACTCGAA





TAACTTCGTATAGCATACATTATACGAAGTTATCCCGGGTACCGAGCTCG





AATTCGTATGATCCAATATCAAAGGAAATGATAGCATTGAAGGATGAGAC





TAATCCAATTGAGGAGTGGCAGCATATAGAACAGCTAAAGGGTAGTGCTG





AAGGAAGCATACGATACCCCGCATGGAATGGGATAATATCACAGGAGGTA





CTAGACTACCTTTCATCCTACATAAATAGACGCATATAAGTACGCATTTA





AGCATAAACACGCACTATGCCGTTCTTCTCATGTATATATATATACAGGC





AACACGCAGATATAGGTGCGACGTGAACAGTGAGCTGTATGTGCGCAGCT





CGCGTTGCATTTTCGGAAGCGCTCGTTTTCGGAAACGCTTTGAAGTTCCT





ATTCCGAAGTTCCTATTCTCTAGAAAGTATAGGAACTTCAGAGCGCTTTT





GAAAACCAAAAGCGCTCTGAAGACGCACTTTCAAAAAACCAAAAACGCAC





CGGACTGTAACGAGCTACTAAAATATTGCGAATACCGCTTCCACAAACAT





TGCTCAAAAGTATCTCTTTGCTATATATCTCTGTGCTATATCCCTATATA





ACCTACCCATCCACCTTTCGCTCCTTGAACTTGCATCTAAACTCGACCTC





TACATTTTTTATGTTTATCTCTAGTATTACTCTTTAGACAAAAAAATTGT





AGTAAGAACTATTCATAGAGTGAATCGAAAACAATACGAAAATGTAAACA





TTTCCTATACGTAGTATATAGAGACAAAATAGAAGAAACCGTTCATAATT





TTCTGACCAATGAAGAATCATCAACGCTATCACTTTCTGTTCACAAAGTA





TGCGCAATCCACATCGGTATAGAATATAATCGGGGATGCCTTTATCTTGA





AAAAATGCACCCGCAGCTTCGCTAGTAATCAGTAAACGCGGGAAGTGGAG





TCAGGCTTTTTTTATGGAAGAGAAAATAGACACCAAAGTAGCCTTCTTCT





AACCTTAACGGACCTACAGTGCAAAAAGTTATCAAGAGACTGCATTATAG





AGCGCACAAAGGAGAAAAAAAGTAATCTAAGATGCTTTGTTAGAAAAATA





GCGCTCTCGGGATGCATTTTTGTAGAACAAAAAAGAAGTATAGATTCTTT





GTTGGTAAAATAGCGCTCTCGCGTTGCATTTCTGTTCTGTAAAAATGCAG





CTCAGATTCTTTGTTTGAAAAATTAGCGCTCTCGCGTTGCATTTTTGTTT





TACAAAAATGAAGCACAGATTCTTCGTTGGTAAAATAGCGCTTTCGCGTT





GCATTTCTGTTCTGTAAAAATGCAGCTCAGATTCTTTGTTTGAAAAATTA





GCGCTCTCGCGTTGCATTTTTGTTCTACAAAATGAAGCACAGATGCTTCG





TTGAATTCGTAATCATGGTCATAGCTGTTTCCTGTGTGAAATTGTTATCC





GCTCACAATTCCACACAACATACGAGCCGGAAGCATAAAGTGTAAAGCCT





GGGGTGCCTAATGAGTGAGCTAACTCACATTAATTGCGTTGCGCTCACTG





CCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCATTAATGAATCGG





CCAACGCGCGGGGAGAGGCGGTTTGCGTATTGGGCGCTCTTCCGCTTCCT





CGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGAGCGGTATCA





GCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGC





AGGAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAA





AGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCAT





CACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATA





AAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTC





CGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGC





GTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGT





CGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACC





GCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACAC





GACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG





GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCT





ACACTAGAAGGACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACC





TTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGG





TAGCGGTGGTTTTTTTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAG





GATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGG





AACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGGAT





CTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAA





GTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAG





GCACCTATCTCAGCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACT





CCCCGTCGTGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCA





GTGCTGCAATGATACCGCGAGACCCACGCTCACCGGCTCCAGATTTATCA





GCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAAC





TTTATCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAA





GTAGTTCGCCAGTTAATAGTTTGCGCAACGTTGTTGCCATTGCTACAGGC





ATCGTGGTGTCACGCTCGTCGTTTGGTATGGCTTCATTCAGCTCCGGTTC





CCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGCGG





TTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTG





TTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTCATGCC





ATCCGTAAGATGCTTTTCTGTGACTGGTGAGTACTCAACCAAGTCATTCT





GAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGTCAATACGG





GATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAA





ACGTTCTTCGGGGCGAAAACTCTCAAGGATCTTACCGCTGTTGAGATCCA





GTTCGATGTAACCCACTCGTGCACCCAACTGATCTTCAGCATCTTTTACT





TTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGCAAA





AAAGGGAATAAGGGCGACACGGAAATGTTGAATACTCATACTCTTCCTTT





TTCAATATTACCGCGAATCCTTACATCACACCCAATCCCCCACAAGTGAT





CCCCCACACACCATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTCC





AGATTTTCTCGGACTCCGCGCATCGCCGTACCACTTCAAAACACCCAAGC





ACAGCATACTAAATTTCCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTAC





CCGTACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTTTC





TTCGTCGAAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAAA





ATTTTTTTTTTTGATTTTTTTCTCTTTCGATGACCTCCCATTGATATTTA





AGTTAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTGT





TCTATTACAACTTTTTTTACTTCTTGCTCATTAGAAAGAAAGCATAGCAA





TCTAATCTAAGTTTTAATTACAAAACTAGTGATATCTGCGCACTCGAGTC





ATGTAATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCCGC





TCTAACCGAAAAGGAAGGAGTTAGACAACCTGAAGTCTAGGTCCCTATTT





ATTTTTTTATAGTTATGTTAGTATTAAGAACGTTATTTATATTTCAAATT





TTTCTTTTTTTTCTGTACAGACGCGTGTACGCATGTAACATTATACTGAA





AACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCGGCC





AATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACATA





TTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCC





CCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATTAA





CCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTC





Exemplary EEVS Protein


SEQ ID NO. 21


MERPGETFTVSSPEEVRLPSVHRDNSTMENHNKQETVFSLVQVKGTWKRK





AGQNAKQGMKGRVSPAKIYESSSSSGTTWTVVTPITFTYTVTQTKNLLDP





SNDTLLLGHIIDTQQLEAVRSNTKPLKRFIVMDEVVYNIYGSQVTEYLEA





RNVLYRILPLPTTEENKSMDMALKILEEVHQFGIDRRTEPIIAIGGGVCL





DIVGLAASLYRRRTPYIRVPTTLLSYIDASVGAKTGVNFANCKNKLGTYI





APVAAFLDRSFIQSIPRRHIANGLAEMLKMALMKHRGLFELLEVHGQFLL





DSKFQSASVLENDRIDPASVSTRVAIETMLEELAPNLWEDDLDRLVDFGH





LISPQLEMKVLPALLHGEAVNIDMAYMVYVSCEIGLLTEEEKFRIICCMM





GLELPVWHQDFTFALVQKSLCDRLQHSGGLVRMPLPTGLGRAEIFNDTDE





GSLFRAYEKWCDELSTGSPQ





Exemplary MT-Ox Protein


SEQ ID NO. 22


MQTAKVSDTPVEFIVEHLLKAKEIAENHASIPVELRDNLQKALDIASGLD





EYLEQMSSKESEPLTELYRKSVSHDWNKVHADGKTLFRLPVTCITGQVEG





QVLKMLVHMSKAKRVLEIGMFTGYGALSMAEALPENGQLIACELEPYLKD





FAQPIFDKSPHGKKITVKTGPAMDTLKELAATGEQFDMVFIDADKQNYIN





YYKFLLDHNLLRIDGVICVDNTLFKGRVYLKDSVDEMGKALRDFNQFVTA





DPRVEQVIIPLRDGLTIIRRVPYTPQPNSQSGTVTYDEVFRGVQGKPVLD





RLRLDGKVAYVTGAGQGIGRAFAHALGEAGAKVAIIDMDRGKAEDVAHEL





TLKGISSMAVVADISKPDDVQKMIDDIVTKWGTLHIACNNAGINKNSASE





ETSLEEWDQTFNVNLRGTFMCCQAAGRVMLKQGYGKIINTASMASLIVPH





PQKQLSYNTSKAGVVKLTQTLGTEWIDRGVRVNCISPGIVDTPLIHSESL





EPLVQRWLSDIPAGRLAQVTDLQAAVVYLASDASDYMTGHNLVIEGGQSL





W.





SHB17, sedoheptulose 1,7-bisphosphatase ORF from 



S. cerevisiae



SEQ ID NO. 77


ATGCCTTCGCTAACCCCCAGATGTATCATTGTCAGACACGGTCAAACTGA





ATGGTCCAAGTCAGGCCAGTATACTGGTTTGACAGATCTACCGTTAACGC





CCTACGGTGAGGGCCAAATGTTGAGGACCGGTGAGAGTGTTTTCCGCAAT





AATCAGTTTTTGAATCCAGACAACATCACTTATATCTTCACCTCTCCACG





TTTGCGTGCCAGGCAAACTGTGGATTTGGTTTTGAAACCATTAAGCGACG





AGCAAAGAGCTAAGATCCGTGTGGTGGTAGACGACGACTTGCGAGAGTGG





GAGTACGGTGACTACGAGGGAATGCTGACTCGAGAAATCATTGAATTGAG





AAAGTCACGCGGTTTGGACAAGGAGAGGCCATGGAATATCTGGAGAGATG





GGTGTGAGAACGGTGAGACTACTCAGCAAATTGGGTTGAGACTTTCCCGC





GCTATTGCCAGAATCCAGAACTTGCACCGCAAGCACCAGAGTGAGGGCAG





AGCATCAGACATCATGGTCTTTGCGCACGGACATGCATTGCGTTATTTTG





CTGCTATTTGGTTTGGACTGGGTGTGCAAAAGAAGTGTGAGACGATTGAA





GAAATTCAAAATGTCAAATCTTATGATGACGACACAGTTCCATATGTGAA





ATTGGAATCTTACAGACATTTGGTAGACAATCCATGTTTCTTACTGGACG





CCGGTGGGATTGGTGTTTTGTCATACGCTCACCACAACATTGACGAACCT





GCATTGGAATTAGCAGGTCCATTTGTCTCACCACCAGAGGAGGAATCCCA





GCATGGCGATGTGTAA





ZWF1, glucose 6-P dehydrogenase ORF from 



S. cerevisiae



SEQ ID NO. 78


ATGAGTGAAGGCCCCGTCAAATTCGAAAAAAATACCGTCATATCTGTCTT





TGGTGCGTCAGGTGATCTGGCAAAGAAGAAGACTTTTCCCGCCTTATTTG





GGCTTTTCAGAGAAGGTTACCTTGATCCATCTACCAAGATCTTCGGTTAT





GCCCGGTCCAAATTGTCCATGGAGGAGGACCTGAAGTCCCGTGTCCTACC





CCACTTGAAAAAACCTCACGGTGAAGCCGATGACTCTAAGGTCGAACAGT





TCTTCAAGATGGTCAGCTACATTTCGGGAAATTACGACACAGATGAAGGC





TTCGACGAATTAAGAACGCAGATCGAGAAATTCGAGAAAAGTGCCAACGT





CGATGTCCCACACCGTCTCTTCTATCTGGCCTTGCCGCCAGCGTTTTTTT





GACGGTGGCCAAGCAGATCAAGAGTCGTGTGTACGCAGAGAATGGCATCA





CCCGTGTAATCGTAGAGAAACCTTTCGGCCACGACCTGGCCTCTGCCAGG





GAGCTGCAAAAAAACCTGGGGCCCCTCTTTAAAGAAGAAGAGTTGTACAG





AATTGACCATTACTTGGGTAAAGAGTTGGTCAAGAATCTTTTAGTCTTGA





GGTTCGGTAACCAGTTTTTGAATGCCTCGTGGAATAGAGACAACATTCAA





AGCGTTCAGATTTCGTTTAAAGAGAGGTTCGGCACCGAAGGCCGTGGCGG





CTATTTCGACTCTATAGGCATAATCAGAGACGTGATGCAGAACCATCTGT





TACAAATCATGACTCTCTTGACTATGGAAAGACCGGTGTCTTTTGACCCG





GAATCTATTCGTGACGAAAAGGTTAAGGTTCTAAAGGCCGTGGCCCCCAT





CGACACGGACGACGTCCTCTTGGGCCAGTACGGTAAATCTGAGGACGGGT





CTAAGCCCGCCTACGTGGATGATGACACTGTAGACAAGGACTCTAAATGT





GTCACTTTTGCAGCAATGACTTTCAACATCGAAAACGAGCGTTGGGAGGG





CGTCCCCATCATGATGCGTGCCGGTAAGGCTTTGAATGAGTCCAAGGTGG





AGATCAGACTGCAGTACAAAGCGGTCGCATCGGGTGTCTTCAAAGACATT





CCAAATAACGAACTGGTCATCAGAGTGCAGCCCGATGCCGCTGTGTACCT





AAAGTTTAATGCTAAGACCCCTGGTCTGTCAAATGCTACCCAAGTCACAG





ATCTGAATCTAACTTACGCAAGCAGGTACCAAGACTTTTGGATTCCAGAG





GCTTACGAGGTGTTGATAAGAGACGCCCTACTGGGTGACCATTCCAACTT





TGTCAGAGATGACGAATTGGATATCAGTTGGGGCATATTCACCCCATTAC





TGAAGCACATAGAGCGTCCGGACGGTCCAACACCGGAAATTTACCCCTAC





GGATCAAGAGGTCCAAAGGGATTGAAGGAATATATGCAAAAACACAAGTA





TGTTATGCCCGAAAAGCACCCTTACGCTTGGCCCGTGACTAAGCCAGAAG





ATACGAAGGATAATTAG





Same as SEQ ID NO. 82 except that a 1,353 bp


EcoRI fragment containing the 2μ sequence has


been removed


pGH420-EEVS-MTOx-2μΔ


SEQ ID NO. 79


ACTATATGTGAAGGCATGGCTATGGCACGGCAGACATTCCGCCAGATCAT





CAATAGGCACCTTCATTCAACGTTTCCCATTGTTTTTTTCTACTATTGCT





TTGCTGTGGGAAAAACTTATCGAAAGATGACGACTTTTTCTTAATTCTCG





TTTTAAGAGCTTGGTGAGCGCTAGGAGTCACTGCCAGGTATCGTTTGAAC





ACGGCATTAGTCAGGGAAGTCATAACACAGTCCTTTCCCGCAATTTTCTT





TTTCTATTACTCTTGGCCTCCTCTAGTACACTCTATATTTTTTTATGCCT





CGGTAATGATTTTCATTTTTTTTTTTCCACCTAGCGGATGACTCTTTTTT





TTTCTTAGCGATTGGCATTATCACATAATGAATTATACATTATATAAAGT





AATGTGATTTCTTCGAAGAATATACTAAAAAATGAGCAGGCAAGATAAAC





GAAGGCAAAGATGACAGAGCAGAAAGCCCTAGTAAAGCGTATTACAAATG





AAACCAAGATTCAGATTGCGATCTCTTTAAAGGGTGGTCCCCTAGCGATA





GAGCACTCGATCTTCCCAGAAAAAGAGGCAGAAGCAGTAGCAGAACAGGC





CACACAATCGCAAGTGATTAACGTCCACACAGGTATAGGGTTTCTGGACC





ATATGATACATGCTCTGGCCAAGCATTCCGGCTGGTCGCTAATCGTTGAG





TGCATTGGTGACTTACACATAGACGACCATCACACCACTGAAGACTGCGG





GATTGCTCTCGGTCAAGCTTTTAAAGAGGCCCTAGGGGCCGTGCGTGGAG





TAAAAAGGTTTGGATCAGGATTTGCGCCTTTGGATGAGGCACTTTCCAGA





GCGGTGGTAGATCTTTCGAACAGGCCGTACGCAGTTGTCGAACTTGGTTT





GCAAAGGGAGAAAGTAGGAGATCTCTCTTGCGAGATGATCCCGCATTTTC





TTGAAAGCTTTGCAGAGGCTAGCAGAATTACCCTCCACGTTGATTGTCTG





CGAGGCAAGAATGATCATCACCGTAGTGAGAGTGCGTTCAAGGCTCTTGC





GGTTGCCATAAGAGAAGCCACCTCGCCCAATGGTACCAACGATGTTCCCT





CCACCAAAGGTGTTCTTATGTAGTGACACCGATTATTTAAAGCTGCAGCA





TACGATATATATACATGTGTATATATGTATACCTATGAATGTCAGTAAGT





ATGTATACGAACAGTATGATACTGAAGATGACAAGGTAATGCATCACACC





TTTCGAGAGGACGATGCCCGTGTCTAAATGATTCGACCAGCCTAAGAATG





TTCAACCCTGACTTCAACTCAAGACGCACAGATATTATAACATCTGCATA





ATAGGCATTTGCAAGAATTACTCGTGAGTAAGGAAAGAGTGAGGAACTAT





CGCATACCTGCATTTAAAGATGCCGATTTGGGCGCGAATCCTTTATTTTG





GCTTCACCCTCATACTATTATCAGGGCCAGAAAAAGGAAGTGTTTCCCTC





CTTCTTGAATTGATGTTACCCTCATAAAGCACGTGGCCTCTTATCGAGAA





AGAAATTACCGTCGCTCGTGATTTGTTTGCAAAAAGAACAAAACTGAAAA





AACCCAGACACGCTCGACTTCCTGTCTTCCTATTGATTGCAGCTTCCAAT





TTCGTCACACAACAAGGTCCTAGCGACGGCTCACAGGTTTTGTAACAAGC





AATCGAAGGTTCTGGAATGGCGGGAAAGGGTTTAGTACCACATGCTATGA





TGCCCACTGTGATCTCCAGAGCAAAGTTCGTTCGATCGTACTGTTACTCT





CTCTCTTTCAAACAGAATTGTCCGAATCGTGTGACAACAACAGCCTGTTC





TCACACACTCTTTTCTTCTAACCAAGGGGGTGGTTTAGTTTAGTAGAACC





TCGTGAAACTTACATTTACATATATATAAACTTGCATAAATTGGTCAATG





CAAGAAATACATATTTGGTCTTTTCTAATTCGTAGTTTTTCAAGTTCTTA





GATGCTTTCTTTTTCTCTTTTTTACAGATCATCAAGGAAGTAATTATCTA





CTTTTTACAACAAATATAATGCAAACGGCAAAAGTCTCGGACACCCCGGT





TGAATTTATTGTGGAACATCTGCTGAAGGCTAAGGAAATCGCTGAAAATC





ACGCTTCCATTCCGGTGGAACTGCGCGATAACCTGCAGAAAGCTCTGGAT





ATCGCGAGCGGCCTGGACGAATATCTGGAACAAATGAGCTCTAAAGAATC





TGAACCGCTGACGGAACTGTACCGCAAGTCAGTCTCGCATGATTGGAATA





AAGTGCACGCGGACGGCAAGACCCTGTTTCGTCTGCCGGTGACCTGCATT





ACGGGCCAGGTCGAAGGTCAAGTGCTGAAAATGCTGGTTCACATGAGTAA





AGCGAAGCGTGTCCTGGAAATTGGCATGTTTACCGGCTATGGTGCCCTGT





CCATGGCAGAAGCTCTGCCGGAAAACGGTCAGCTGATCGCTTGTGAACTG





GAACCGTACCTGAAAGATTTTGCACAACCGATTTTCGACAAGAGTCCGCA





TGGCAAAAAGATCACCGTGAAAACGGGTCCGGCAATGGATACCCTGAAGG





AACTGGCGGCCACGGGCGAACAGTTTGACATGGTTTTCATTGATGCGGAC





AAGCAAAACTACATCAACTACTACAAGTTCCTGCTGGATCACAACCTGCT





GCGTATTGATGGCGTCATCTGCGTGGACAATACGCTGTTCAAAGGTCGCG





TGTACCTGAAGGATAGCGTTGACGAAATGGGTAAAGCCCTGCGTGATTTT





AACCAGTTCGTGACCGCAGACCCGCGTGTTGAACAAGTCATTATCCCGCT





GCGCGATGGCCTGACCATTATCCGTCGCGTCCCGTATACGCCGCAGCCGA





ATAGCCAATCTGGTACCGTGACGTACGATGAAGTTTTTCGCGGCGTCCAG





GGTAAACCGGTTCTGGATCGTCTGCGCCTGGACGGCAAAGTGGCTTATGT





TACCGGTGCCGGTCAGGGTATTGGTCGTGCATTCGCCCATGCACTGGGCG





AAGCTGGTGCGAAAGTTGCCATTATCGATATGGACCGTGGCAAGGCCGAA





GATGTCGCACACGAACTGACCCTGAAAGGTATTAGTTCCATGGCCGTGGT





TGCAGATATCAGCAAACCGGATGACGTGCAGAAGATGATTGATGACATCG





TTACCAAATGGGGCACGCTGCATATTGCTTGCAACAATGCGGGTATCAAC





AAAAATAGTGCGTCCGAAGAAACCTCTCTGGAAGAATGGGATCAGACGTT





TAACGTCAATCTGCGTGGCACCTTCATGTGCTGTCAGGCAGCTGGTCGCG





TTATGCTGAAACAAGGCTATGGCAAGATTATCAACACCGCTAGCATGGCG





TCTCTGATTGTGCCGCACCCGCAGAAACAACTGTCATACAATACGTCGAA





AGCCGGCGTCGTGAAGCTGACCCAGACGCTGGGCACCGAATGGATCGATC





GTGGTGTGCGCGTTAACTGTATTTCACCGGGTATCGTGGATACCCCGCTG





ATTCATTCAGAATCGCTGGAACCGCTGGTTCAGCGTTGGCTGTCGGATAT





CCCGGCAGGTCGTCTGGCACAGGTGACGGACCTGCAAGCGGCCGTTGTCT





ATCTGGCCAGTGATGCATCCGACTACATGACCGGTCACAATCTGGTTATT





GAAGGCGGTCAGTCTCTGTGGTGAATTGAATTGAATTGAAATCGATAGAT





CAATTTTTTTCTTTTCTCTTTCCCCATCCTTTACGCTAAAATAATAGTTT





ATTTTATTTTTTGAATATTTTTTATTTATATACGTATATATAGACTATTA





TTTATCTTTTAATGATTATTAAGATTTTTATTAAAAAAAAATTCGCTCCT





CTTTTAATGCCTTTATGCAGTTTTTTTTTCCCATTCGATATTTCTATGTT





CGGGTTCAGCGTATTTTAAGTTTAATAACTCGAAAATTCTGCGTTCGTTA





AAGCTTTCGAGAAGGATATTATTTCGAAATAAACCGTGTTGTGTAAGCTT





GAAGCCTTTTTGCGCTGCCAATATTCTTATCCATCTATTGTACTCTTTAG





ATCCAGTATAGTGTATTCTTCCTGCTCCAAGCTCATCCCACTTGCAACAA





AATATTCACGTAGACGGATAGGTATAGCCAGACATCAGCAGCATACTTCG





GGAACCGTAGGCGAATTCCATACGTTGAAACTACGGCAAAGGATTGGTCA





GATCGCTTCATACAGGGAAAGTTCGGCAaaaggcggtaatacggttatcc





acagaatcaggggataacgcaggaaagaacatgtgagcaaaaggccagca





aaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccataggc





tccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtgg





cgaaacccgacaggactataaagataccaggcgtttccccctggaagctc





cctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccg





cctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtagg





tatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgcacga





accccccgttcagcccgaccgctgcgccttatccggtaactatcgtcttg





agtccaacccggtaagacacgacttatcgccactggcagcagccactggt





aacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaa





gtggtggcctaactacggctacactagaaggacagtatttggtatctgcg





ctctgctgaagccagttaccttcggaaaaagagttggtagctcttgatcc





ggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagcagca





gattacgcgcagaaaaaaaggatctcaagaagatcctttgatcttttcta





cggggtctgacgctcagtggaacgaaaactcacgttaagggattttggtc





atgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatg





aagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagtt





accaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgt





tcatccatagttgcctgactccccgtcgtgtagataactacgatacggga





gggcttaccatctggccccagtgctgcaatgataccgcgagacccacgct





caccggctccagatttatcagcaataaaccagccagccggaagggccgag





cgcagaagtggtcctgcaactttatccgcctccatccagtctattaattg





ttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacg





ttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatg





gcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccc





catgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtca





gaagtaagttggccgcagtgttatcactcatggttatggcagcactgcat





aattctcttactgtcatgccatccgtaagatgcttttctgtgactggtga





gtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgct





cttgcccggcgtcaatacgggataataccgcgccacatagcagaacttta





aaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggat





cttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaact





gatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaaca





ggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttg





aatactcatactcttcctttttcAGATTACTCTAACGCCTCAGCCATCAT





CGGTAATAGCTCGAATTGCTGAGAACCCGTGACACCGCGAATCCTTACAT





CACACCCAATCCCCCACAAGTGATCCCCCACACACCATAGCTTCAAAATG





TTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATCGC





CGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTCCCCTCTTTC





TTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGAAAA





AAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAATTT





TTATCACGTTTCTTTTTCTTGAAAATTTTTTTTTTTGATTTTTTTCTCTT





TCGATGACCTCCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTCTC





AAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCTTG





CTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGTTTTAATTACAAAAC





TAGTATGGAACGTCCGGGCGAAACCTTTACCGTCAGCTCCCCGGAAGAAG





TGCGTCTGCCGTCTGTTCACCGCGATAACTCAACGATGGAAAACCATAAT





AAACAGGAAACGGTGTTTTCTCTGGTTCAAGTCAAGGGTACCTGGAAGCG





TAAGGCGGGCCAGAACGCCAAACAGGGTATGAAGGGCCGCGTTAGTCCGG





CCAAAATTTATGAAAGCTCTAGTTCCTCAGGTACCACGTGGACGGTGGTT





ACCCCGATCACCTTTACGTACACCGTGACGCAGACCAAAAACCTGCTGGA





CCCGTCGAACGACACGCTGCTGCTGGGCCATATTATCGATACCCAGCAAC





TGGAAGCTGTCCGCAGCAATACGAAACCGCTGAAGCGTTTCATTGTGATG





GACGAAGTCGTGTATAATATCTACGGTTCCCAAGTCACCGAATATCTGGA





AGCGCGCAACGTGCTGTACCGTATTCTGCCGCTGCCGACCACGGAAGAAA





ATAAATCAATGGATATGGCTCTGAAGATTCTGGAAGAAGTGCACCAGTTT





GGTATCGACCGTCGCACCGAACCGATTATCGCGATTGGCGGTGGCGTTTG





CCTGGATATCGTCGGTCTGGCAGCCTCTCTGTATCGTCGCCGTACCCCGT





ACATTCGTGTGCCGACCACGCTGCTGTCTTATATCGACGCAAGTGTGGGT





GCTAAAACGGGCGTTAACTTTGCTAATTGTAAAAACAAGCTGGGTACCTA





CATTGCGCCGGTTGCAGCTTTTCTGGATCGTTCGTTCATTCAGAGCATCC





CGCGCCGTCACATCGCAAACGGTCTGGCCGAAATGCTGAAAATGGCCCTG





ATGAAGCATCGCGGTCTGTTCGAACTGCTGGAAGTTCACGGCCAGTTTCT





GCTGGATAGTAAATTCCAATCGGCAAGCGTCCTGGAAAACGATCGCATTG





ACCCGGCCTCTGTCAGTACGCGTGTGGCAATCGAAACCATGCTGGAAGAA





CTGGCCCCGAATCTGTGGGAAGATGACCTGGATCGTCTGGTGGACTTTGG





TCATCTGATTTCGCCGCAGCTGGAAATGAAAGTTCTGCCGGCACTGCTGC





ACGGCGAAGCTGTCAACATTGATATGGCGTATATGGTGTACGTTTCATGC





GAAATCGGTCTGCTGACCGAAGAAGAAAAATTCCGCATTATCTGCTGTAT





GATGGGCCTGGAACTGCCGGTGTGGCATCAGGATTTTACCTTCGCACTGG





TTCAAAAGTCCCTGTGTGACCGCCTGCAGCACTCAGGTGGCCTGGTTCGT





ATGCCGCTGCCGACGGGTCTGGGTCGTGCAGAAATTTTTAATGATACCGA





CGAAGGTAGCCTGTTCCGCGCGTATGAAAAATGGTGCGATGAACTGTCCA





CCGGCTCACCGCAGTGACTCGAGTCATGTAATTAGTTATGTCACGCTTAC





ATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGTTAGA





CAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGTATT





AAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGACGCG





TGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTTGGGA





CGCTCGAAGGCTTTAATTTGCGGCCAATATTATTGAAGCATTTATCAGGG





TTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATAAAC





AAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAA





GAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCACGAG





GCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACA





TGCAGCTCCCGGAGACGGTCACAGCTTGTCTG





pXP416-SHB17-2μΔ


SEQ ID NO. 80


tcgcgcgtttcggtgatgacggtgaaaacctctgacacatgcagctcccg





gagacggtcacagcttgtctgtaagcggatgccgggagcagacaagcccg





tcagggcgcgtcagcgggtgttggcgggtgtcggggctggcttaactatg





cggcatcagagcagattgtactgagagtgcaccatatgcggtgtgaaata





ccgcacagatgcgtaaggagaaaataccgcatcaggcgccattcgccatt





caggctgcgcaactgttgggaagggcgatcggtgcgggcctcttcgctat





tacgccagctggcgaaagggggatgtgctgcaaggcgattaagttgggta





acgccagggttttcccagtcacgacgttgtaaaacgacggccagtgccaa





gcttgcatgcctgcaggtcgactctagaggatcCCCGGGATAACTTCGTA





TAGCATACATTATACGAAGTTATAACGACATTACTATATATATAATATAG





GAAGCATTTAATAGAACAGCATCGTAATATATGTGTACTTTGCAGTTATG





ACGCCAGATGGCAGTAGTGGAAGATATTCTTTATTGAAAAATAGCTTGTC





ACCTTACGTACAATCTTGATCCGGAGCTTTTCTTTTTTTGCCGATTAAGA





ATTAATTCGGTCGAAAAAAGAAAAGGAGAGGGCCAAGAGGGAGGGCATTG





GTGACTATTGAGCACGTGAGTATACGTGATTAAGCACACAAAGGCAGCTT





GGAGTATGTCTGTTATTAATTTCACAGGTAGTTCTGGTCCATTGGTGAAA





GTTTGCGGCTTGCAGAGCACAGAGGCCGCAGAATGTGCTCTAGATTCCGA





TGCTGACTTGCTGGGTATTATATGTGTGCCCAATAGAAAGAGAACAATTG





ACCCGGTTATTGCAAGGAAAATTTCAAGTCTTGTAAAAGCATATAAAAAT





AGTTCAGGCACTCCGAAATACTTGGTTGGCGTGTTTCGTAATCAACCTAA





GGAGGATGTTTTGGCTCTGGTCAATGATTACGGCATTGATATCGTCCAAC





TGCATGGAGATGAGTCGTGGCAAGAATACCAAGAGTTCCTCGGTTTGCCA





GTTATTAAAAGACTCGTATTTCCAAAAGACTGCAACATACTACTCAGTGC





AGCTTCACAGAAACCTCATTCGTTTATTCCCTTGTTTGATTCAGAAGCAG





GTGGGACAGGTGAACTTTTGGATTGGAACTCGATTTCTGACTGGGTTGGA





AGGCAAGAGAGCCCCGAAAGCTTACATTTTATGTTAGCTGGTGGACTGAC





GCCAGAAAATGTTGGTGATGCGCTTAGATTAAATGGCGTTATTGGTGTTG





ATGTAAGCGGAGGTGTGGAGACAAATGGTGTAAAAGACTCTAACAAAATA





GCAAATTTCGTCAAAAATGCTAAGAAATAGGTTATTACTGAGTAGTATTT





ATTTAAGTATTGTTTGTGCACTTGCCTGATAACTTCGTATAGCATACATT





ATACGAAGTTATCCCGGGtaccgagctcGAATTCgtaatcatggtcatag





ctgtttcctgtgtgaaattgttatccgctcacaattccacacaacatacg





agccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaac





tcacattaattgcgttgcgctcactgcccgctttccagtcgggaaacctg





tcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggttt





gcgtattgggcgctcttccgcttcctcgctcactgactcgctgcgctcgg





tcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacgg





ttatccacagaatcaggggataacgcaggaaagaacatgtgagcaaaagg





ccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttcc





ataggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcag





aggtggcgaaacccgacaggactataaagataccaggcgtttccccctgg





aagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacc





tgtccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgc





tgtaggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgt





gcacgaaccccccgttcagcccgaccgctgcgccttatccggtaactatc





gtcttgagtccaacccggtaagacacgacttatcgccactggcagcagcc





actggtaacaggattagcagagcgaggtatgtaggcggtgctacagagtt





cttgaagtggtggcctaactacggctacactagaaggacagtatttggta





tctgcgctctgctgaagccagttaccttcggaaaaagagttggtagctct





tgatccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaa





gcagcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatct





tttctacggggtctgacgctcagtggaacgaaaactcacgttaagggatt





ttggtcatgagattatcaaaaaggatcttcacctagatccttttaaatta





aaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctg





acagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtcta





tttcgttcatccatagttgcctgactccccgtcgtgtagataactacgat





acgggagggcttaccatctggccccagtgctgcaatgataccgcgagacc





cacgctcaccggctccagatttatcagcaataaaccagccagccggaagg





gccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctat





taattgttgccgggaagctagagtaagtagttcgccagttaatagtttgc





gcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgttt





ggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatg





atcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcg





ttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagca





ctgcataattctcttactgtcatgccatccgtaagatgcttttctgtgac





tggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccga





gttgctcttgcccggcgtcaatacgggataataccgcgccacatagcaga





actttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctc





aaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcac





ccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagca





aaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaa





atgttgaatactcatactcttcctttttcAATATTACCGCGAATCCTTAC





ATCACACCCAATCCCCCACAAGTGATCCCCCACACACCATAGCTTCAAAA





TGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCATC





GCCGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTCCCCTCTT





TCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGAA





AAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAAT





TTTTATCACGTTTCTTTTTCTTGAAAATTTTTTTTTTTGATTTTTTTCTC





TTTCGATGACCTCCCATTGATATTTAAGTTAATAAACGGTCTTCAATTTC





TCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTCT





TGCTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGTTTTAATTACAAA





ACTAGTATGCCTTCGCTAACCCCCAGATGTATCATTGTCAGACACGGTCA





AACTGAATGGTCCAAGTCAGGCCAGTATACTGGTTTGACAGATCTACCGT





TAACGCCCTACGGTGAGGGCCAAATGTTGAGGACCGGTGAGAGTGTTTTC





CGCAATAATCAGTTTTTGAATCCAGACAACATCACTTATATCTTCACCTC





TCCACGTTTGCGTGCCAGGCAAACTGTGGATTTGGTTTTGAAACCATTAA





GCGACGAGCAAAGAGCTAAGATCCGTGTGGTGGTAGACGACGACTTGCGA





GAGTGGGAGTACGGTGACTACGAGGGAATGCTGACTCGAGAAATCATTGA





ATTGAGAAAGTCACGCGGTTTGGACAAGGAGAGGCCATGGAATATCTGGA





GAGATGGGTGTGAGAACGGTGAGACTACTCAGCAAATTGGGTTGAGACTT





TCCCGCGCTATTGCCAGAATCCAGAACTTGCACCGCAAGCACCAGAGTGA





GGGCAGAGCATCAGACATCATGGTCTTTGCGCACGGACATGCATTGCGTT





ATTTTGCTGCTATTTGGTTTGGACTGGGTGTGCAAAAGAAGTGTGAGACG





ATTGAAGAAATTCAAAATGTCAAATCTTATGATGACGACACAGTTCCATA





TGTGAAATTGGAATCTTACAGACATTTGGTAGACAATCCATGTTTCTTAC





TGGACGCCGGTGGGATTGGTGTTTTGTCATACGCTCACCACAACATTGAC





GAACCTGCATTGGAATTAGCAGGTCCATTTGTCTCACCACCAGAGGAGGA





ATCCCAGCATGGCGATGTGTAACTCGAGTCATGTAATTAGTTATGTCACG





CTTACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAG





TTAGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTA





GTATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAG





ACGCGTGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTT





TGGGACGCTCGAAGGCTTTAATTTGCGGCCAATATTattgaagcatttat





cagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaa





taaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacg





tctaagaaaccattattatcatgacattaacctataaaaataggcgtatc





acgaggccctttcgtc





PHO13 = YDL236W SGDID: S000002395, chrIV: 


32296..33234


SEQ ID NO. 81


ATGACTGCTCAACAAGGTGTACCAATAAAGATAACCAATAAGGAGATTGC





TCAAGAATTCTTGGACAAATATGACACGTTTCTGTTCGATTGTGATGGTG





TATTATGGTTAGGTTCTCAAGCATTACCATACACCCTGGAAATTCTAAAC





CTTTTGAAGCAATTGGGCAAACAACTGATCTTCGTTACGAATAACTCTAC





CAAGTCCCGTTTAGCATACACGAAAAAGTTTGCTTCGTTTGGTATTGATG





TCAAAGAAGAACAGATTTTCACCTCTGGTTATGCGTCAGCTGTTTATATT





CGTGACTTTCTGAAATTGCAGCCTGGCAAAGATAAGGTATGGGTATTTGG





AGAAAGCGGTATTGGTGAAGAATTGAAACTAATGGGGTACGAATCTCTAG





GAGGTGCCGATTCCAGATTGGATACGCCGTTCGATGCAGCTAAATCACCA





TTTTTGGTGAACGGCCTTGATAAGGATGTTAGTTGTGTTATTGCTGGGTT





AGACACGAAGGTAAATTACCACCGTTTGGCTGTTACACTGCAGTATTTGC





AGAAGGATTCTGTTCACTTTGTTGGTACAAATGTTGATTCTACTTTCCCG





CAAAAGGGTTATACATTTCCCGGTGCAGGCTCCATGATTGAATCATTGGC





ATTCTCATCTAATAGGAGGCCATCGTACTGTGGTAAGCCAAATCAAAATA





TGCTAAACAGCATTATATCGGCATTCAACCTGGATAGATCAAAGTGCTGT





ATGGTTGGTGACAGATTAAACACCGATATGAAATTCGGTGTTGAAGGTGG





GTTAGGTGGCACACTACTCGTTTTGAGTGGTATTGAAACCGAAGAGAGAG





CCTTGAAGATTTCGCACGATTATCCAAGACCTAAATTTTACATTGATAAA





CTTGGTGACATCTACACCTTAACCAATAATGAGTTATAG





Same as SEQ ID NO. 79 with the addition of a 


1,353 bp EcoRI fragment containing the 2μ sequence


pGH420-EEVS-MTOx


SEQ ID NO. 82


ACTATATGTGAAGGCATGGCTATGGCACGGCAGACATTCCGCCAGATCAT





CAATAGGCACCTTCATTCAACGTTTCCCATTGTTTTTTTCTACTATTGCT





TTGCTGTGGGAAAAACTTATCGAAAGATGACGACTTTTTCTTAATTCTCG





TTTTAAGAGCTTGGTGAGCGCTAGGAGTCACTGCCAGGTATCGTTTGAAC





ACGGCATTAGTCAGGGAAGTCATAACACAGTCCTTTCCCGCAATTTTCTT





TTTCTATTACTCTTGGCCTCCTCTAGTACACTCTATATTTTTTTATGCCT





CGGTAATGATTTTCATTTTTTTTTTTCCACCTAGCGGATGACTCTTTTTT





TTTCTTAGCGATTGGCATTATCACATAATGAATTATACATTATATAAAGT





AATGTGATTTCTTCGAAGAATATACTAAAAAATGAGCAGGCAAGATAAAC





GAAGGCAAAGATGACAGAGCAGAAAGCCCTAGTAAAGCGTATTACAAATG





AAACCAAGATTCAGATTGCGATCTCTTTAAAGGGTGGTCCCCTAGCGATA





GAGCACTCGATCTTCCCAGAAAAAGAGGCAGAAGCAGTAGCAGAACAGGC





CACACAATCGCAAGTGATTAACGTCCACACAGGTATAGGGTTTCTGGACC





ATATGATACATGCTCTGGCCAAGCATTCCGGCTGGTCGCTAATCGTTGAG





TGCATTGGTGACTTACACATAGACGACCATCACACCACTGAAGACTGCGG





GATTGCTCTCGGTCAAGCTTTTAAAGAGGCCCTAGGGGCCGTGCGTGGAG





TAAAAAGGTTTGGATCAGGATTTGCGCCTTTGGATGAGGCACTTTCCAGA





GCGGTGGTAGATCTTTCGAACAGGCCGTACGCAGTTGTCGAACTTGGTTT





GCAAAGGGAGAAAGTAGGAGATCTCTCTTGCGAGATGATCCCGCATTTTC





TTGAAAGCTTTGCAGAGGCTAGCAGAATTACCCTCCACGTTGATTGTCTG





CGAGGCAAGAATGATCATCACCGTAGTGAGAGTGCGTTCAAGGCTCTTGC





GGTTGCCATAAGAGAAGCCACCTCGCCCAATGGTACCAACGATGTTCCCT





CCACCAAAGGTGTTCTTATGTAGTGACACCGATTATTTAAAGCTGCAGCA





TACGATATATATACATGTGTATATATGTATACCTATGAATGTCAGTAAGT





ATGTATACGAACAGTATGATACTGAAGATGACAAGGTAATGCATCACACC





TTTCGAGAGGACGATGCCCGTGTCTAAATGATTCGACCAGCCTAAGAATG





TTCAACCCTGACTTCAACTCAAGACGCACAGATATTATAACATCTGCATA





ATAGGCATTTGCAAGAATTACTCGTGAGTAAGGAAAGAGTGAGGAACTAT





CGCATACCTGCATTTAAAGATGCCGATTTGGGCGCGAATCCTTTATTTTG





GCTTCACCCTCATACTATTATCAGGGCCAGAAAAAGGAAGTGTTTCCCTC





CTTCTTGAATTGATGTTACCCTCATAAAGCACGTGGCCTCTTATCGAGAA





AGAAATTACCGTCGCTCGTGATTTGTTTGCAAAAAGAACAAAACTGAAAA





AACCCAGACACGCTCGACTTCCTGTCTTCCTATTGATTGCAGCTTCCAAT





TTCGTCACACAACAAGGTCCTAGCGACGGCTCACAGGTTTTGTAACAAGC





AATCGAAGGTTCTGGAATGGCGGGAAAGGGTTTAGTACCACATGCTATGA





TGCCCACTGTGATCTCCAGAGCAAAGTTCGTTCGATCGTACTGTTACTCT





CTCTCTTTCAAACAGAATTGTCCGAATCGTGTGACAACAACAGCCTGTTC





TCACACACTCTTTTCTTCTAACCAAGGGGGTGGTTTAGTTTAGTAGAACC





TCGTGAAACTTACATTTACATATATATAAACTTGCATAAATTGGTCAATG





CAAGAAATACATATTTGGTCTTTTCTAATTCGTAGTTTTTCAAGTTCTTA





GATGCTTTCTTTTTCTCTTTTTTACAGATCATCAAGGAAGTAATTATCTA





CTTTTTACAACAAATATAATGCAAACGGCAAAAGTCTCGGACACCCCGGT





TGAATTTATTGTGGAACATCTGCTGAAGGCTAAGGAAATCGCTGAAAATC





ACGCTTCCATTCCGGTGGAACTGCGCGATAACCTGCAGAAAGCTCTGGAT





ATCGCGAGCGGCCTGGACGAATATCTGGAACAAATGAGCTCTAAAGAATC





TGAACCGCTGACGGAACTGTACCGCAAGTCAGTCTCGCATGATTGGAATA





AAGTGCACGCGGACGGCAAGACCCTGTTTCGTCTGCCGGTGACCTGCATT





ACGGGCCAGGTCGAAGGTCAAGTGCTGAAAATGCTGGTTCACATGAGTAA





AGCGAAGCGTGTCCTGGAAATTGGCATGTTTACCGGCTATGGTGCCCTGT





CCATGGCAGAAGCTCTGCCGGAAAACGGTCAGCTGATCGCTTGTGAACTG





GAACCGTACCTGAAAGATTTTGCACAACCGATTTTCGACAAGAGTCCGCA





TGGCAAAAAGATCACCGTGAAAACGGGTCCGGCAATGGATACCCTGAAGG





AACTGGCGGCCACGGGCGAACAGTTTGACATGGTTTTCATTGATGCGGAC





AAGCAAAACTACATCAACTACTACAAGTTCCTGCTGGATCACAACCTGCT





GCGTATTGATGGCGTCATCTGCGTGGACAATACGCTGTTCAAAGGTCGCG





TGTACCTGAAGGATAGCGTTGACGAAATGGGTAAAGCCCTGCGTGATTTT





AACCAGTTCGTGACCGCAGACCCGCGTGTTGAACAAGTCATTATCCCGCT





GCGCGATGGCCTGACCATTATCCGTCGCGTCCCGTATACGCCGCAGCCGA





ATAGCCAATCTGGTACCGTGACGTACGATGAAGTTTTTCGCGGCGTCCAG





GGTAAACCGGTTCTGGATCGTCTGCGCCTGGACGGCAAAGTGGCTTATGT





TACCGGTGCCGGTCAGGGTATTGGTCGTGCATTCGCCCATGCACTGGGCG





AAGCTGGTGCGAAAGTTGCCATTATCGATATGGACCGTGGCAAGGCCGAA





GATGTCGCACACGAACTGACCCTGAAAGGTATTAGTTCCATGGCCGTGGT





TGCAGATATCAGCAAACCGGATGACGTGCAGAAGATGATTGATGACATCG





TTACCAAATGGGGCACGCTGCATATTGCTTGCAACAATGCGGGTATCAAC





AAAAATAGTGCGTCCGAAGAAACCTCTCTGGAAGAATGGGATCAGACGTT





TAACGTCAATCTGCGTGGCACCTTCATGTGCTGTCAGGCAGCTGGTCGCG





TTATGCTGAAACAAGGCTATGGCAAGATTATCAACACCGCTAGCATGGCG





TCTCTGATTGTGCCGCACCCGCAGAAACAACTGTCATACAATACGTCGAA





AGCCGGCGTCGTGAAGCTGACCCAGACGCTGGGCACCGAATGGATCGATC





GTGGTGTGCGCGTTAACTGTATTTCACCGGGTATCGTGGATACCCCGCTG





ATTCATTCAGAATCGCTGGAACCGCTGGTTCAGCGTTGGCTGTCGGATAT





CCCGGCAGGTCGTCTGGCACAGGTGACGGACCTGCAAGCGGCCGTTGTCT





ATCTGGCCAGTGATGCATCCGACTACATGACCGGTCACAATCTGGTTATT





GAAGGCGGTCAGTCTCTGTGGTGAATTGAATTGAATTGAAATCGATAGAT





CAATTTTTTTCTTTTCTCTTTCCCCATCCTTTACGCTAAAATAATAGTTT





ATTTTATTTTTTGAATATTTTTTATTTATATACGTATATATAGACTATTA





TTTATCTTTTAATGATTATTAAGATTTTTATTAAAAAAAAATTCGCTCCT





CTTTTAATGCCTTTATGCAGTTTTTTTTTCCCATTCGATATTTCTATGTT





CGGGTTCAGCGTATTTTAAGTTTAATAACTCGAAAATTCTGCGTTCGTTA





AAGCTTTCGAGAAGGATATTATTTCGAAATAAACCGTGTTGTGTAAGCTT





GAAGCCTTTTTGCGCTGCCAATATTCTTATCCATCTATTGTACTCTTTAG





ATCCAGTATAGTGTATTCTTCCTGCTCCAAGCTCATCCCACTTGCAACAA





AATATTCACGTAGACGGATAGGTATAGCCAGACATCAGCAGCATACTTCG





GGAACCGTAGGCGAATTCaacgaagcatctgtgcttcattttgtagaaca





aaaatgcaacgcgagagcgctaatttttcaaacaaagaatctgagctgca





tttttacagaacagaaatgcaacgcgaaagcgctattttaccaacgaaga





atctgtgcttcatttttgtaaaacaaaaatgcaacgcgagagcgctaatt





tttcaaacaaagaatctgagctgcatttttacagaacagaaatgcaacgc





gagagcgctattttaccaacaaagaatctatacttcttttttgttctaca





aaaatgcatcccgagagcgctatttttctaacaaagcatcttagattact





ttttttctcctttgtgcgctctataatgcagtctcttgataactttttgc





actgtaggtccgttaaggttagaagaaggctactttggtgtctattttct





cttccataaaaaaagcctgactccacttcccgcgtttactgattactagc





gaagctgcgggtgcattttttcaagataaaggcatccccgattatattct





ataccgatgtggattgcgcatactttgtgaacagaaagtgatagcgttga





tgattcttcattggtcagaaaattatgaacggtttcttctattttgtctc





tatatactacgtataggaaatgtttacattttcgtattgttttcgattca





ctctatgaatagttcttactacaatttttttgtctaaagagtaatactag





agataaacataaaaaatgtagaggtcgagtttagatgcaagttcaaggag





cgaaaggtggatgggtaggttatatagggatatagcacagagatatatag





caaagagatacttttgagcaatgtttgtggaagcggtattcgcaatattt





tagtagctcgttacagtccggtgcgtttttggttttttgaaagtgcgtct





tcagagcgcttttggttttcaaaagcgctctgaagttcctatactttcta





gagaataggaacttcggaataggaacttcaaagcgtttccgaaaacgagc





gcttccgaaaatgcaacgcgagctgcgcacatacagctcactgttcacgt





cgcacctatatctgcgtgttgcctgtatatatatatacatgagaagaacg





gcatagtgcgtgtttatgcttaaatgcgtacttatatgcgtctatttatg





taggatgaaaggtagtctagtacctcctgtgatattatcccattccatgc





ggggtatcgtatgcttccttcagcactaccctttagctgttctatatgct





gccactcctcaattggattagtctcatccttcaatgctatcatttccttt





gatattggatcatacGAATTCCATACGTTGAAACTACGGCAAAGGATTGG





TCAGATCGCTTCATACAGGGAAAGTTCGGCAaaaggcggtaatacggtta





tccacagaatcaggggataacgcaggaaagaacatgtgagcaaaaggcca





gcaaaaggccaggaaccgtaaaaaggccgcgttgctggcgtttttccata





ggctccgcccccctgacgagcatcacaaaaatcgacgctcaagtcagagg





tggcgaaacccgacaggactataaagataccaggcgtttccccctggaag





ctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgt





ccgcctttctcccttcgggaagcgtggcgctttctcatagctcacgctgt





aggtatctcagttcggtgtaggtcgttcgctccaagctgggctgtgtgca





cgaaccccccgttcagcccgaccgctgcgccttatccggtaactatcgtc





ttgagtccaacccggtaagacacgacttatcgccactggcagcagccact





ggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttctt





gaagtggtggcctaactacggctacactagaaggacagtatttggtatct





gcgctctgctgaagccagttaccttcggaaaaagagttggtagctcttga





tccggcaaacaaaccaccgctggtagcggtggtttttttgtttgcaagca





gcagattacgcgcagaaaaaaaggatctcaagaagatcctttgatctttt





ctacggggtctgacgctcagtggaacgaaaactcacgttaagggattttg





gtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaa





atgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgaca





gttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctattt





cgttcatccatagttgcctgactccccgtcgtgtagataactacgatacg





ggagggcttaccatctggccccagtgctgcaatgataccgcgagacccac





gctcaccggctccagatttatcagcaataaaccagccagccggaagggcc





gagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaa





ttgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgca





acgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggt





atggcttcattcagctccggttcccaacgatcaaggcgagttacatgatc





ccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttg





tcagaagtaagttggccgcagtgttatcactcatggttatggcagcactg





cataattctcttactgtcatgccatccgtaagatgcttttctgtgactgg





tgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagtt





gctcttgcccggcgtcaatacgggataataccgcgccacatagcagaact





ttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaag





gatcttaccgctgttgagatccagttcgatgtaacccactcgtgcaccca





actgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaa





acaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatg





ttgaatactcatactcttcctttttcAGATTACTCTAACGCCTCAGCCAT





CATCGGTAATAGCTCGAATTGCTGAGAACCCGTGACACCGCGAATCCTTA





CATCACACCCAATCCCCCACAAGTGATCCCCCACACACCATAGCTTCAAA





ATGTTTCTACTCCTTTTTTACTCTTCCAGATTTTCTCGGACTCCGCGCAT





CGCCGTACCACTTCAAAACACCCAAGCACAGCATACTAAATTTCCCCTCT





TTCTTCCTCTAGGGTGTCGTTAATTACCCGTACTAAAGGTTTGGAAAAGA





AAAAAGAGACCGCCTCGTTTCTTTTTCTTCGTCGAAAAAGGCAATAAAAA





TTTTTATCACGTTTCTTTTTCTTGAAAATTTTTTTTTTTGATTTTTTTCT





CTTTCGATGACCTCCCATTGATATTTAAGTTAATAAACGGTCTTCAATTT





CTCAAGTTTCAGTTTCATTTTTCTTGTTCTATTACAACTTTTTTTACTTC





TTGCTCATTAGAAAGAAAGCATAGCAATCTAATCTAAGTTTTAATTACAA





AACTAGTATGGAACGTCCGGGCGAAACCTTTACCGTCAGCTCCCCGGAAG





AAGTGCGTCTGCCGTCTGTTCACCGCGATAACTCAACGATGGAAAACCAT





AATAAACAGGAAACGGTGTTTTCTCTGGTTCAAGTCAAGGGTACCTGGAA





GCGTAAGGCGGGCCAGAACGCCAAACAGGGTATGAAGGGCCGCGTTAGTC





CGGCCAAAATTTATGAAAGCTCTAGTTCCTCAGGTACCACGTGGACGGTG





GTTACCCCGATCACCTTTACGTACACCGTGACGCAGACCAAAAACCTGCT





GGACCCGTCGAACGACACGCTGCTGCTGGGCCATATTATCGATACCCAGC





AACTGGAAGCTGTCCGCAGCAATACGAAACCGCTGAAGCGTTTCATTGTG





ATGGACGAAGTCGTGTATAATATCTACGGTTCCCAAGTCACCGAATATCT





GGAAGCGCGCAACGTGCTGTACCGTATTCTGCCGCTGCCGACCACGGAAG





AAAATAAATCAATGGATATGGCTCTGAAGATTCTGGAAGAAGTGCACCAG





TTTGGTATCGACCGTCGCACCGAACCGATTATCGCGATTGGCGGTGGCGT





TTGCCTGGATATCGTCGGTCTGGCAGCCTCTCTGTATCGTCGCCGTACCC





CGTACATTCGTGTGCCGACCACGCTGCTGTCTTATATCGACGCAAGTGTG





GGTGCTAAAACGGGCGTTAACTTTGCTAATTGTAAAAACAAGCTGGGTAC





CTACATTGCGCCGGTTGCAGCTTTTCTGGATCGTTCGTTCATTCAGAGCA





TCCCGCGCCGTCACATCGCAAACGGTCTGGCCGAAATGCTGAAAATGGCC





CTGATGAAGCATCGCGGTCTGTTCGAACTGCTGGAAGTTCACGGCCAGTT





TCTGCTGGATAGTAAATTCCAATCGGCAAGCGTCCTGGAAAACGATCGCA





TTGACCCGGCCTCTGTCAGTACGCGTGTGGCAATCGAAACCATGCTGGAA





GAACTGGCCCCGAATCTGTGGGAAGATGACCTGGATCGTCTGGTGGACTT





TGGTCATCTGATTTCGCCGCAGCTGGAAATGAAAGTTCTGCCGGCACTGC





TGCACGGCGAAGCTGTCAACATTGATATGGCGTATATGGTGTACGTTTCA





TGCGAAATCGGTCTGCTGACCGAAGAAGAAAAATTCCGCATTATCTGCTG





TATGATGGGCCTGGAACTGCCGGTGTGGCATCAGGATTTTACCTTCGCAC





TGGTTCAAAAGTCCCTGTGTGACCGCCTGCAGCACTCAGGTGGCCTGGTT





CGTATGCCGCTGCCGACGGGTCTGGGTCGTGCAGAAATTTTTAATGATAC





CGACGAAGGTAGCCTGTTCCGCGCGTATGAAAAATGGTGCGATGAACTGT





CCACCGGCTCACCGCAGTGACTCGAGTCATGTAATTAGTTATGTCACGCT





TACATTCACGCCCTCCCCCCACATCCGCTCTAACCGAAAAGGAAGGAGTT





AGACAACCTGAAGTCTAGGTCCCTATTTATTTTTTTATAGTTATGTTAGT





ATTAAGAACGTTATTTATATTTCAAATTTTTCTTTTTTTTCTGTACAGAC





GCGTGTACGCATGTAACATTATACTGAAAACCTTGCTTGAGAAGGTTTTG





GGACGCTCGAAGGCTTTAATTTGCGGCCAATATTATTGAAGCATTTATCA





GGGTTATTGTCTCATGAGCGGATACATATTTGAATGTATTTAGAAAAATA





AACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTC





TAAGAAACCATTATTATCATGACATTAACCTATAAAAATAGGCGTATCAC





GAGGCCCTTTCGTCTCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGAC





ACATGCAGCTCCCGGAGACGGTCACAGCTTGTCTG





Amplicon 1: A-HIS3-B


SEQ ID NO. 83


ACTATATGTGAAGGCATGGCTATGGCACGGCAGACATTCCGCCAGATCAT





CAATAGGCACCTTCATTCAACGTTTCCCATTGTTTTTTTCTACTATTGCT





TTGCTGTGGGAAAAACTTATCGAAAGATGACGACTTTTTCTTAATTCTCG





TTTTAAGAGCTTGGTGAGCGCTAGGAGTCACTGCCAGGTATCGTTTGAAC





ACGGCATTAGTCAGGGAAGTCATAACACAGTCCTTTCCCGCAATTTTCTT





TTTCTATTACTCTTGGCCTCCTCTAGTACACTCTATATTTTTTTATGCCT





CGGTAATGATTTTCATTTTTTTTTTTCCACCTAGCGGATGACTCTTTTTT





TTTCTTAGCGATTGGCATTATCACATAATGAATTATACATTATATAAAGT





AATGTGATTTCTTCGAAGAATATACTAAAAAATGAGCAGGCAAGATAAAC





GAAGGCAAAGATGACAGAGCAGAAAGCCCTAGTAAAGCGTATTACAAATG





AAACCAAGATTCAGATTGCGATCTCTTTAAAGGGTGGTCCCCTAGCGATA





GAGCACTCGATCTTCCCAGAAAAAGAGGCAGAAGCAGTAGCAGAACAGGC





CACACAATCGCAAGTGATTAACGTCCACACAGGTATAGGGTTTCTGGACC





ATATGATACATGCTCTGGCCAAGCATTCCGGCTGGTCGCTAATCGTTGAG





TGCATTGGTGACTTACACATAGACGACCATCACACCACTGAAGACTGCGG





GATTGCTCTCGGTCAAGCTTTTAAAGAGGCCCTAGGGGCCGTGCGTGGAG





TAAAAAGGTTTGGATCAGGATTTGCGCCTTTGGATGAGGCACTTTCCAGA





GCGGTGGTAGATCTTTCGAACAGGCCGTACGCAGTTGTCGAACTTGGTTT





GCAAAGGGAGAAAGTAGGAGATCTCTCTTGCGAGATGATCCCGCATTTTC





TTGAAAGCTTTGCAGAGGCTAGCAGAATTACCCTCCACGTTGATTGTCTG





CGAGGCAAGAATGATCATCACCGTAGTGAGAGTGCGTTCAAGGCTCTTGC





GGTTGCCATAAGAGAAGCCACCTCGCCCAATGGTACCAACGATGTTCCCT





CCACCAAAGGTGTTCTTATGTAGTGACACCGATTATTTAAAGCTGCAGCA





TACGATATATATACATGTGTATATATGTATACCTATGAATGTCAGTAAGT





ATGTATACGAACAGTATGATACTGAAGATGACAAGGTAATGCATCACACC





TTTCGAGAGGACGATGCCCGTGTCTAAATGATTCGACCAGCCTAAGAATG





TTCAAC





Amplicon 2: B-PPGK1-MT


SEQ ID NO. 84


ACCTTTCGAGAGGACGATGCCCGTGTCTAAATGATTCGACCAGCCTAAGA





ATGTTCAACCCTGACTTCAACTCAAGACGCACAGATATTATAACATCTGC





ATAATAGGCATTTGCAAGAATTACTCGTGAGTAAGGAAAGAGTGAGGAAC





TATCGCATACCTGCATTTAAAGATGCCGATTTGGGCGCGAATCCTTTATT





TTGGCTTCACCCTCATACTATTATCAGGGCCAGAAAAAGGAAGTGTTTCC





CTCCTTCTTGAATTGATGTTACCCTCATAAAGCACGTGGCCTCTTATCGA





GAAAGAAATTACCGTCGCTCGTGATTTGTTTGCAAAAAGAACAAAACTGA





AAAAACCCAGACACGCTCGACTTCCTGTCTTCCTATTGATTGCAGCTTCC





AATTTCGTCACACAACAAGGTCCTAGCGACGGCTCACAGGTTTTGTAACA





AGCAATCGAAGGTTCTGGAATGGCGGGAAAGGGTTTAGTACCACATGCTA





TGATGCCCACTGTGATCTCCAGAGCAAAGTTCGTTCGATCGTACTGTTAC





TCTCTCTCTTTCAAACAGAATTGTCCGAATCGTGTGACAACAACAGCCTG





TTCTCACACACTCTTTTCTTCTAACCAAGGGGGTGGTTTAGTTTAGTAGA





ACCTCGTGAAACTTACATTTACATATATATAAACTTGCATAAATTGGTCA





ATGCAAGAAATACATATTTGGTCTTTTCTAATTCGTAGTTTTTCAAGTTC





TTAGATGCTTTCTTTTTCTCTTTTTTACAGATCATCAAGGAAGTAATTAT





CTACTTTTTACAACAAATATAATGCAAACGGCAAAAGTCTCGGACACCCC





GGTTGAATTTATTGTGGAACATCTGCTG





Amplicon 7: E-PTEF1-EEVS-TCYC1-A


SEQ ID NO. 85


AGATTACTCTAACGCCTCAGCCATCATCGGTAATAGCTCGAATTGCTGAG





AACCCGTGACACCGCGAATCCTTACATCACACCCAATCCCCCACAAGTGA





TCCCCCACACACCATAGCTTCAAAATGTTTCTACTCCTTTTTTACTCTTC





CAGATTTTCTCGGACTCCGCGCATCGCCGTACCACTTCAAAACACCCAAG





CACAGCATACTAAATTTCCCCTCTTTCTTCCTCTAGGGTGTCGTTAATTA





CCCGTACTAAAGGTTTGGAAAAGAAAAAAGAGACCGCCTCGTTTCTTTTT





CTTCGTCGAAAAAGGCAATAAAAATTTTTATCACGTTTCTTTTTCTTGAA





AATTTTTTTTTTTGATTTTTTTCTCTTTCGATGACCTCCCATTGATATTT





AAGTTAATAAACGGTCTTCAATTTCTCAAGTTTCAGTTTCATTTTTCTTG





TTCTATTACAACTTTTTTTACTTCTTGCTCATTAGAAAGAAAGCATAGCA





ATCTAATCTAAGTTTTAATTACAAAACTAGTATGGAACGTCCGGGCGAAA





CCTTTACCGTCAGCTCCCCGGAAGAAGTGCGTCTGCCGTCTGTTCACCGC





GATAACTCAACGATGGAAAACCATAATAAACAGGAAACGGTGTTTTCTCT





GGTTCAAGTCAAGGGTACCTGGAAGCGTAAGGCGGGCCAGAACGCCAAAC





AGGGTATGAAGGGCCGCGTTAGTCCGGCCAAAATTTATGAAAGCTCTAGT





TCCTCAGGTACCACGTGGACGGTGGTTACCCCGATCACCTTTACGTACAC





CGTGACGCAGACCAAAAACCTGCTGGACCCGTCGAACGACACGCTGCTGC





TGGGCCATATTATCGATACCCAGCAACTGGAAGCTGTCCGCAGCAATACG





AAACCGCTGAAGCGTTTCATTGTGATGGACGAAGTCGTGTATAATATCTA





CGGTTCCCAAGTCACCGAATATCTGGAAGCGCGCAACGTGCTGTACCGTA





TTCTGCCGCTGCCGACCACGGAAGAAAATAAATCAATGGATATGGCTCTG





AAGATTCTGGAAGAAGTGCACCAGTTTGGTATCGACCGTCGCACCGAACC





GATTATCGCGATTGGCGGTGGCGTTTGCCTGGATATCGTCGGTCTGGCAG





CCTCTCTGTATCGTCGCCGTACCCCGTACATTCGTGTGCCGACCACGCTG





CTGTCTTATATCGACGCAAGTGTGGGTGCTAAAACGGGCGTTAACTTTGC





TAATTGTAAAAACAAGCTGGGTACCTACATTGCGCCGGTTGCAGCTTTTC





TGGATCGTTCGTTCATTCAGAGCATCCCGCGCCGTCACATCGCAAACGGT





CTGGCCGAAATGCTGAAAATGGCCCTGATGAAGCATCGCGGTCTGTTCGA





ACTGCTGGAAGTTCACGGCCAGTTTCTGCTGGATAGTAAATTCCAATCGG





CAAGCGTCCTGGAAAACGATCGCATTGACCCGGCCTCTGTCAGTACGCGT





GTGGCAATCGAAACCATGCTGGAAGAACTGGCCCCGAATCTGTGGGAAGA





TGACCTGGATCGTCTGGTGGACTTTGGTCATCTGATTTCGCCGCAGCTGG





AAATGAAAGTTCTGCCGGCACTGCTGCACGGCGAAGCTGTCAACATTGAT





ATGGCGTATATGGTGTACGTTTCATGCGAAATCGGTCTGCTGACCGAAGA





AGAAAAATTCCGCATTATCTGCTGTATGATGGGCCTGGAACTGCCGGTGT





GGCATCAGGATTTTACCTTCGCACTGGTTCAAAAGTCCCTGTGTGACCGC





CTGCAGCACTCAGGTGGCCTGGTTCGTATGCCGCTGCCGACGGGTCTGGG





TCGTGCAGAAATTTTTAATGATACCGACGAAGGTAGCCTGTTCCGCGCGT





ATGAAAAATGGTGCGATGAACTGTCCACCGGCTCACCGCAGTGACTCGAG





TCATGTAATTAGTTATGTCACGCTTACATTCACGCCCTCCCCCCACATCC





GCTCTAACCGAAAAGGAAGGAGTTAGACAACCTGAAGTCTAGGTCCCTAT





TTATTTTTTTATAGTTATGTTAGTATTAAGAACGTTATTTATATTTCAAA





TTTTTCTTTTTTTTCTGTACAGACGCGTGTACGCATGTAACATTATACTG





AAAACCTTGCTTGAGAAGGTTTTGGGACGCTCGAAGGCTTTAATTTGCGG





CCAATATTATTGAAGCATTTATCAGGGTTATTGTCTCATGAGCGGATACA





TATTTGAATGTATTTAGAAAAATAAACAAATAGGGGTTCCGCGCACATTT





CCCCGAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATCATGACATT





AACCTATAAAAATAGGCGTATCACGAGGCCCTTTCGTCTCGCGCGTTTCG





GTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACA





GCTTGTCTGACTATATGTGAAGGCATGGCTATGGCACGGCAGACATTCCG





CCAGATCATCAATAGGCAC






Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.

Claims
  • 1. A transgenic yeast cell, comprising: a nucleotide sequence capable of expressing 2-epi-5-valione synthase (EEVS) protein integrated in a genome of the transgenic yeast cell; anda nucleotide sequence capable of expressing methyltransferase/oxidoreductase (MT-Ox) protein integrated in the genome of the transgenic yeast cell.
  • 2. The transgenic yeast cell of claim 1, wherein the yeast cell comprises one or more disrupted transaldolase genes of the transgenic yeast cell, wherein the disruption results in a reduction of transaldolase activity in the transgenic yeast cell as compared to a wild-type yeast cell.
  • 3. The transgenic yeast cell of claim 2, wherein the one or more disrupted transaldolase genes comprises TAL1.
  • 4. The transgenic yeast cell of claim 2, wherein the one or more disrupted transaldolase genes comprises NQM1.
  • 5. The transgenic yeast cell of claim 2, wherein the one or more disrupted transaldolase genes comprises both TAL1 and NQM1.
  • 6. The transgenic yeast cell of claim 1, wherein the yeast cell is engineered to over express ZWF1.
  • 7. The transgenic yeast cell of claim 1, wherein at least one of the nucleotide sequence capable of expressing EEVS protein and the nucleotide sequence capable of expressing MT-Ox protein are codon optimized for expression in yeast.
  • 8. The transgenic yeast cell of claim 1, wherein the yeast cell comprises a Saccharomyces cerevisiae yeast cell.
  • 9. The transgenic yeast cell of claim 1, wherein the nucleotide sequence capable of expressing EEVS protein comprises a yeast promoter operably connected to a nucleic acid sequence encoding a EEVS protein.
  • 10. The transgenic yeast cell of claim 9, wherein the nucleic acid sequence encoding the EEVS protein comprises a nucleic acid sequence that encodes a protein having an amino acid sequence at least 95% identical to SEQ ID NO: 21.
  • 11. The transgenic yeast cell of claim 9, wherein the nucleic acid sequence encoding the EEVS protein comprises a nucleic acid sequence at least 95% identical to any one of SEQ ID Nos 1-8.
  • 12. The transgenic yeast cell of claim 1, wherein the yeast promoter is a yeast TEF) promoter.
  • 13. The transgenic yeast cell of claim 1, wherein the nucleotide sequence capable of expressing MT-Ox protein comprises a yeast promoter operably connected to a nucleic acid sequence encoding a MT-Ox protein.
  • 14. The transgenic yeast cell of claim 13, wherein the nucleic acid sequence encoding the MT-Ox protein comprises a nucleic acid sequence that encodes a protein having an amino acid sequence at least 95% identical to SEQ ID NO: 22.
  • 15. The transgenic yeast cell of claim 13, wherein the nucleic acid sequence encoding the MT-Ox protein comprises a nucleic acid sequence at least 95% identical to any one of SEQ ID NOs: 9-16.
  • 16. The transgenic yeast cell of claim 13, wherein the yeast promoter is a yeast PGK1 promoter.
  • 17. The transgenic yeast cell of claim 1, wherein the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are integrated into the yeast genome at chromosome 15 at the his3Δ1 locus.
  • 18. The transgenic yeast cell of claim 1, wherein the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are stably integrated.
  • 19. The transgenic yeast cell of claim 18, wherein the nucleotide sequence capable of expressing EEVS and the nucleotide sequence capable of expressing MT-Ox are stably integrated for at least 20 generations.
  • 20. A bioreactor comprising a population of the transgenic yeast cell of claim 1.
  • 21. A method for producing gadusol, the method comprising: culturing a transgenic yeast cell of claim 1 in growth media, wherein at least a portion of the gadusol is secreted into the growth media; andisolating gadusol from the growth media.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority to U.S. Patent Application 62/782,090 filed on Dec. 19, 2018, which is hereby incorporated by reference in its entirety.

Provisional Applications (1)
Number Date Country
62782090 Dec 2018 US