1. Technical Field
This invention relates generally to pistons for internal combustion engines, and methods of manufacturing the pistons.
2. Related Art
Engine manufacturers are encountering increasing demands to improve engine efficiencies and performance, including, but not limited to, improving fuel economy, reducing oil consumption, improving fuel systems, increasing compression loads and operating temperatures within the cylinder bores, reducing heat loss through the piston, improving lubrication of component parts, decreasing engine weight and making engines more compact, while at the same time decreasing the costs associated with manufacture.
While desirable to increase the compression load and operation temperature within the combustion chamber, it remains necessary to maintain the temperature of the piston within workable limits. To maintain the piston at a suitable temperature and achieve a sufficient lifespan, the piston can be designed with a variety of features for cooling, for example cooling channels and/or coolant nozzles for spraying the piston from the side of the crank shaft.
Also, achieving an increase in the compression load and operation temperature comes with a tradeoff in that these desirable “increases” limit the degree to which the piston compression height, and thus, overall piston size and mass can be decreased. This is particularly troublesome with typical piston constructions having a closed or partially closed cooling gallery to reduce the operating temperature of the piston. The cost to manufacture pistons having upper and lower parts joined together along a bond joint to form the closed or partially closed cooling gallery is generally increased due to the joining process used to bond the upper and lower parts together. Further, the degree to which the engine weight can be reduced is impacted by the need to make the aforementioned “cooling gallery-containing” pistons from steel so they can withstand the increase in mechanical and thermal loads imposed on the piston.
Oftentimes, it is also desirable to keep the piston as lightweight as possible. Recently, single piece steel pistons without a cooling gallery have been developed and can be referred to as “galleryless” pistons. Such pistons provide for reduced weight, reduced manufacturing costs, and reduced compression height. The galleryless pistons are either spray cooled by a cooling oil nozzle, lightly sprayed for lubrication only, or are not sprayed with any oil. Due to the absence of the cooling gallery, such pistons typically experience higher temperatures than pistons with a conventional cooling gallery. High temperatures can cause oxidation or overheating of an upper combustion surface of the steel piston, which can then cause successive piston cracking and engine failures. High temperatures can also cause oil degradation along an undercrown area of the piston, for example underneath a combustion bowl where the cooling or lubrication oil is sprayed. Another potential problem arising due to high temperatures is that the cooling oil can create a thick layer of carbon in the area where the cooling or lubrication oil is in contact with the piston undercrown. This carbon layer can cause overheating of the piston with potential cracking and engine failure.
One aspect of the invention provides a galleryless piston having a reduced temperature during operation in an internal combustion engine and thus contributing to improved thermal efficiency, fuel consumption, and performance of the engine. In addition to providing sufficient cooling, the piston is also weight-optimized. The piston is free of a closed cooling gallery along an undercrown surface and thus has a reduced weight and related costs, relative to pistons including a closed cooling gallery.
The piston comprises an upper wall including the undercrown surface exposed from an underside of the piston. A ring belt depends from the upper wall and extends circumferentially around a center axis of the piston. A pair of pin bosses depend from the upper wall, a pair of skirt panels depend from the ring belt, and the skirt panels are coupled to the pin bosses by struts. The piston includes an inner undercrown region and outer pockets extending along the undercrown surface. The inner undercrown region is surrounded by the skirt panels, the struts, and the pin bosses. Each outer pocket is surrounded by one of the pin bosses, a portion of the ring belt, and the struts coupling the one pin boss to the skirt panels. At least one hole extends through at least one of the pin bosses and/or at least one of the struts from the inner undercrown region to one of the outer pockets. The hole allows oil to pass from the inner undercrown region to at least one of the outer pockets, which improves cooling of the at least one outer pocket and thus reduces the overall temperature of the piston.
Another aspect of the invention provides a method of manufacturing a weight-optimized, galleryless piston having a reduced temperature during operation in an internal combustion engine and thus contributing to improved thermal efficiency, fuel consumption, and performance of the engine. The method comprises the step of providing a body including an upper wall, the upper wall including an undercrown surface exposed from an underside of the piston, a ring belt depending from the upper wall and extending circumferentially around a center axis of the piston, a pair of pin bosses depending from the upper wall, a pair of skirt panels depending from the ring belt and coupled to the pin bosses by struts, an inner undercrown region extending along the undercrown surface and surrounded by the skirt panels and the struts and the pin bosses, a pair of outer pockets extending along the undercrown surface, each outer pocket being surrounded by one of the pin bosses, a portion of the ring belt, and the struts coupling the one pin boss to the skirt panels. The method further includes forming at least one hole through at least one of the pin bosses and/or at least one of the struts from the inner undercrown region to one of the outer pockets.
These and other aspects, features and advantages of the invention will become more readily appreciated when considered in connection with the following detailed description and accompanying drawings, in which:
The piston 10 has a monolithic body formed from a single piece of metal material, such as steel or an aluminum-based material. The monolithic body can be formed by machining, forging, or casting, with possible finish machining performed thereafter, if desired, to complete construction. Accordingly, the piston 10 does not have a plurality of parts joined together, such as upper and lower parts joined to one another, which is commonplace with pistons having enclosed or partially enclosed cooling galleries bounded or partially bounded by a cooling gallery floor. To the contrary, the piston 10 is “galleryless” in that it does not have a cooling gallery floor or other features bounding or partially bounding a cooling gallery.
The body portion, being made of steel, aluminum, or another metal, is strong and durable to meet the high performance demands, i.e. increased temperature and compression loads, of modern day high performance internal combustion engines. The steel material used to construct the body can be an alloy such as the SAE 4140 grade or different, depending on the requirements of the piston 10 in the particular engine application. Due to the piston 10 being galleryless, the weight and compression height of the piston 10 is minimized, thereby allowing an engine in which the piston 10 is deployed to achieve a reduced weight and to be made more compact. Further yet, even though the piston 10 is galleryless, the piston 10 can be sufficiently cooled during use to withstand the most severe operating temperatures.
The body portion of the piston 10 has an upper head or top section providing an upper wall 12. The upper wall 12 includes an upper combustion surface 14 that is directly exposed to combustion gasses within the cylinder bore of the internal combustion engine. In the example embodiment, the upper combustion surface 14 forms a combustion bowl, or a non-planar, concave, or undulating surface around a center axis A. A ring belt 16 providing a top land 18 followed by a plurality of ring grooves 20 depends from the upper wall 12 and extends circumferentially around the center axis A and along an outer diameter of the piston 10. In the example embodiment of
As shown in the Figures, the piston 10 further includes a pair of pin bosses 24 depending generally from the upper wall 12 inwardly of the ring belt 16 and providing a pair of laterally spaced pin bores 26. The pin bores 26 surround a pin bore axis B. The piston 10 also includes a pair of skirt panels 28 depending from the ring belt 16 and located diametrically opposite one another. The skirt panels 28 are coupled to the pin bosses 24 by struts 30.
The piston 10 also includes an undercrown surface 32 formed on an underside of the upper wall 12, directly opposite the upper combustion surface 14 and radially inwardly of the ring belt 16. The undercrown surface 32 is preferably located at a minimum distance from the combustion bowl and is substantially the surface on the direct opposite side from the combustion bowl. The undercrown surface 32 is defined here to be the surface that is visible, excluding any pin bores 26, when observing the piston 10 straight on from the bottom. The undercrown surface 32 is generally form fitting to the combustion bowl of the upper combustion surface 14. The undercrown surface 32 is also openly exposed, as viewed from an underside of the piston 10, and it is not bounded by an enclosed or partially enclosed cooling gallery, or any other features tending to retain oil or a cooling fluid near the undercrown surface 32.
The undercrown surface 32 of the piston 10 has greater a total surface area (3-dimensional area following the contour of the surface) and a greater projected surface area (2-dimensional area, planar, as seen in plan view) than comparative pistons having a closed or partially closed cooling gallery. This open region along the underside of the piston 10 provides direct access to oil splashing or being sprayed from within the crankcase directly onto the undercrown surface 32, thereby allowing the entire undercrown surface 32 to be splashed directly by oil from within the crankcase, while also allowing the oil to freely splash about the wrist pin (not shown), and further, significantly reduce the weight of the piston 10. Accordingly, although not having a typical closed or partially closed cooling gallery, the generally open configuration of the galleryless piston 10 allows optimal cooling of the undercrown surface 32 and lubrication to the wrist pin joint within the pin bores 26, while at the same time reducing oil residence time on the surfaces near the combustion bowl, which is the time in which a volume of oil remains on the surface. The reduced residence time can reduce unwanted build-up of coked oil, such as can occur in pistons having a closed or substantially closed cooling gallery. As such, the piston 10 remains “clean” over extended use, thereby allowing it to remain substantially free of build-up.
The undercrown surface 32 of the piston 10 of the example embodiments is provided by several regions of the piston 10, including an inner undercrown region 34 and outer pockets 36, which are best shown in
A second region of the undercrown surface 32 is provided by the outer pockets 36 which are located outwardly of the pin bosses 24. Each outer pocket 36 is surrounded by one of the pin bosses 24, a portion of the ring belt 16, and the struts 30 coupling the one pin boss 24 to the skirt panels 28. The outer pockets 36 include a hollow extending from the bottom, the side of the crankshaft, and heads in the direction of the undercrown surface 32 and to an inner surface of the ring belt 16. In the example embodiment of
To allow cooling oil to pass from the inner undercrown region 34, where the oil jet typically sprays the cooling oil, to the outer pockets 36, at least one hole 38, and preferably a plurality of holes 38 extend through the pin bosses 24 and/or the struts 30 from the inner undercrown region 34 to the outer pockets 36.
The holes 38 can be placed in various different locations along the undercrown surface 32, pin bosses 24, and/or struts 30 to provide a connection from the inner undercrown region 34 to the outer pockets 36. In the example embodiments, the holes 38 are located near the top of the piston 10 or higher, for example adjacent the undercrown surface 32. In the embodiments shown in the
In the example embodiment of
The holes 38 can comprise various different shapes and sizes. In the example embodiment, the holes 38 are cylindrical in shape and have a diameter ranging from 5 mm to 10 mm. However, the diameter of the holes 38 could be as small as 4 mm to as large as the design allows.
The holes 38 can be formed by various different methods. In one embodiment, the holes 38 are cast or forged into the monolithic body of the piston. In another embodiment, the holes 38 are drilled between the inner undercrown region 34 and the outer pockets 36 after the monolithic body is formed.
According to the embodiment of
Alternatively, a recess 46 can be provided instead of the two ribs 48, or the recess 46 can be provided only between the two ribs 48. Each recess 46 preferably borders one of the struts 30 so that the recesses 46 can conveniently ensure that the cooling oil which accesses the recesses 46 will run in the direction of the at least one hole 38 in the pin boss 24 or strut 30 and therefore into the outer pocket 36. When using the at least one deflector 44, it is preferable to combine the piston 10 with a coolant nozzle (not shown) which sprays the cooling oil at an oblique angle in relation to the center axis A of the piston. With this, depending on the position of the piston 10, different areas of the piston 10 can be cooled along its stroke.
Another aspect of the invention provides a method of manufacturing the galleryless piston 10 for use in the internal combustion engine. The body portion of the piston 10, which is typically formed of steel or aluminum, can be manufactured according to various different methods, such as forging or casting. The body portion of the galleryless piston 10 can also comprise various different designs, an example of the design is shown in
The method further includes providing holes 38 in the piston 10 which extend from the inner undercrown region 34 to the outer pockets 36. This step can include casting the holes 38 during the process of casting or forging the monolithic body, or other suitable processing, such as drilling the holes 38 after providing the monolithic body. The holes 38 typically extend through the pin boss 24 and/or struts 30. The holes 38 can also extend through a small portion of the undercrown surface 32. The deflector 44 can also be formed during the casting or forging process, or through suitable processing.
Many modifications and variations of the present invention are possible in light of the above teachings and may be practiced otherwise than as specifically described while within the scope of the following claims. It is contemplated that all features of all claims and of all embodiments can be combined with each other, so long as such combinations would not contradict one another.
Number | Date | Country | Kind |
---|---|---|---|
10 2016 204 830.9 | Mar 2016 | DE | national |
This U.S. utility patent application claims priority to U.S. provisional patent application No. 62/298,952, filed Feb. 23, 2016, and German patent application 10 2016 204 830.9, filed Mar. 23, 2016, the contents of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62298952 | Feb 2016 | US |