The present invention relates generally to the field of aircraft data transfer, and more particularly relates to an adaptive data transfer network for managing and sharing information, and this sharing can eliminate the need for a galley network controller.
Present day commercial aircraft are traditionally configured with a food and beverage preparation area, commonly referred to as a galley. The galley can contain refrigeration units, heaters, and appliances for the preparation of food and beverages, such as ovens, beverage brewing machines, etc. In addition to the devices described above, galley equipment includes such devices as beverage dispensers, ovens, brewers, trash compactors, beverage carts, and the like. All of the galley's power consuming equipment can run off a single power source that services the network of devices.
In a typical galley power distribution system, GAlley INserts, or “GAINs,” are power clients that request power in specific time intervals from a galley network controller. In the configuration of
In view of the foregoing, the present invention seeks to provide greater flexibility and cost savings in a system for a galley, where new equipment behavior may be introduced as part of an adaptive system. That is, each networked device can poll operational and functional characteristics of the other devices connected in the network, thereby eliminating the need for a galley network controller in the system. When additional devices are added or replaced in the system, there is no need to reconfigure a galley network controller since each device can automatically recognize and interrogate the new devices, making the system much more flexible and adaptive.
The network connectivity and interrogation of various galley GAINs (e.g., coffee makers, water heaters, espresso makers, ovens, chillers, refrigerators, trash compactors and other equipment and appliance used in an aircraft galley environment) make it possible for any network device to transfer useful information (digital data) to any other network device without routing through a central galley network controller. A network display device for displaying the requested device information may be a wired GAIN already in the system, a wired non-GAIN device that may perform specialized data collection and display, a non-GAIN device that may plug into the system but is not a permanent component of the system, or a wireless device that can connect and receive data wirelessly from a GAIN in the network.
An example of device data that may be collected and stored in a particular GAIN may be the maintenance and fault data for any device in the network. This information can be conveniently retrieved in the system of the present invention by connecting directly to a GAIN in the system, which can poll and store the information for all connected GAINs, and then display the information via a display device such as a laptop computer or a hand-held PDA or smartphone. Access to the galley digital network may be achieved from an access port on a GAIN (such as, for example, an included USB port), an access port on the digital network that connects the GAINs, or a wireless access point. Wireless access points are not limited to non-passive WiFi capability. In other words, data transfer can occur across passive infrared signals.
The invention uses networked self-aware and system-aware adaptive aircraft galley equipment that can access specialized data from all connected GAINs and transfer the information to any type of digital network access point. It should be noted that this invention could be used even if a GNC is present in the system. For example, a user (flight attendant, aircraft mechanic, etc.) could still access the information by connecting (physically or wirelessly) to one of the GAINs present in the system, without going through the GNC directly.
The introduction of a small galley network makes it possible for GAIN-to-GAIN information sharing that implements power control arbitration (consistent with ARINC 812 Decentralized Power Control). Other advantages include that a single network display device could be used to locally control and poll all galley equipment for selected information. That is, since the GAINs provide detailed status information and allow for remote control operation, a single, centralized point of control streamlines in-galley operations by having a time-dependent central point of catering control.
One advantage of this invention is that it provides for multiple options for data collection, status, control and analysis of GAIN-centric specialized data. For example, a wireless (or wired) hand-held device can readily offload data (catering-specific data, maintenance data, FDA-compliant data, etc) from the entire galley network (all GAINs) with the touch of a button, such as for example a smart phone application. In addition, data integrity of the network may be secured via various network authentication methods.
The present invention is an adaptive, GAIN-to-GAIN data distribution network for collecting galley equipment data from a component of the network without the need for a dedicated galley network controller.
The GAINs 20 may be kitchen equipment, such as coffee makers, trash compactors, auxiliary galley lighting, or they may be ovens, refrigerators, drink carts, or the like. The system includes a digital data bus 30 that connects each GAIN 20 to each other in parallel, and permits each GAIN 20 to communicate with each other GAIN in the system. The digital bus provides a conduit by which data can be exchanged throughout the system, and links each of the devices in the system to every other device. It should be noted that other types of connections are possible between the GAINs of the system, including logical connections and wireless connections (see, e.g.,
Also connected to the bus 30 is a display device 40 that collects data about the system and displays it on command. That is, the display device 40 can, for example, poll GAIN 1 and request or access certain information about GAIN 1, such as current power consumption, hours of operation, temperature, life cycles, status, or other diagnostic information that may be present in the device's memory. Similarly, the display device can request information from GAINs 2, 3, . . . n in a similar manner, and display the information on a designated display screen. However, the display device 40 can access GAIN 1 to interrogate or poll GAINs 2-n and obtain their data as well. In this embodiment, the display device 40 is hardwired into the system 10 at the data bus 30. This has the advantage of ensuring that the display device 40 is adapted for the particular system and can be selected to meet the particular needs of the network. In one preferred embodiment, the display device 40 may be a component of one of the GAINs itself. For example, many galley devices already include a display, such as for example brewing equipment, ovens, and refrigerators. These displays can be used to transmit the requested service data of the device or other connected devices. Alternatively, the display device 40 can be a separate, dedicated display device 40 that is not part of any GAIN, but is a permanent member of the network.
The microcontroller 100 also communicates with actuators 120 that perform certain functions of the GAIN, such as a hydraulic actuator for a trash compactor, a solenoid, or a heating element for a beverage brewing apparatus. The microcontroller 100 can also manage and monitor the electro-mechanical status 130 of the GAIN to determine such characteristics as power usage, motor control, heating element control, and the like. Power 160 from a power feeder (not shown) is delivered to the GAIN at a power interface 150, and the power is converted to usable power by the GAIN at a power conversion circuit 140, which powers the microcontroller 100 as well as the electro-mechanical actuators 130.
A user interface 90 that is accessible from the GAIN's exterior surface can be a touch screen, keyboard, pointing device, LED indicators, buttons, or the like that may be used to enter and request information into/from the system. Finally, a screen 170 is connected to the GAIN at the user interface 90 and the microcontroller 100 for displaying information and/or data to the user. The data can be data for the GAIN shown, or the data can be from another GAIN that is polled by the microcontroller 100 across the bus 30 or other connection within the network. Thus, in this manner any GAIN's information can be displayed on display 170, even GAINs that are not wired physically to the network.
From the foregoing, it will be appreciated that specific embodiments of the invention have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. For example, although the food storage and food processing units described above have been described in the context of aircraft usage, in other embodiments, food storage and food processing units that include aspects of the present invention can be used in other food storage and food processing contexts. Accordingly, the invention is not limited except as by the appended claims.
This application is a continuation of U.S. application Ser. No. 13/071,416, filed Mar. 24, 2011, which claims priority from U.S. Provisional Application No. 61/318,103, filed Mar. 26, 2010 incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6845627 | Buck | Jan 2005 | B1 |
8289670 | Aronson et al. | Oct 2012 | B2 |
8321073 | McAvoy | Nov 2012 | B2 |
8358609 | Cona et al. | Jan 2013 | B1 |
8880685 | Birkmann et al. | Nov 2014 | B2 |
20040067177 | Thieman et al. | Apr 2004 | A1 |
20050043996 | Silver | Feb 2005 | A1 |
20050121978 | McAvoy | Jun 2005 | A1 |
20050267935 | Gandhi et al. | Dec 2005 | A1 |
20080141315 | Ogilvie | Jun 2008 | A1 |
20080196087 | Ranjit | Aug 2008 | A1 |
20080319806 | Abhyanker | Dec 2008 | A1 |
20090103221 | Aronson et al. | Apr 2009 | A1 |
20090112377 | Schalla et al. | Apr 2009 | A1 |
20100071384 | Lu et al. | Mar 2010 | A1 |
20100281892 | Schroder | Nov 2010 | A1 |
20120209906 | Ausfeld | Aug 2012 | A1 |
20130033789 | Aronson et al. | Feb 2013 | A1 |
Entry |
---|
China Search Report, Mar. 25, 2014, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20150067134 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
61318103 | Mar 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13071416 | Mar 2011 | US |
Child | 14527535 | US |