This invention relates generally to earth boring drill bits, and more particularly to a scraper for cleaning the gage surface of a rotary cone.
One type of earth boring drill bit, particularly for oil and gas wells, has three rotating cones angling inward toward the center axis of the drill bit. The cones are mounted on bearing pins of legs that extend downward from a bit body. Each cone has a backface closely spaced to a portion of the bit leg called a last machined surface. As the body rotates about its axis, each of the cones simultaneously rotates about its own axis. Drilling mud is pumped down the drill string and flows out of nozzles on the drill bit body. The mud and cuttings return up an annulus surrounding the drill string.
It has long been recognized in the drill bit industry that the longevity of rotary cone drill bits is increased if foreign material or debris such as mud is prevented from entering the bearings associated with each of the cones. Drill bits used in carrying out rotary drilling have been subject to wear and damage by virtue of erosion caused by the abrasive effect of the foreign materials present in the drilling process. Mud and solids from the earthen formation pack onto certain portions of the bit structure, including the gage surface. Mud packing on the gage surface can cause mud and cuttings to pack into the seal gland, hindering performance. The rate of penetration can be limited by excessive contact with the borehole wall. Drilled solids adhering to a cone's surface will increase the amount of contact with the borehole wall, and may reduce penetration rates.
In the past, various versions have been employed to address the foregoing problem. Devices to mechanically deflect foreign material from between the cone backface and the leg are known, such as pins mounted to the bit leg in close proximity to the backface. These devices are somewhat helpful in solving the problem of material build-up in some respects, but fail to contribute to the removal of mud cuttings in other respects.
This invention provides a device that improves the cleaning of foreign material or debris from the drill bit when used in earth boring procedures. Particularly, it provides an improved device for cleaning foreign material or debris from the gage surface of a rotary cone. The bit has a body having at least one leg depending therefrom, a bearing pin secured to each leg, and a rotary cutting cone mounted to the bearing pin. The cone has at least one conical gage surface which during drilling operations may collect foreign material or debris such as mud.
A scraper is mounted on the inside of each leg. The scraper protrudes from the leg toward the cone into close proximity with a gage surface, enabling the scraper to clean foreign material or debris from the gage surface of the cone.
The novel features of this invention, as well as the invention itself, will best be understood from the following drawings and detailed description.
Although the following detailed description contains many specific details for purposes of illustration, anyone of ordinary skill in the art will appreciate that many variations and alterations to the following details are within the scope of the invention. Accordingly, the exemplary embodiment of the invention described below is set forth without any loss of generality to, and without imposing limitations thereon, the claimed invention.
In reference to
A cavity 14 is found in rotary cone 12, and establishes the appropriate space necessary for the cone 12 to fit on the bearing pin 60 attached to the leg 25. An annular backface 53 of the cone 12 surrounds the cavity 14. The backface 53 is substantially perpendicular to the rotary cone axis 61. A conical gage surface 30 extends from the backface 53 to the outer cutting surface 41 of cone 12 at an angle relative to both the backface 53 and the cutting surface 41. There are multiple conical surfaces possible for the gage surface 30, each having its own characteristics, and designed to optimize the performance of the drill bit 10. For example, many different embodiments may feature many alternative angles of the conical gage surface 30 relative to both the backface 53 and the cutting surface 41. A further embodiment is that the conical gage surface 30 could itself comprise two distinct surfaces of different angular positions, both surfaces being between the surfaces of the backface 53 and the cutting surface 41.
A number of rows of cutting elements 43 on the outer cutting surface 41 surround the perimeter of the rotary cone 12. Each row features a number of cutting elements 43 on the outer cutting surface 41 annularly displaced around the cone 12. The closest row to the gage surface 30 comprises the heel row cutting elements 45. The cutting elements 43 disintegrate the earth formations as the cone 12 rotates on the bearing pin 60. The cutting elements 43 may be integrally formed with the cone 12, or pressed into holes (not shown) in the cutting surface 41.
A number of optional trimming elements 40 are positioned on the rotary cone 12 at an intersection of the gage surface 30 and the heel row cutting elements 45. The trimming elements 40 are positioned in the space between each individual heel row cutting element 45. The trimming elements 40 are smaller and provide considerably less of a protruding surface than the heel row cutting elements 45. The heel row elements 45 on the outer cutting surface 41 engage the borehole bottom, while the trimming elements 40 engage the side wall of the borehole. The trimming elements 40 may be hard metal inserts interferingly pressed into holes in the cutting surface 41. Alternatively, the trimming elements 40 could be machined on cutting surface 41 or formed from hard facing. Cone 12 has a conical gage surface 30 at the juncture where the heel row cutting elements 45 are formed on the outer cutting surface 41 of the rotary cone 12. The maximum diameter of the bit 10 is at the gage surface 30. The trimming elements 40 are located at the junction of the gage surface 30 and the heel row cutting elements 45.
In further reference to
A surface referred to as the last machined surface 55 is formed where the bearing pin 60 joins the leg 25. The last machined surface 55 is an annular flat surface located in a plane perpendicular to the bearing pin axis 61. The last machined surface 55 faces directly opposite, but does not touch, annular backface 53 of the rotary cone 12, and preferably faces generally inward toward the center axis of the drill bit 10. The last machined surface 55 and the backface 53 of the rotary cone 12 are parallel to each other and substantially perpendicular to the rotary cone axis 61 and bearing pin axis 61. The inner wall surface 35 begins at a juncture of the last machined surface 55 and continues along the inside portion of the leg 25.
As shown in
Preferably, the gage surface scraper 32 is chisel-shaped having two of the flanks 33 converging to a crest 34, as shown in
The distance between the crest 34 and the gage surface 30 is preferred to be substantially within the range of 0 inches to 5/16 inches. The gage surface scraper 32 operates to clean foreign material or debris such as mud from the gage surface 30. The gage surface scraper 32 is preferably made of a hardened material such as steel or tungsten carbide, and is press-fitted into a hole in bit leg inside surface 35. The gage surface scraper 32 may alternatively comprise inserts made of materials such as polycrystalline diamond, ceramic, weld metal, tool steel, or other steel material or hardened substance. This preferred embodiment, which is one of many possible alternative embodiments, optimizes the effectiveness and efficiency of the cleaning or scraping operation, while preserving and prolonging the life of the gage surface scraper 32.
As shown in
In operation, as drill bit 10 rotates, each cone 12 rotates along its axis 61 and the cutting elements 43 on the outer cutting surface 41 of cone 12 perform earth boring operations. During the process of earth boring, foreign material or debris such as mud may form on the gage surface 30 of the rotary cone 12. The gage surface scraper 32 cleans or scrapes away the packed debris from the gage surface 30 as the cone 12 is rotating about its axis 61.
The invention has significant advantages. The gage scraper 32 reduces accumulation of mud and cuttings on the gage surface. A cleaner gage surface reduces mud packing in the seal recess, prolonging the life of the seal. The cleaner gage surface 32 may also increase the rate of penetration, thus improving overall performance of the drill bit 10.
Although the present invention has been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereupon without departing from the principle and scope of the invention. Accordingly, the scope of the present invention should be determined by the following claims and their appropriate legal equivalents.
Number | Name | Date | Kind |
---|---|---|---|
1641261 | Fletcher | Sep 1927 | A |
2769616 | Morlan et al. | Nov 1956 | A |
2960313 | Goodwin | Nov 1960 | A |
4515228 | Dolezal et al. | May 1985 | A |
4688651 | Dysart | Aug 1987 | A |
5056610 | Oliver et al. | Oct 1991 | A |
6026917 | Zahradnik et al. | Feb 2000 | A |
6196339 | Portwood et al. | Mar 2001 | B1 |
Number | Date | Country | |
---|---|---|---|
20050211474 A1 | Sep 2005 | US |