The present invention relates to a gait training apparatus usable for example in gait therapy.
In recent years, there has been an increased interest in improving or automatizing gait therapy for patients, for example for stroke patients or other patients who have to learn or relearn how to walk or for any other patients with limited walking abilities.
From WO 2000/028927 A1 a device and method for automating treadmill therapy is known, where a patient is walking on a treadmill and may be partially or fully suspended, i.e. part or all of the weight of the patient may be borne by a load bearing device, which may be adjustable.
Such a device is in particular useful for early stages of therapy. However, as the patient is essentially fixed above the treadmill, not all of the complex movements needed for walking in daily life, for example climbing stairs, may be easily practiced with such a device.
For providing the possibility of a more flexible walking therapy, from U.S. Pat. No. 7,462,138 B2 it is known to provide a rail system on a ceiling of a building or on columns above a patient and to suspend the patient from such a rail system. This system allows for flexible walking within the area covered by the rail system. However, as the rail system is heavy and cumbersome, special rooms have to be provided for installing the rail system, and the therapy then has to take place in the thus equipped room. Therefore, flexible deployment of such an apparatus is limited.
It is therefore an object to provide a gait training apparatus which may be deployed in a flexible manner as regards the location of deployment and which enables a person using the apparatus to practice various kinds of walking movements.
According to an embodiment, an apparatus for gait training as defined in claim 1 is provided. The dependent claims define further embodiments.
According to an embodiment, an apparatus for gait training is provided, comprising:
a movable base, said movable base comprising a drive unit for moving the movable base,
an arm arrangement extending from the base,
a weight support system to enable a person to be at least partially suspended from above via the arm arrangement,
a movement detector to detect a movement of the person, and
a control unit configured to control said drive unit in response to movement of the person detected by the movement detector such that the movable base follows the person in a predetermined distance range and in a predetermined angular range with respect to a movement direction of the person.
With such an apparatus, a person, for example a patient, may be suspended from above, and as the movable base follows the person in the predetermined distance range, the person may walk essentially freely without being limited to any room having specific equipment.
The predetermined angular range may be user configurable and may be selected such that the movable base moves outside a movement path of the person and/or may pass obstacles. This e.g. allows the person to train using elements like obstacles, stairs, etc., while the movable base passes besides such elements. It is to be noted that the predetermined angular range may be changed during training, e.g. based on inputs by a patient or therapist, based on obstacles captured by a sensor and/or based on a stored predetermined pattern matching e.g. a certain training course.
The arm arrangement may comprise a vertical portion and a horizontal portion, the weight support system enabling the person to be suspended from the horizontal portion. A length of the vertical portion may be adjustable for example to adjust the apparatus to persons of different sizes, or to accommodate the person walking on non-even surfaces like stairs.
The movable base may comprise a single base unit, but also may comprise more than one base unit in some embodiments.
The arm arrangement may comprise an adaptation mechanism to adapt a horizontal distance between a point where the person (113) is suspended at the arm arrangement (15, 16, 18; 15A, 16A, 15B, 16B; 18A, 18B) and said movable base (11; 11A, 11B) to movements, in particular small movements, of the person on the ground, while larger and/or slower movements may be accommodated by controlling the drive unit to move the movable base.
The movable base may comprise wheels, for example omnidirectional wheels like so-called Swedish wheels, sometimes also referred to as Mecanum wheels. The apparatus may also comprise a projector to project for example a walking course on the ground in front of the person.
The sensor may comprise for example an optical sensor, an ultrasonic sensor, an infrared sensor and/or the like. In some embodiments, the sensor may be partly or completely provided in the movable base. In some embodiments, the sensor may comprise a sensor part to be attached to the person, for example a transponder or reflector. In other embodiments, the sensor may comprise an angular sensor sensing an angle of a rope used to suspend the person and detect a movement of the person based on the detected angle and/or changes thereof.
In some embodiments, the apparatus may comprise a fall detector to detect a falling or stumbling of the person, and the control unit may be configured to take appropriate safety measures in case a falling or stumbling is detected, for example a braking operation or an extension of leg elements to improve the stability of the movable base. Such a falling or stumbling of a person may for example be detected by monitoring a force exerted on a rope suspending the person.
The apparatus may further comprise a hand-held device via which the person may control the apparatus, for example specific functions of the apparatus like emergency stop, or to select therapy modes for performing a therapy.
In some embodiments, the apparatus may comprise an additional arm arrangement configured to suspend for example an orthesis device to support movement of the person.
In another embodiment, an apparatus for gait training is provided, comprising:
a movable base, said movable base comprising a drive unit for moving the movable base,
an arm arrangement extending from the movable base,
a weight support system to enable a person to be at least partially suspended from above via said arm arrangement,
a movement detector to detect a movement of the person,
a control unit configured to control said drive unit in response to movement of the person detected by the movement detector and
a projector mounted on the apparatus configured to project a path to be taken by the person.
The above-described features may be used singly or in combination with each other in various embodiments.
In the following, more detailed embodiments of the invention will be described with reference to the attached drawings.
In the following, various embodiments of the invention will be described in detail with reference to the attached drawings. It should be noted that the embodiments are given only for illustration purposes and are not to be construed as limiting the scope of the invention. Features of various embodiments described in the following may be combined with each other unless specifically noted otherwise. On the other hand, describing an embodiment with a plurality of features is not to be construed as indicating that all those features are necessary for practicing the invention, as other embodiments may comprise less features and/or alternative features.
In the following, apparatuses usable for gait training, in particular therapeutical gait training to assist a patient for example in (re)learning to walk after a stroke or other physical impairment, are described. In particular, embodiments described in the following are able to suspend a person at least partially, i.e. to bear part or all of the weight of the patient, such that the load acting on joints and muscles of the patient is reduced.
In
The apparatus shown in
In order to adjust the degree of suspension of person 113 and/or to adapt apparatus 10 to persons 113 of different weight, a weight relief mechanism 118 is provided and coupled to rope 19 for example via a pulley mechanism. With weight relief mechanism 118 the weight relief, i.e. the amount of weight of person 113 borne by apparatus 110, may be adjusted. A suitable weight relief mechanism is for example described in applicant's EP 1 586 291 A1 or EP 2 076 229 A1 in detail and will therefore not be described in detail again. In embodiments, it is generally preferable to locate at least heavier parts of weight relief mechanism 118 in or close to base 11, for example in lower vertical portion 15 as shown, to increase the stability of apparatus 10.
Apart from the weight relief mechanism described in the above-mentioned documents, also other mechanisms may be used, for example based on elastic elements like springs between lower vertical portion 15 and upper vertical portion 16.
As indicated by an arrow 17, generally upper vertical portion 16 may move inside lower vertical portion 15 for example for height adjustment to persons 113 of various heights or also for height adjustment when for example person 113 walks over an uneven surface like stairs 117. Such a height adjustment may be performed automatically during walking of person 113, for example by measuring a force on rope 19 and increasing the height when the force decreases and decreasing the height when the force increases. It should be noted that in other embodiments additionally or alternatively such a height adjustment may be performed by adjusting an amount of rope length issued from horizontal portion 18 to person 113.
Furthermore, in the embodiment of
Various types of sensors may be employed for sensor 14. It should be noted that also various types of sensors may be employed concurrently, to create a redundancy in monitoring the movement of person 113. For example, sensor 14 may be an optical sensor, for example comprising one or more cameras, in which case movement of person 113 may be determined via an image analysis which may be performed by control unit 119 or by a dedicated image processor. In other embodiments, sensor 14 may comprise one or more ultrasonic sensors or infrared sensors. In some embodiments, to determine position and movement of person 113 person 113 may wear a sensor component 115, for example a reflector, transponder or receiver to reflect or receive signals, for example ultrasonic signals, sent by sensor 14. Sensor component 115 in case of a receiver may then send back information about the received signals to sensor 14, for example via radio frequency waves. Instead of a single sensor element 115, also a plurality of such elements may be provided on person 113 to more precisely determine a movement of this person. Also, inertial measurement units may additionally be provided to determine the posture of person 113. A suitable system for motion detection using ultrasonic sensors is for example described in US 2008/0223131 A1.
It should be noted that while sensor 14 is depicted as being incorporated in base 11, sensor 14 may also be located at other parts of apparatus 10, for example on the arm arrangement 15, 16, 18. In still other embodiments, sensor 14 may be external to apparatus 10 and may for example comprise a camera arrangement for monitoring person 113 and apparatus 10 and their relative position to each other and transmitting corresponding information to base 11. In a similar manner, also control unit 119 may be an external computing device communicating with an appropriate sensor and drive 13 for example via wireless signals. A further possibility for detecting movement of person 113 will be described later with reference to
In some embodiments, the apparatus may further comprise a hand-held device 116 or be configured to communicate with a hand-held device. Hand-held device 116 may be a dedicated hand-held device (for example also comprising simple mechanical elements like a button or a joystick) or also a general purpose programmable hand-held device like a smartphone with a corresponding application and may communicate e.g. with control unit 119 in a wireless manner or via a wire-based connection. Via hand-held device 116, for example an emergency stop may be initiated (for example causing apparatus 10 to bear the complete weight of person 113), a desired therapy program (e.g. stair climbing, standing up from a sitting position, walking around, etc.) may be selected, parameters like a degree of weight relief may be adjusted and/or for example a height adjustment by moving upper vertical portion 16 relative to lower vertical portion 15 may be performed. Also, feedback may be given to person 113 via hand-held 116, for example regarding training duration or completion of specific tasks like climbing a stair like stair 117 or regarding correctness of movement of person 113. In some embodiments, dedicated sensors may be used to evaluate the correctness, e.g. quality, of the movement, e.g. gait, of person 113. In other embodiments, sensor 14 or another corresponding sensor used for detecting movements of person 113 to enable movable base 11 to follow person 113 may be also used for this purpose. In some embodiments, instead of hand-held 116 an input device fixed to apparatus 10 or any other external input/output device like a computer connected to apparatus 10 in a wireless manner may be additionally or alternatively used. It should be noted that other embodiments may work without using a hand-held device. Also, an emergency stop may be implemented additionally or alternatively based on a monitoring of person 113, for example via sensor 14. When an emergency, for example a falling of person 113, is detected, an emergency stop e.g. as explained above is performed. Such an automatic emergency stop may enable an unsupervised training of person 113.
In some embodiments, apparatus 10 may additionally comprise a projector 112 which may be mounted on horizontal portion 18 or on any other suitable location of apparatus 10, e.g. on movable base 11 or on vertical portions 15 or 16. Projector 112 may be used to project a path on the floor in front of person 113 which person 113 then has to follow. Through movement detection via sensor 14 it may be ascertained how precise person 113 follows the projected path, and feedback may be given to person 113 via hand-held device 116, just to give an example. Such a projected path may for example be depicted as continuous or discrete objects. It may for example comprise curves or narrow portions to stimulate different movements of person 113, such movements being for example movements of a whole body of person 113 or only of the legs and/or feet of person 113. The path may for example be indicated by a set of visual objects onto which the person has to touch, e.g. has to step with his/her feet, or in another example by a set of visual objects the person must not touch, e.g. onto which the person must not step with his/her feet. In an embodiment, the visual objects may comprise a visualization of a set of stones sticking out of a pool indicating a path where the person has to place the feet onto the stones. Other representations, for example more abstract representations, are equally possible.
It should be noted that in other embodiments projector 112 may be omitted.
Furthermore, in the embodiment of
Further optional features and variations of apparatuses according to embodiments will be described next with respect to
In
Additionally, an apparatus in some embodiments may comprise a force/brake mechanism 21 acting on a continuation rope part 24 of rope 19 (rope part 24 may for example be linked to rope 19 via a pulley). While force/brake mechanism 21 is schematically shown in horizontal portion 18 in
A further optional additional feature is shown in
A further optional feature implementable in some embodiments is shown in
While three legs 40 are shown in
Wheels 12 of base 11 may take any suitable form to move and steer base 11 and thus apparatus 10 of
It is emphasized that the various optional features discussed above with reference to
In the apparatus 10 of
A further embodiment of an apparatus 70 is shown in
Apparatus 70 of
Apparatus 70 comprises a counter weight 73 mounted to base 11 and movable around base 11 using e.g. tracks 74 or another mechanism such that counter weight 73 does not interfere with movement of a person training and/or is generally on the opposite side of horizontal portion 18. In other embodiments, counter weight 73 may be provided inside base 11.
Apparatus 70 of
With respect to
In
In the example shown, person 113 follows a movement path 80, which may lead over various training elements like stairs 117 or other obstacles, trampolines or the like. By using the mechanisms above, base 11 and thus the training apparatus follows person 113 in a predetermined distance range, represented by a distance 84 in
Similar to the predetermined distance range, also the predetermined angular range may be defined by determining a maximum and a minimum angle (for example corresponding to lines 83 and 85 of
As already mentioned, the predetermined angular range may be user configurable in some cases, such that base 11 may for example be configured to move at a side of person 113 (right side or left side), at a side and behind person 113 or directly behind person 113, which may also be selected depending on the exercises to be performed. In some cases, the predetermined angular range may change during a training depending on the circumstances, e.g. depending on exercises to be performed or a path to be taken by person 113. An example for a varying predetermined angular range is shown in
In the example of
Such changes in the predetermined angular range may for example be caused by a user input, for example by person 113 or by a therapist supervising the training of person 113. In other embodiments, additionally or alternatively a sensor like optical sensor 14 or a dedicated sensor for obstacle detection may sense obstacles like door 91 or stairs 117 or other obstacles in the path of base 11 and/or an arm arrangement mounted on base 11 and adjust the predetermined angular range accordingly to avoid collisions. It should be noted that in some embodiments, when an obstacle is detected in this way and avoiding the obstacle is not possible due to space restraints (or in an embodiment where the predetermined angular range is not changeable based on obstacle detection), an emergency stop as explained already above may be performed.
It should be noted that a certain training course or training path, for example comprising stairs 117 or other obstacles, may for example be stored in a control unit like control unit 119 of the apparatus, or a sensor, for example sensor 14 or a dedicated sensor, may recognize the training course and elements thereof. Control unit 119 may then control the apparatus depending on the predetermined or recognized (via sensors) training course. For example, when person 113 climbs stairs, the height for example of vertical portions 15, 16 may be adjusted automatically, or the weight relief 118 may be adjusted to actively support the person when climbing the stairs, for example actively lifting the person. For other exercises, for example more slack of rope 19 may be desired, and this may also be controlled automatically. In case of a predetermined training course stored e.g. in a memory, also predetermined angular ranges for various parts of the training course may be stored.
Further variations not explicitly shown in the drawings are also possible. For example, while arm arrangements comprising vertical portions and horizontal portions are depicted, other arrangements are also possible, for example arm arrangements comprising portions running at an acute angle with respect to a surface of base 11 and/or a surface on which base 11 stands. Also, horizontal portion 18 may comprise two or more parts linked for example by hinges or other joints, and vertical portions may comprise more than two parts or only a single part. In general, every form of arm arrangement can be used as long as the person training may be suspended from above.
While embodiments with single base units and two base units are shown, also more base units are possible.
Number | Date | Country | Kind |
---|---|---|---|
12191933 | Nov 2012 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2013/073371 | 11/8/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/072462 | 5/15/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5569129 | Seif-Naraghi et al. | Oct 1996 | A |
6689075 | West | Feb 2004 | B2 |
20050288157 | Santos-Munne | Dec 2005 | A1 |
20070034243 | Miller | Feb 2007 | A1 |
20080072942 | Warren | Mar 2008 | A1 |
20080234113 | Einav | Sep 2008 | A1 |
20090298653 | Rodetsky et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
2828420 | Sep 2012 | CA |
2400094 | Oct 2000 | CN |
101458083 | Jun 2009 | CN |
201519429 | Jul 2010 | CN |
2000028927 | May 2000 | WO |
2011130223 | Oct 2011 | WO |
2012107700 | Aug 2012 | WO |
WO 2012107700 | Aug 2012 | WO |
Entry |
---|
WO 2012107700 A2 Translation. |
Partial European Search Report for Application No. 16172206.1, dated Sep. 29, 2016. |
Search Report for PCT/EP2013/073371. |
Extended European Search Report, dated Nov. 25, 2016, Applicant: Hocoma AG, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20150306440 A1 | Oct 2015 | US |