A receiver system typically consists of a series of stages consisting of pre-selectivity gain and mixing, frequency selectivity (i.e. a filter) and post-selectivity gain and mixing. Conventional receivers either set a total system gain with a predetermined partition between pre- and post selectivity gain, or rely on a separate controller or demodulator to independently adjust pre and post selectivity gains to achieve the linearity/noise tradeoff.
By reducing the gain G1 of amplifier 110, the linearity is improved. Reducing the gain of the first amplifier 110 also reduces the amplitude of signal S1. To keep the amplitude of signal S4 constant, gain G2 may be increased. The gain redistribution between amplifiers 110 and 140 reduces distortion but also results in degradation of the signal-to-noise (SNR) ratio. Therefore a tradeoff exists between increasing the gain G1 to improve signal to noise ratio, and degrading linearity performance of the system (increasing the distortion products in the signal) when blockers are present.
Gains G1 and G2 are typically selected such that the total gain G1*G2 is equal to a known value. In accordance with one conventional technique, for a given input signal level S0, a predetermined gain partitioning of G1 and G2 is used.
In receiver 300, the gains of the first and second amplifiers 110 and 140, respectively, are controlled by gain controller 310 that controls the gains G1 and G2 in accordance with an algorithm that provides fixed gain partitioning using signal Tsys.
In accordance with another conventional technique, the output signal of the second amplification stage is used to determine the gain partitioning.
An automatic gain control loop disposed in a receiver is adapted to compensate for varying levels of out of band interference sources by adaptively controlling the gain distribution throughout the receive signal path. One or more intermediate received signal strength indicator (RSSI) detectors are used to determine a corresponding intermediate signal level. The output of each RSSI detector is coupled to an associated comparator that compares the intermediate RSSI value against a corresponding threshold. The take over point (TOP) for gain stages is adjusted based in part on the comparator output values. The TOP for each of a plurality of gain stages may be adjusted in discrete steps or continuously.
In accordance with the present invention, for a given receiver path gain defined, for example, by the product of the pre and post selectivity gains, the present invention provides a self-contained, compact apparatus and method for adjusting the partitioning between pre and post-selectivity gain to optimize the signal level entering the filter disposed in the receiver. The receiver is thus enabled to continuously trade off linearity against noise depending on the presence or absence of undesired signals (blockers) at other frequencies without relying on the intervention of an external controller or demodulator.
A receiver, in accordance with one embodiment of the present invention includes, in part, a first amplification stage, a frequency conversion module responsive to the first amplification stage, a filter responsive to the frequency conversion module, a second amplification stage responsive to the filter, and a controller adapted to vary a gain of each of the first and second amplification stages in response to an output signal of the first amplification stage and further in response to an overall gain selected for the receiver.
A receiver in accordance with another embodiment of the present invention includes, in part, a first amplification stage, a frequency conversion module responsive to the first amplification stage, a filter responsive to the frequency conversion module, and a second amplification stage responsive to the filter. The receiver is adapted to vary the gains of the first and second amplification stages in response to a first and second feedback signals.
In one embodiment, the first and second feedback signals are supplied by a controller responsive to signals representative of the output signals of the first and second amplification stages. In one embodiment, the controller is external to the receiver. In one embodiment, the controller is further responsive to the filter. In one embodiment, the receiver includes a third amplification stage. In such embodiments, the controller is further responsive to a third signal representative of the output signal of the third amplification stage.
A method of controlling the gain of a receiver, in accordance with one embodiment of the present invention, includes, in part, amplifying a received signal to generate a first signal using a first amplification stage, frequency converting the first signal, filtering the frequency converted signal, amplifying the filtered signal to generate a second signal using a second amplification stage, and varying a gain of each of the first and second amplification stage in response to an output signal of the first amplification stage and further in response to an overall gain selected for the receiver.
A method of controlling the gain of a receiver, in accordance with another embodiment of the present invention, includes, in part, amplifying a received signal to generate a first amplified signal using a first amplification stage, frequency converting the first amplified signal, filtering the frequency converted signal, amplifying the filtered signal to generate a second amplified signal using a second amplification stage, and varying a gain of each of the first and second amplification stage in response to first and second feedback signals.
In one embodiment, the method further includes, in part, applying signals representative of the first and second amplified signals to a controller, and generating the first and second feedback signals in response to the signals applied to the controller. In one embodiment, the controller is external to the receiver. In one embodiment, the method further includes applying a signal representative of the filtered signal to the controller. In one embodiment, the controller is further responsive to a third amplified signal present in the receiver.
Referring to
The receiver 700 of
A practical digital implementation is presented in conjunction with the method 900 illustrated below. It provides discrete steps in TOP control and receives a digital S1 signal. A circuit implementing the method 900, such as the controller 710 of
At step 920 a determination is made as to whether the S1 value is substantially the same as the predetermined reference level REF for the application that is presently active. If so, the controller proceeds to step 930 and determines if the S1 value is less than a predetermined low reference level REFL. If so, the controller proceeds to step 970 and increases the Take-Over-Point, up to a predetermined TOP limit.
If at step 930 the controller determines that S1 is not less than the low reference level REFL, the controller instead proceeds to step 940 where the controller determines if S1 is greater than the high reference level REFH. If not, the controller proceeds back to step 910 to await the next S1 update without making any changes to the TOP. If, at step 940, the controller determines that the RSSI is greater than the high reference level REFH, the controller proceeds to step 960 to decrease the TOP down to a predetermined lower limit.
Referring to step 920, if the controller determines that S1 is not substantially equal to the reference level, the controller proceeds to step 950 to determine if S1 is greater than the reference level. If not, the controller proceeds to step 970 to increase the TOP, but not to exceed the upper limit. If at step 950 the controller determines that S1 is greater than the reference level, the controller proceeds to step 960 to decrease the TOP but not smaller than a lower limit. The controller proceeds from either step 960 or step 970, that is, after adjusting the TOP, back to step 910 to await the next S1 update.
It is understood that additional signal strength monitoring loops may be added in the signal path in order to detect which portion of the signal path is experiencing saturation first. Such capability may be useful for allowing the receiver to distinguish between blockers which are far from the desired signal or close to the desired signal.
A close blocker is referred to as an N+/−1 blocker or adjacent channel blocker (that is, a blocker which is one channel above or below the desired channel N). Blockers further away in frequency are similarly labeled. In many receivers, an N+/−1 blocker may cause a portion of the signal path after mixing or filtering to limit receiver performance before the mixer saturates. A receiver is more susceptible to N+/−1 blockers because the (undesirable) third-order distortion products from these blockers are more severe at frequencies closer to the blockers. To remedy these problems, in accordance with one embodiment of the present invention, an adaptive gain partitioning receiver includes sensors in the signal path to allow the receiver to distinguish between close in blockers, such as N+/1, from N+/−2 and other blockers.
The above embodiments of the present invention are illustrative and not limiting. Various alternatives and equivalents are possible. The invention is not limited by the number of subbands disposed in the diversity receiver. The invention is not limited by the type of integrated circuit in which the present disclosure may be disposed. Nor is the disclosure limited to any specific type of process technology, e.g., CMOS, Bipolar, or BICMOS that may be used to manufacture the present disclosure. Other additions, subtractions or modifications are obvious in view of the present disclosure and are intended to fall within the scope of the appended claims.
The present application claims priority to and is a continuation of U.S. patent application Ser. No. 14/044,817, now U.S. Pat. No. 9,059,672, filed Oct. 2, 2013, which is a continuation of U.S. patent application Ser. No. 12/249,269, now U.S. Pat. No. 8,577,319, filed Oct. 10, 2008, which application claims benefit under 35 USC 119(e) of U.S. Provisional Application No. 60/979,024, filed Oct. 10, 2007. The above identified applications are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4030035 | Ienaka | Jun 1977 | A |
6075978 | Tsumura | Jun 2000 | A |
6906498 | Breuch et al. | Jun 2005 | B2 |
6992855 | Ehrlich | Jan 2006 | B2 |
6993291 | Parssinen | Jan 2006 | B2 |
7095454 | Waight et al. | Aug 2006 | B2 |
7167694 | Khoini-Poorfard et al. | Jan 2007 | B2 |
7362178 | Montemayor et al. | Apr 2008 | B2 |
7373125 | Godambe et al. | May 2008 | B2 |
7421259 | Gomez et al. | Sep 2008 | B2 |
8285240 | Seendripu et al. | Oct 2012 | B2 |
8374568 | Seendripu et al. | Feb 2013 | B2 |
8374569 | Seendripu et al. | Feb 2013 | B2 |
8374570 | Seendripu et al. | Feb 2013 | B2 |
8526898 | Reddy et al. | Sep 2013 | B2 |
8577319 | Ling et al. | Nov 2013 | B2 |
8666350 | Vauhkonen | Mar 2014 | B2 |
8909187 | Seendripu et al. | Dec 2014 | B2 |
9059672 | Ling et al. | Jun 2015 | B2 |
20040229561 | Cowley | Nov 2004 | A1 |
20050040909 | Waight et al. | Feb 2005 | A1 |
20060079191 | Parssinen | Apr 2006 | A1 |
20060111066 | Thorpe | May 2006 | A1 |
20060141965 | Hennig | Jun 2006 | A1 |
20070042742 | Kim et al. | Feb 2007 | A1 |
20070082639 | Lindstrom | Apr 2007 | A1 |
20080242249 | Gomez | Oct 2008 | A1 |
Entry |
---|
Jeffrey A. Weldon, et al. A 1.75-GHz Highly Integrated Narrow-Band CMOS Transmitter With Harmonic-Rejection Mixers, IEEE Journal of Solid-State Circuits, Dec. 2001, pp. 2003-2015, vol. 36, No. 12, Seattle, Washington. |
Number | Date | Country | |
---|---|---|---|
20170149399 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
60979024 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14044817 | Oct 2013 | US |
Child | 14720637 | US | |
Parent | 12249269 | Oct 2008 | US |
Child | 14044817 | US |